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ABSTRACT 
 

In a previous paper these authors presented a new mesh-growing approach based on 
the Gabriel 2 – Simplex (G2S) criterion. If compared with the Cocone family and the Ball 
Pivoting methods, G2S demonstrated to be competitive in terms of tessellation rate, 
quality of the generated triangles and defectiveness produced when the surface to be 
reconstructed was locally flat. Nonetheless, its major limitation was that, in the 
presence of a mesh which was locally non – flat or which was not sufficiently sampled, 
the method was less robust and holes and non – manifold vertices were generated. In 
order to overcome these limitations, in this paper, the performance of the G2S mesh-
growing method is fully improved in terms of robustness. The performances of the 
new version of the G2S approach (in the following Robust G2S) has been compared 
with that of the old one, and that of the Cocone family and the Ball Pivoting methods 
in the tessellation of some benchmark point clouds and artificially noised test cases. 
The results obtained show that the use of the Robust G2S is advantageous, as opposed 
to the other methods here considered, even in the case of noised point clouds. Unlike 
the other methods, the one which is proposed preserves manifoldness and geometric 
details of the point cloud to be meshed. 

 
Keywords: surface reconstruction, triangular meshes, reverse engineering. 
DOI: 10.3722/cadaps.2013.197-220 

1 INTRODUCTION 

The approximation of a 3D surface from its point samples is a very important issue in the scientific 
and engineering realms. Depending on the application, various formulations to this problem can be 
furnished with various requirements in the input and the output. Among those formulations, the 
applications of triangular meshes obtained from scanned point clouds are wide–ranging and include 
Reverse Engineering, Collaborative Design, Inspection, Computer Vision, Dissemination of Museum 
artifacts, Medicine, Movie Special Effects, Games and Virtual Worlds. For all the applications, the 
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meshes obtained must match the original data set in terms of geometric and topological criteria. 
Those objectives are hard to be achieved since scanned point clouds are typically noisy and badly 
sampled in some areas difficult to access and they have a non-uniform density. Nowadays, these 
critical aspects are only partially limited thanks to the introduction of scanning systems which offer 
high resolutions with a measuring accuracy as high as 10 μm. As a direct result, the necessity to 
manage very large data sets is becoming even more important. The typical triangulation speed of the 
methods presented in literature may not be enough for the tessellation of a cloud with over one 
million points. Furthermore, as regards the defectiveness produced, even the methods which are 
considered to be very robust can generate non–manifold vertices. It is important to highlight the fact 
that much of the software used for mesh elaboration may not work in the presence of this type of 
vertices. 

These authors have recently proposed a new mesh-growing method based on the Gabriel 2 – 
Simplex (G2S) criterion. The results obtained are very promising since they demonstrate that this 
method makes it possible to tessellate quickly clouds with over one million points even by using a 
laptop. Its major limitation is however that, in the presence of a mesh which is locally non–flat or 
which is not sufficiently sampled, the method is less robust and therefore holes and non–manifold 
vertices are generated. We should bear in mind the fact that the mesh may be unusable without the 
deletion of this kind of vertices, which has to be carried out without compromising the areas which 
have been correctly reconstructed.  

In order to overcome these limitations, and as it is going to be shown in this paper, the 
performance of the G2S mesh-growing method is fully improved in terms of robustness. To this end, 
an original priority queue for the driving of the front growth and a post-processing to efficiently erase 
the non–manifold vertices are proposed. The improved method has been tested for the tessellation of 
some benchmark point clouds and artificially noised test cases. The results derived from these 
experiments are critically discussed hereinafter. 

2 RELATED WORKS 

Various algorithms to tessellate point clouds have been proposed throughout literature. Some recent 
exhaustive overviews are available in [1] and [2]. Surface reconstruction algorithms are generally 
divided into three categories:  

• implicit; 
• Voronoi/Delaunay-based; 
• mesh growing - based. 

