
Computer- Aided Design & Applications, 10(1), 2013, 33- 44

© 2013 CAD Solutions, LLC, http://www.cadanda.com

33

A Projection Operator for Representing Sharp Features using Visibility

Hiroaki Kawata1 and Takashi Kanai2

1The University of Tokyo, hiroaki@graco.c.u- tokyo.ac.jp
2The University of Tokyo, kanai@graco.c.u- tokyo.ac.jp

ABSTRACT

We propose a projection operator for point sets without normal vector information.

Based on the visibility of points, it is possible to represent sharp features when points

are projected on the surface without normal vector information. Our method is based

on the Moving Least- Square Surface projection operator. Visibility computation is

utilized to avoid average computation of points near sharp features when selecting

points, in which visibility information is computed before starting the projection for

selecting point clouds of one side. We also demonstrate the effectiveness of our

visibility approach through several experiments.
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1 INTRODUCTION

The projection operator is a geometrical process for moving a point onto a surface defined by its

neighbor points. There are a number of applications such as noise reduction, point up- sampling,

deformation, etc. In this study, we focus on a projection operator as a pre- process of surface

reconstruction from point clouds [4].

The MLS (Moving Least- Square) surface projection operator [2] is a simple method to project a

point to a smooth surface defined from point clouds (called point set surface) based on MLS [1]. In this

projection method, a noisy point cloud also tends to be smooth. However, sharp features such as

corners or creases cannot be preserved due to its original nature. Such features may also frequently

appear due to the measurement of mechanical parts using 3D range scanners.

As other types of projection operators, LOP [6] and its variant WLOP [9] are proposed. Those

approaches are both robust for noises including outliers. In addition, normal vectors are not also

required. Another characteristic is that projected points are uniformly distributed. Unfortunately,

their approaches do not also preserve sharp features.
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Several approaches have been considered for preserving sharp features based on MLS [3],[8],[10].

With [3], Least Median of Squares (LMS) is used to fit several planes to points near the region of sharp

features. With [8], the weight function of MLS is optimized to preserve the relevant sharp features.

However, these methods require normal vector information as an input. In general, computing normal

vectors is a difficult task, especially from noisy point clouds obtained using range scanners. In this

paper, we focus on projection to a point cloud which does not have normal vectors.

We also propose a novel projection operator based on MLS which preserves sharp features. To

preserve sharp features, points which consist of each face of sharp features have to be separately

Fig. 1: Projection of point x to surface defined by point set P.

Fig. 2: Selection of points for point x (green points) and projection of point x to selected points.

Fig. 3: Proposed algorithm. CVP is computed and sharp features are detected before projection, and

point x is projected using CVP and sharp feature information.
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selected before projecting a point. In our approach, a visibility test is utilized to handle such

separation. Visibility test is based on the HPR operator [7] in which visibility is computed for points

from the view position. In our algorithm including visibility tests, normal vectors are not necessarily

required as an input and are computed on- the- fly. This is an advantage of our method, especially

when it is applied to a point cloud taken from physical objects.

This paper is organized as follows. Section 2 reviews the MLS- based projection operator, Sections

3, 4, and 5 discuss the method, Section 6 discusses the results, and Section 7 summarizes our

conclusions.

Fig. 4: Dependence of selected points on position of x.

Fig. 5: Selection of only red points in selection of points using HDR operator.
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2 MOVING LEAST-SQUARE SURFACE PROJECTION OPERATOR

The Moving Least Squares (MLS) projection operator [2] is a convenient tool for cleaning up input point

clouds without changing the number of points, which means that there are no adding/deleting

operations. In this operator, a point ∋ܠ Rଷ is projected onto a surface which is defined by input

pointܘ�= (x, y, z) ∈ ܲ. Let (ܠ݂) be the distance function which computes the distance from a point ܠ

to a plane defined by a weighted average position (ܠ)܉ of neighbor points and a weighted average (ܠ)ܖ

of normal vectors:

(ܠ݂) = (ܠ)܉)(ܠ)ܖ − (ܠ = 0,

(ܠ)܉ =
∑ −ܘ|)ߠ ܘ(|ܠ
ே
ୀଵ

∑ −ܘ|)ߠ ே(|ܠ
ୀଵ

,

(ܠ)ܖ =
∑ −ܘ|)ߠ ܖ(|ܠ
ே
ୀଵ

∑ −ܑܘ|)ߠ ே(|ܠ
ୀଵ

,

θ(݀) = ݁
ି
ௗమ

మ,

where θ(݀) denotes a weight function. In our assumption each point does not have a normal vector ୧ܖ
attached with a point asܘ an input. Alternatively, ୧ܖ can be computed by Principal Component

Analysis (PCA) with respect to neighbor points. In the projection operator, the orientation of normal

vector is not so important since the function ݂ can be evaluated as a signed value associated with the

orientation of .(ܠ)ܖ The algorithm of the projection operator is shown as follows:

1. Compute (ܠ)܉ and(ܠ)ܖ�.

2. Compute �݂ (ܠ) = (ܠ)ܖ ∙ (ܠ)܉) − .(ܠ

3. Move a point toܠ�+ (ܠ)ܖ ,(ܠ݂) and set the position to .ܠ

4. Algorithm terminates if | |݂ < ,݁ otherwise, back to 2.

When computing (ܠ)܉ and(ܠ)ܖ�, the weight function is set to 0, if ݀ is greater than ℎ. This is why

they can be computed by the weighted average of only neighbor points at .ܠ Here we represent

neighbor points of ܠ as ܲ݊. We efficiently search neighbor points by using k- D tree data structure.

Fig. 1 shows the projection operator.

Fig. 6: Selection of points composed of more than two planes.
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3 PROPOSED PROJECTION METHOD

In this section, we describe the projection operator for preserving sharp features based on MLS.

One problem of the original MLS projection operator is that it always computes a weighted average

(ܠ)܉ and (ܠ)ܖ for all points around a sharp feature. In nature, points around sharp features configure

two or more planes which cross each other. Therefore, only points which approximate a plane have to

be selected and a point has to be projected on a plane defined by such selected points to preserve the

sharp features as shown in Fig. 2.

In our projection algorithm, the visibility test is used for selecting points for sharp features.

Using only points selected as visible points for fitting to a plane, these points can be projected onto

such a plane composed of sharp features. The following subsection describes the details.

3.1 Overview of Our Algorithm

Our approach is based on the MLS projection operator. With the original MLS, the algorithm computes

(ܠ)ܖ,(ܠ)܉ for all neighbor points ܲ even around sharp features. Instead, our algorithm uses a part of

neighbor points�ܲ௩௦ ⊆ ܲ. Points in ௩ܲ௦�are selected by the visibility test described later. If ௩ܲ௦

is identical to�ܲ, the result of projection by our algorithm is the same as that of the original MLS. Fig. 3

describes our algorithm.

In the pre- processing stage, we judge whether a point in ܲ is on sharp feature or not and store

such a “sharp feature” flag (Section 3.2). We also compute Cached View Positions (CVPs) which satisfy

the conditions of the visibility test (Section 4).

Fig. 7: Selection of visible points using CVPs (gray- colored points). First, a view position close to x is

found, and then visible points ௩ܲ௦ are computed from such a view position.

For the algorithm, we first find neighbor points ܲ for a point .ܠ If at least one “sharp feature” flag

is found in�ܲ, then we proceed with the process of preserving sharp features, otherwise we apply the

original MLS projection operator by using�ܲ. In the process of sharp feature preservation, we find a

cached view position close to ,ܠ and thenfind visible points ௩ܲ௦ from such a position by the visibility

test and apply the MLS projection operator using ௩ܲ௦ in place of�ܲ.
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3.2 Sharp Feature Detection

In our projection approach, we find visible points if only the point to be projected is similar to a sharp

feature shape. However, pointܲ does not provide information on whether it is on a plane composed of

a sharp feature or not. For this reason, such information has to be computed and stored in advance.