2.1 Implicit Methods 

In implicit methods the surface reconstruction is obtained by extracting the nominally zero – level set 
of a properly defined implicit function f(p)=0 (where p is either the whole point cloud or only a part of 
it), formulated so as to be negative inside the point cloud object and positive outside. Typically, the 
tessellated surface is obtained by applying the Marching cubes algorithm [3] to the iso-surfaces. The 
most important methods belonging to this group differ in whether the implicit function is defined: 

• as the sum of radial basis functions (RBF) centred at the points [4], [5]; 
• as a set of constraints that force the function and its gradient to assume given values at the 

sample points (Moving Least Squares) [6], [7], [8]; 
• as a Poisson problem [9].  
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A typical shortcoming of implicit methods is that they are sensitive to the outliers. With a view to 
overcoming this limitation, some new methods ([10], [11], [12] and [13]), based on stratified 
reconstruction strategies, have been recently developed.  

By and large, all these methods, on the one hand, carry out a watertight surface reconstruction 
even in the case of sparse and noisy data but, on the other hand, require many computations and, 
sometimes, even the surface normal at each data point. Since the final surface may not pass through 
all the points, the computational time increases as the fitting accuracy increases. Finally, as pointed 
out by Yang et al. in [8], the resulting mesh must be further refined and optimised. 

2.2 Voronoi/Delaunay-based Methods 

This group includes algorithms that compute a volume tetrahedralisation by means of a 3D Delaunay 
triangulation of the sample points. The most important methods presented in the related literature 
([14], [15], [16], [17], [18], [19], [20] and [21]) differ essentially in the way they remove the tetrahedra 
and build the external triangular mesh. In the Crust method, proposed by Amenta et al. in [14], the set 
of candidate triangles (called Crust) are those having three vertices which are not poles (for each point 
p of the cloud the poles are the two Voronoi vertices which are farthest from p). Since the Crust is still 
not a manifold, in order to extract a topologically correct surface, a walking strategy is employed in 
candidate triangles. The worst time complexity of the Crust algorithm is Θ(m2), where m is the number 
of points plus poles. In order to reduce running time and memory consumption, while still providing 
the same theoretical guarantees, Amenta et al. in [15] proposed an improvement of the Crust 
algorithm, which they called Cocone. The candidate triangles are those triangles inside the Cocone 
region, which is the complement of a double cone which has its apex at the point under analysis (p) 
and an assigned opening angle and whose axis is the normal at p. The Cocone’s worst time complexity 
is Θ(n2), where n is the number of points. As pointed out by Chang et al. in [2], the theoretical 
guarantee of obtaining a correct reconstruction with the Crust and Cocone methods is only possible as 
long as the point cloud is well sampled. Dey and Goswami proposed other Cocone versions, one suited 
to provide a watertight closed surface reconstruction, which they called Tight Cocone [16] and the 
other suited for noisy data called Robust Cocone [17]. Dey et al. in [18] proposed the Super Cocone 
algorithm so as to manage large amounts of data. In that method, the entire set of sample points is 
partitioned into smaller clusters using an octree subdivision, and the Cocone algorithm is applied to 
each cluster separately. A further evolution of the Crust is the Power Crust proposed by Amenta et al. 
in [19]. This algorithm can generate a watertight mesh for any point cloud which is sampled enough 
but it could be non-manifold. Furthermore, sharp edges or noisy data can result in defectiveness.  

Gopi et al. in [22] proposed a different approach which, for each sample point, provides the 
projection of the neighbouring points onto the approximating tangent plane as well as the tessellation 
of the projections by means of a 2-D Delaunay triangulation. The 2D edges obtained are then applied 
to 3D space. With a view to enhancing the performance of the Delaunay-based methods, Cohen-
Steiner and Da in [20] proposed the Greedy algorithm, which selects the triangles sequentially. The 
selection of candidate triangles is carried out by the plausibility grade, which is an empirical function 
of the circumradius and the dihedral angle between adjacent triangles. As stated by Cazals and Giesen 
in [23], this method “may fail to interpolate all points or to provide a closed surface essentially due to 
the presence of slivers”. 