To judge whether a point ∋ܘ ܲ is similar to a sharp feature or not, we adopt a simple approach.

A polynomial surface z = (݂x, y) is fitted to neighbor points around onܘ its local coordinate system

and the coefficients of a fitted surface are investigated:

=ݖ (݂x, y) = xଶܣ + yଶܤ + xyܥ + xܦ + yܧ + .ܨ

In this formula, coefficients of quadric terms ܣ and ܤ represent how a surface is curved. We judge

that a point ∋ܘ ܲ is similar to a sharp feature if a surface is considerably curved, namely, if |ܣ| or |ܤ|

is larger than a thresholdݐ�௦. Such judgment information is then stored at each point as a binary “sharp

feature” flag. Note that such a binary flag is not always accurate: We use this flag only for preserving

sharp features. The number of neighbor points in ܲ is sufficiently large enough to check the regions

of sharp features.

3.3 Computing Visibility of Point Set

This subsection describes a method for selecting points for preserving sharp features by using

visibility test. Using visibility test for selecting points related to sharp features comes from a simple

idea; “It is likely that a point visible from a certain view position belongs to a point set which

composes the plane of sharp feature” as shown [6].

(a) (b)

Fig. 8: (a) Input cube- shaped point set. (b) Cached view positions for point set.

Fig. 9: Projection of point x to line B (Error value | f| for A is still large).
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Next, we explain the algorithm called HPR (Hidden Point Removal) operator to compute visibility

from points proposed by Katz et al. [7]. HPR operator is a method for judging whether a point is

visible or not by using the transformation for spherical flipping and the construction of convex hull.

Mehra et al. also extended the HPR operator for noisy point clouds [12].

Pointܘ� is first transformed using the following formula,

ܘ
←ܠ ܘ

+ܠ 2(ܴ − ܘ|
(|ܠ

ܘ
ܠ

หܘ
หܠ
,

where ܘ
ܠ = −ܘ ,ܠ denotesܠ a view position and R denotes a maximum length of ܘ|

.|ܠ A convex hull of

ܘ�
ܠ is then computed and visible points ௩ܲ௦ composed of a circular arc in such a convex hull are

selected.

In the following discussion, we use a visible rate =௩௦ݒ ܰ( ௩ܲ௦) ܰ( ܲ)⁄ for evaluating how extent

points are selected from�ܲ, where ܰ(ܲ) denotes the number of points in�ܲ .

For noisy point clouds, we use a simplified algorithm of [12]. The algorithm also selects points in

the range of ௩௦ݎ for each selected point by HPR operator, where ௩௦ݎ is a radius of point for

computing visibility. But, the simplified algorithm cannot be used for noise levels greater than .௩௦ݎ

Because, the high level noise points are not located in range of ௩௦ݎ from points selected using HPR

operator.

However, there are two problems to be resolved when we apply the HPR operator to the selection

of points in our algorithm. One issue is related to the visibility test from a view position much closer

to a point set. The other issue is related to the visible rate ௩௦ݒ at a sharp feature point which is

greater than a thresholdݐ�௩௦. Details are described in the following subsections.

(a) (b) (c) (d)

Fig. 10: Results for a “cube” point set.

(a) (b) (c) (d)

Fig. 11: Results for a “noise cube” point set.
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(a) (b) (c) (d)

Fig. 12: Results for “sharp cube” point set.

3.3.1 Issue of Visibility Close to Neighbor Points

In the visibility test based on Katz et al.’s method, correct judgment cannot be made when a view

position ܠ is considerably close to neighbor points ܲ (e.g. a view position is inside the sphere of a

point in ܲ whose radius isݎ�௩௦). Fig. 5 shows this situation. In Fig. 5, only red points are selected

when a view position ܠ is considerably close to�ܲ. This problem comes from the algorithm of the HPR

operator.