2.3 Mesh-growing Methods 

In mesh – growing approaches the surface reconstruction starts with a seed triangle and the meshed 
area is grown by pushing the fronts ahead using some criteria. Bernardini et al. [24] introduced the 
Ball Pivoting Algorithm (BPA), by which the front grows as a ball of user-defined radius pivots around 
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the front edge. When the ball touches three points, a new triangle is formed. This method affords a 
correct triangulation for any uniform data point, also in presence of noise, but it has some difficulties 
in the tessellation of concave areas with little curvature radius. Huang and Menq in [25] proposed an 
algorithm which, for each front edge, projects the k-nearest points of two endpoints onto the plane 
that is defined by the triangle adjacent to the front edge. Any point generating triangles whose edges 
intersect edges of already-existing triangles is discarded. Of the points which are retained, the point 
showing the minimum sum of distances from the front-edge endpoints is chosen. Nonetheless, as 
pointed out by Lin et al. in [26], this algorithm presents some shortcomings. In order to overcome 
them, Lin et al. in [26] introduced the Intrinsic Property Driven (IPD) algorithm, which improves the 
way of searching for the points to be triangulated. As stated by Chang et al. in [2], all the methods 
based on mesh-growing approaches are fast, efficient and simple to implement but they, however, 
may fall short whenever two surfaces are either close together or near sharp features. More recently, Li 
et al. in [1] proposed a method based on a Priority Driven approach that evaluates shape changes from 
an estimation of the original surface that is made at the front of the mesh-growing area. The 
experimental results in [1] evidenced that the triangulation speed of the method was higher than that 
of the Ball Pivoting and the Cocone. However, no reckoning was made of the defectiveness generated 
by the method. Finally, in [27] these authors put forth a new mesh growing approach based on the 
Gabriel 2 – Simplex (G2S) criterion: A triangle is a G2S if its smallest circumscribing ball is empty. This 
criterion degenerates into the classical 2D Delaunay if all the points are coplanar. As a direct 
consequence, the flatter the surface appears to be locally, the better is the guarantee of a good 
reconstruction. More generally, the theoretical guarantee of a good reconstruction can be founded on 
the following theorem demonstrated by Dyer et al. in [29]: A Gabriel mesh is a Delaunay mesh. In other 
words, any mesh in which every triangle verifies the G2S criterion verifies also the 3D Delaunay one. 
As opposed to the 2D and 3D classical Delaunay criterion, for a given data set, the G2S triangulation is 
not unique and depends on the chosen seed triangle. The G2S criterion has already been used in some 
tessellation methods presented in literature. Ruiz et al. in [30] used it as a basis for a method for 
parametric surface meshing. This method cannot be used directly for the triangulation of point clouds 
since it is based on information such as the pre-image in a parametric space, the boundary, and local 
curvatures. Cohen-Steiner and Da in [20] and Ma et al. in [21] used the G2S criterion in order to select 
the external triangular facets of tetrahedra coming from a 3D Delaunay triangulation. The method 
proposed by Di Angelo et al. in [27] applied the G2S criterion directly to a point cloud so as to identify 
triangles pertaining to the external surface. This method has proven to be competitive in terms of 
tessellation rate, quality of the generated triangles and defectiveness produced when the surface to be 
reconstructed is locally flat. Nonetheless, in the presence of a noisy mesh or a mesh which is locally 
non–flat or which is not sufficiently sampled, the method generates defectiveness such as holes and 
non–manifold vertices. 

3 THE GABRIEL 2 – SIMPLEX CRITERION BASED METHOD 

The mesh-growing method proposed in [27] consists of the following steps: 
step 1. Import of the point cloud; 
step 2. Building of a specific data structure to speed up the search for the nearest point;  
step 3. Search for the seed triangle; 
step 4. Surface triangulation. 
The first step involves importing the point cloud which pertains to a continuous surface in the 

form of the coordinates x, y, z. Other information, such as the normal at points, is not required. All 
the points from the cloud are held in an original hash table data structure, applied to an improvement 
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of the typical space division approach ([31] and [32]), which makes it possible a more efficient search 
for the nearest neighbourhoods. Then, the seed triangle is selected by using a new approach which 
guarantees that it pertains to smooth features of the external surface of the point cloud. Starting from 
the seed triangle, the meshed area grows, coherently with a manifold surface, by pushing the fronts 
ahead using the G2S criterion.  