To address this issue, the algorithm is slightly modified. If a view position ܠ is in the range of

radius ୴୧ୱ୧ୠ୪ୣݎ ofܘ�∈ ܲ, we select all points of�ܲ. However, this indicates that the point selection failed.

3.3.2 Issue of Selecting Visible Points using Visibility around Sharp Features

The other issue concerns the value of a visible rateݒ�௩௦. In some cases, a visible rateݒ�௩௦ can be

larger than the thresholdݐ�௩௦, even when there is at least one “sharp feature” flag in�ܲ. This implies

that several groups of points composed of more than two planes are selected. Fig. 6 shows this

situation. This problem occurs depending on where the view position is located, e.g., a view position is

on a gray- colored region as shown in Fig. 6.

To resolve this problem, we attempted to move a view position to where only a group of points of a

plane can be selected. Details are discussed in the next section.

(a) (b)
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4 SELECTION OF VISIBLE POINTS FOR PROJECTION

In this section, we describe a method for selecting visible points if �ܲ has a “sharp feature” flag. To

preserve sharp features by the projection operator, not only must a “sharp feature” flag be included in

�ܲ but also the visible rate must be smaller thanݐ�௩௦.

Our idea here is to compute view positions in advance to satisfy the above conditions. We call

such view positions Cached View Positions (CVPs). It is guaranteed that all CVPs satisfy the conditions

of visible positions and visible points can be computed. In Fig. 7, gray- colored points indicate such

CVPs. CVPs are computed in the pre- process as follows: We first sample points randomly as view

positions around a pointܘ��∈ ܲ. For each sampled view position, we apply a visibility test and leave

this point as a CVP if the visible rate ௩௦ݒ is smaller than a thresholdݐ�௩௦. Otherwise, such a view

position is removed. Fig. 8 shows CVPs for a cube- shaped point set.

(c) (d)

(e) (f)

Fig. 13: Results for “fandisk” point set. (a) and (c): results by MLS projection operator, (b) and (d):

results by our projection operator. (e) and (f): surface reconstruction results by [4]. (e): from points

by MLS projection operator (f): from points by proposed by projection operator.
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Before projecting a pointܠ�, we find a visible position close to ܠ from CVPs as shown in Fig. 7. From

a view position, we apply the HPR operator to select visible points�ܲ௩௦. Using these visible points as

neighbor points, a projection operator is applied forܠ�.

Even in the situation in which a point ܠ is considerably close to a point set�ܲ as described in

Section 3.3.1, the same approach can be applied. If the distance between a point ܠ and the nearest

point in ܲ is smaller thanݎ�௩௦, we find a view position from CVPs. The selected view position

satisfiesݒ�௩௦ < .௩௦ݐ Also, in the case described in Section 3.3.2, the same approach can be applied

to search visible points by finding a view position close to ܠ from CVPs.

To search CVPs efficiently, k- D tree data structure can be used because CVPs are stored in the

data structure only once and are re- used during the whole process. First, a view position close to x is

found, and then visible points ௩ܲ௦ are computed from such a view position.

5 PROJECTION OPERATOR WITH VISIBLE POINTS

Applying the projection operator described in Section 2 directly by selecting visible points ௩ܲ௦ still

has a problem. Fig. 9 shows such an issue in 2D case. In Fig. 9, input points compose a sharp feature

point (edge in 3D case) and two lines A and B (planes in 3D case). A point ܠ is projected to line B, and

an error | |݂ is close to 0. The algorithm is then terminated, however the final position is still far from

line A. In this case, we need to project a point to where it is close to both lines A and B.

To resolve this issue, we prepare a stack e to store error values | |݂. The algorithm terminates if all

of stored error values are smaller than a threshold .݁

A modified projection operator is described as follows:

1. Set i to 0.

2. Find a view position ܘܞ close to ܠ from CVPs.

3. Select visible points ௩ܲ௦ atܘܞ�.
4. Compute (ܠ)܉ and (ܠ)ܖ with�ܲ௩௦.

5. Compute�݂ = (ܠ݂) = (ܠ)ܖ ∙ (ܠ)܉) − .(ܠ

6. Compute position +ܠ (ܠ)ܖ ∙ ݂ and update the position toܠ�.

7. Repeat 2, 3, 4 and 5.

8. If i > N, remove the first value from e.

9. Add | |݂ to e.

10. If max (e) < ,݁ then the algorithm is terminated.

11. i= i + 1 and back to 2.