3.1 Selection of the Seed Triangle 

The G2S criterion being applied does not ensure that the triangles belong to the external surface. In 
fact, the G2S triangles can either lie on the external surface or be transversal to it. Thus, as it happens 
with the other mesh-growing approaches, the selection of the seed triangle is an important aspect of 
the proposed method.  

The seed triangle is selected based on an original strategy consisting of the following sub-steps: 
Step 3.1. A point of the cloud is randomly chosen. 
Step 3.2. Its nearest neighbour point is searched for, and an edge is formed between these two points. 
Step 3.3. The third point of the triangle is searched for within a sphere centred at the midpoint of the 

edge and whose radius is k-times the length of the edge (k can be either a user-defined 
parameter or a default value). 

Step 3.4. Each point in the range is connected to the edge in order to form a triangle. 
Step 3.5. Selection of the seed triangle. The seed triangle verifies the G2S criterion and the points 

contained in the infinite cylinder passing through its three vertices, and having the axis 
parallel to its normal, are all above or all under the triangle (figure 1).  

The procedure is repeated until a triangle, satisfying the conditions in step 3.5 is found. The 
cylinder test also excludes any G2S triangles which are in correspondence of sharp points. 

3.2 G2S Criterion-based Triangulation 

The edges of the seed triangle constitute the initial advancing front of the growing-mesh method. For 
each free edge (e

f
) (which are edges pertaining to only one triangle) of the growing front a triangle is 

generated according to the following procedure sub-steps: 

Step 4.1: Identification of all the candidate points near e
f
.  

Typically, the reference point is chosen among the candidate points, which are those inside a properly 
defined search region. In this paper the search region is a sphere having its centre (search region 
centre) lying on the plane of the front triangle on the axis of the free edge under analysis in the 
growing direction, and having the search radius as radius (figure 2). The search radius value affects 
tessellation quality and time. A low search radius keeps the search region near the front edge, so the 
method falls short in the meshing of under sampled areas. A high search radius, on the other hand, 
reduces the tessellation rate and sometimes generates defectiveness. An automatic approach has been 
implemented to set the search radius value. It changes the search radius value from an initial value (in 
the following test cases it is equal to the length of the free edge under analysis) to an assigned 
maximum value according to a given step value. The search radius is increased up to the maximum 
value if no points are found inside the search region. Since the search region centre lies on the same 
plane as the front triangle, the search method usually favours finding candidate points in the area 
wherein the surface is expected to grow. In typical practical situations, this prevents further controls 
that may cause the algorithm to slacken. Furthermore, this search region excludes from candidate 
points those points which are farther away or those points which could generate thin and slivery 
triangles. Finally, this criterion generally stops the front in the presence of sharp edges.  
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Fig. 1: The cylinder test to select a seed triangle. 
 

Step 4.2: Selection of the reference point in the search region.  
When more than one point is found inside the search region (cp

1
, cp

2
 and cp

3
 in figure 3a), for each 

point the smallest sphere passing through it and the front edge’s points is traced. The point which 
verifies the G2S triangle is the candidate point. Then, the candidate triangle (figure 3b) is submitted to 
topological tests. In order to speed up the triangulation process, if only one point is found inside the 
search region, that point is directly assumed to identify a candidate triangle with the free edge (e

f
) 

without verifying whether or not it is a G2S. For a quasi–locally flat point cloud, the candidate triangle 
has a high probability of being G2S. Finally, if no point is found inside the search region, e

f
 is removed 

from the free edges’ queue and it is classified as boundary edge. 

Step 4.3: Topological tests and algorithm control.  

Each of the new triangles retained is formed by the front edge (e
f
) and two further edges (e

1
 and e

2
). 