This modified algorithm is still based on MLS projection operator. The differences are (1) ௩ܲ௦ is

used for computing (ܠ)܉ and(ܠ)ܖ�, and (2) is used to control error values. With our algorithm, we set N

to ten for all our experiments. When we find a view position from the CVPs, we choose it randomly

from several candidates close toܠ�; this avoids selecting the same view position from different

positions ofܠ�.

6 RESULTS

We implemented our algorithm using C# and C+ + . We evaluated our algorithm using Core 2 Quad

3GHz and 4.0 GB memory computer. We also use “Qhull” [15] for computing convex hulls for HPR

operator algorithm. In all our experiments, we sample points randomly from a point set ܲ and use

them for points to be projected.
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Fig. 11 shows the results of projecting points to a “cube” point set (the diagonal of its bounding

box is 51.9) and Fig. 11 shows the results for a “noise cube” point set (the diagonal of its bounding box

is 52.9) In both Fig. 10 and 11, (a) indicates the input point set and (b) indicates randomly sampled

points for projection. The results of the MLS projection operator are shown in (c), and (d)

demonstrates the result of our visibility test based the projection operator. It can be seen from Fig. 10

that (d) represents sharp features well compared to (c). In Fig. 11(d), several points failed to project to

sharp features. Fig. 12 shows the results for a “sharp cube” point set (the diagonal of its bounding box

is 55.6). The results of Fig. 11 indicate that sharp features are well represented by our algorithm.

Fig. 13 shows the results of projecting points to a “fandisk” point set (the diagonal of its bounding

box is 7.6). In Fig. 13, (a) and (c) show the results of projection by MLS projection operator, (b) and (d)

show the results by our projection operator. In this figure, we project 1/8 of points ܲ. (e) and (f) show

the reconstruction results by using [4]. There are two types of reconstruction approaches; One

compute implicit functions from point set [13],[14]. The other is to directly create triangles from point

set [4]. Since our method assumes that an input point set does not have normal vectors, a

reconstruction method which does not use normal vectors has to be used. From (e) and (f) we can see

that the reconstruction result from points created by our projection operator also represents sharp

features well compared to the results by MLS projection operator.

Tab. 1 shows parameters and computational time of our projection operator. Our approach needs

considerable time for sharp feature detection (“Sharp Feature” in Tab. 1) and for computation for CVPs

(“Visibility” in Tab. 1) as pre- processes. Also, our projection operator takes considerable time

compared to the original MLS projection operator. In future works, we hope to speed up our algorithm.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a MLS- based projection operator which can represent sharp features using

visibility. This approach allows computation without the need to input normal vectors. Experiment

results showed that the computation time of this method is slow and the representation of sharp

features for noisy point sets needs more improvement.

We think it is possible to speed up our approach by using multi- core processors, because our

projection operator can be processed independently for each point. The easiest way to improve our

projection operator for noisy point sets is to replace the simple algorithm used with [12].

Name Number

of

Points

h ୱݐ ୴୧ୱ୧ୠ୪ୣݐ Visibility

(msec)

Sharp

Feature

(msec)

Projection

(msec)

MLS

Time

(msec)

cube 7,959 3.0 0.001 0.78 157,534 3,552 166,937 4,891

noise

cube

7,959 3.0 0.05 0.68 109,770 3,522 162,595 4,994

sharp

cube

2,653 3.0 0.001 0.85 47,948 842 48,142 1,035

fandisk 108,546 0.1 0.5 0.92 1,372,017 127,883 808,918 11,636

Tab. 1: Parameters and computation time of our projection operator and MLS.
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