In order to check efficiently whether these two edges (e
1
 and e

2
) are really new or they already belong 

to other triangles, a data structure called Point Edge Map (PEM) is proposed which relates every point to 
its edges. For either edge (e

1
 and e

2
), the following conditions should be verified: 

- If the edge already pertains to another triangle, the consistency of the orientation of the new 
triangle with the triangle sharing the edge must be verified.  

- If this edge is new, it is added to the Point Edge Map and to the front queue and e
f
 is removed from 

the front queue.  
The procedure ends when the free edges’ queue is empty. 
 

The triangle is a good 
seed triangle 

The triangle is not a 
good seed triangle 
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Fig. 2: The search region’s definition terms. 
 

 

 
 

Fig. 3: Reference point selection. 
 

3.3 Some Considerations 

The theoretical basis of G2S is taken for granted by accepting the fact that point clouds can be 
considered locally flat, or, in other words, that the surface to be reconstructed is locally oriented, 
smooth, manifold, well sampled and not self-intersecting. Under this hypothesis, the G2S criterion 
works like a 2D Delaunay tessellation through which surface reconstruction is guaranteed. These 
requirements are not so restrictive anymore, especially since the advent of high-resolution non–
contact scanners which produce noise-free points clouds. More generally, as pointed out by Dyer et al. 
in [29], a Gabriel mesh (a mesh for which each triangle verifies the G2S criterion) is a Delaunay mesh. 
In [27] these authors already demonstrated it by analysing the typical benchmarks presented in the 
related literature:  
- the triangulation speed of G2S is comparable with a traditional 2D Delaunay-based mesher and it 

is at least an order of magnitude higher than the other methods here considered; 
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- G2S produces triangles whose quality is similar to that of those triangles obtained by the Cocone 
methods and slightly better than the quality of the triangles obtained by the Ball Pivoting one; 

- G2S can reproduce even the smallest details of well sampled surfaces, similarly to Cocone 
methods, also in concave areas of strongly non–uniform point clouds where the Ball Pivoting 
method shows some problems; 

- G2S does not produce non–manifold edges, self-intersecting triangles or slivers; 
- as regards non–manifold vertices, holes and boundary edges, the quantity and the extension of 

defectiveness generated by the G2S tessellation are on average similar to those produced by the 
Cocone and the Tight Cocone; 

- in the presence of a mesh which is locally non–flat or which is not sufficiently sampled, G2S is less 
robust and holes and non–manifold vertices are generated. 

4 CRITICAL ASPECTS IN THE G2S METHOD AND IMPROVEMENTS 

As mentioned in the previous section, the G2S version proposed in [27] presents some critical 
aspects. In particular, in any area of a point cloud that is not locally flat or is not sufficiently sampled, 
G2S can generate: 
- holes, which identify unmeshed area; 
- a twisting of the surface; 
- non–manifold vertices. 

In order to eliminate non-manifold vertices, in literature some methods are proposed ([33] and 
[34]). Typically, these methods work as a step that is completely independent from the tessellation 
phase, by using static large data structures which could be inadequate to repair meshes with some 
millions of triangles.  

This paper focuses on the improvement of the G2S performance as regards the generation of 
twisted surfaces and non–manifold vertices. The methods here proposed take advance from the data 
generated by the mesh growing algorithm and they can manage millions of triangles. 

4.1 The Twisting of the Surface 

In this paper, the twisting of the surface identifies the generation on the same body of different 
tessellated surfaces not having congruent normal (figure 4). This in turn generates holes with extended 
boundary edges since adjacent patches not having a congruent orientation cannot be merged. In order 
to solve this problem, an original priority queue is proposed. The main idea at the basis of the priority 
approach being presented is to mesh first those areas for which the front grows in the flattest way in 
the neighbourhood. 
 

 
Fig. 4: The twisting of the surface. 
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In order to speed up the algorithm, a set of discrete values is adopted for a priority index. The 
strategy used involves the definition of: 

- n priority levels for the search neighbourhood dimension, so that the smallest dimension has 
priority pl

d
 = 1 and the greatest has priority pl

d
 = n); 

- m priority levels for flatness, measured as the angle (β) between the normal of the triangle 
containing the free edge under analysis (front triangle) and the candidate triangle (priority pl

f
 = 

1 being assigned to β=0° and priority pl
f
 = m to β=180°).  

The priority index (PI) is defined according to the following expression: 
PI = m ·( pl

d
 – 1) + pl

f
 (4.1) 

Next, these edges are positioned in the queue by sorting, in ascending order, the value of PV 
calculated for the corresponding candidate triangle. 

4.2 Non – manifold Vertices Elimination 

In what follows, the triangles with at least one boundary edge are referred to as boundary triangles and 
the vertices, for which the incident triangles form more than one fan are referred to as non-manifold 
vertices. In this paper the two common types of non-manifold vertices, reported in the figure 5, are 
considered. In order to verify that a vertex is manifold, the sequence of triangles sharing the vertex is 
analysed. For this purpose, a specific data structure has been defined; 
- a dynamic queue of edges (deq) containing the non-analysed edges which initially has n

e
 rows (n

e
 is 

the number of edges that are not boundary) and six columns: the edge label (e
l
), its extreme points 

(p
f
 and p

l
) and the triangles sharing the edge t

f
 and t

l
); 

- a n
v
·4 matrix (ptt) (n

v
 is the number of vertices); in each row of ppt the sequence of adjacent 

triangles sharing the vertex (v
l
) is represented by storing the first (front) and the last (back) triangle 

of the sequence and the number of the triangles found (n
t,a
). A vertex is checked to be manifold if 

n
t,a
 is equal to the number of triangles sharing the vertex. 

 

 
 

Fig. 5: Common types of non – manifold vertices. 
 

In order to explain this method, let us consider the mesh represented in figure 6a with the labels 
of the vertices, edges and triangles superimposed. First, the deq is filled with the edges of the mesh, 
except for the boundary ones (figure 6b) and in the ptt table, the labels of all vertices are added to the 
first column (figure 6c). The process starts by popping the first element off the queue (e

3
) and the 

corresponding labels of t
f
 (t

1
) and t

l
 (t

2
) are added to the related lines of the matrix (figure 6d). Then, 

the first element of the new queue (figure 6e) is popped off (e
6
). Since the triangles’ labels associated 

with v
1
 for e

6
 (t

3 
and t

8
) are different from those reported in the corresponding row of the matrix, this 

edge is pushed to the end of the queue (figure 6f). If once the queue has been scanned through, no 
edges of intersection of one of two extreme triangles of the loop (t

1
 and t

2
) have been found for the 

a) 
v 

v 

b) 
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vertex under examination (v
1
), the loop is defined as open since t

f
 ≠ t

l
. In the case that there are other 

edges incident to v
1
 in the queue, the front and back columns of the ptt are emptied (figure 6g). Again, 

the first element of the queue is popped off (e
8
); the triangles t

1
 and t

6
 are added to the corresponding 

rows of the matrix of the vertices v
1
 and v

6
 (figure 6h). Once more, the first element of the new queue 

(figure 6i) is popped off (e
9
). Since one of the two triangles incident to the edge (t

4
) is a terminal point 

(front) of the loop, in the corresponding row of ptt, this triangle is substituted with the other (t
3
) 

(figure 6l). This procedure is iterated until the triangles of the front and the back column are the same 
for a vertex (figure 6m), or, in other words, the loop is closed. In the case that in the deq there are 
edges incident to that vertex (figure 6n), the corresponding triangles are erased (figure 6o). The 
procedure ends when the deq is empty. 

5 EXPERIMENTAL RESULTS AND DISCUSSION 

The methodology described in the previous sections has been implemented in original software, coded 
in C++. The method being proposed has been tested for the tessellation of several scanned point 
clouds characterised by different value and uniformity in sampling rate, geometries, topologies and 
noise level. Most of the test cases used are typical benchmarks taken from the related literature, 
although some others are artificially noised test cases purposely designed. All the tests have been run 
on a laptop with 1.86 GHz Intel Pentium M Processor and 1 GB RAM.  

The performance of the algorithm has been assessed in terms of the tessellation rate 
([ktriangles/s]) and the quality of the generated mesh. The latter has been analysed by evaluating: 

- The mean value of the following quality factor of the generated triangles [35]:  

( )

p

dp

d
12QF

3

1i
i∏

=

−

=  
(5.1) 

where d
i
 is the length of the i-th side of the triangle, ( )i

i
dd max
3,2,1=

=  and 2d
3

1
i∑

=

=
i

p . The value of 

QF varies from 0 (for triangles having null area) to 1 (for equilateral triangles). This factor is 
very significant since uniform meshes characterised by equilateral triangles are required in 
most of the practical uses of tessellated surfaces. 

- The mean value of the distance (μ
d
%) of the unmeshed points from the tessellated surface, 

normalised on the mean spacing of the point cloud. Since the data points lie on the original 
surface and outliers are excluded, this index is an estimation of the error in meshing data 
points. 

- The number of the following defects: 
§ non–manifold vertices (n

nmv
); 

§ non–manifold edges (n
nme

); 
§ holes (n

holes
): unmeshed areas; 

§ boundary edges (n
be
): edges bordering the holes.  

The performance of the Robust G2S method is compared with that of the old one [27] (henceforth 
G2S_old) that of the Cocone methods (Cocone [15], Tight Cocone [16] and Robust Cocone [17]), whose 
implemented software has been kindly provided by the authors, and is also compared with our 
implementation of the Ball Pivoting [24]. The last two methods can be considered to be reference 
implementations of the Delaunay tessellation and of the mesh-growing approaches. In the following 
experiment the closed point clouds are analysed with the Tight Cocone, the open point clouds with the 
Cocone method and the noisy ones are tessellated by using the Robust Cocone. Neither the G2Ss nor 
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the Cocone family methods require any empirical input parameters. On the contrary, the BPA needs 
the ball pivoting radius. The Ball Pivoting performance is largely affected by the setting parameters 
which must be accurately defined to obtain satisfactory results but a tedious and time-consuming 
trial–and-error process is required. 

5.1 Typical Benchmarks 

The first set of experiments consists of the typical benchmarks used in the related literature to 
evaluate tessellation methods. In particular, 16 closed point clouds and 10 open point clouds, all of 
them having different geometries and having been scanned with different technologies, are considered. 
Eight of these point clouds have more than one million points and can be considered to be very large 
data sets. Figure 7 illustrates renderings of some test cases tessellated with the proposed method. The 
testing results are reported in table 1 – 6.  

Some of the benchmark test cases (Neptune, Asian Dragon, Amphora and Thai Statue) cannot be 
tested with the available Cocone and Tight Cocone implementations which cannot work for them.  

When analysing the results obtained, it is easy to conclude that all the methods here considered 
fall short for point clouds (Toywheel, Turtle and Galaad) characterised by a strongly non–uniform 
sampling.  

The improvements introduced in Robust G2S, are achieved by a small reduction of the tessellation 
rate respect to the G2S_old. However, Robust G2S yields results which are, on average, about 300 times 
and 8 times higher than the Cocone and the BPA methods, respectively. Our implementation of the BPA 
shows a tessellation rate comparable with the implementation proposed in literature.  

If we analyse the values for the QF index, the Robust G2S method is verified to produce triangles 
whose quality is similar (99.58%) to those obtained with the Cocone methods and slightly better than 
those obtained by means of the Ball Pivoting one (95.29%).  

Generally speaking, the Robust G2S method (μ
d
%=0.65%) and the Cocone methods (μ

d
%=0.57%) can 

reproduce even the smallest details of well-sampled surfaces. On the contrary, and owing to 
difficulties in tessellating concave areas of point clouds, the BPA method produces many unmeshed 
points (μ

d
%=21.45%). Figure 8 shows the maps of the μ

d
% of the Chinese_Dragon. The Robust G2S 

reconstructs better the concave areas since, unlike the BPA, the ball radius is locally adapted to point 
spacing. 

For all the cases analysed, the Robust G2S does not produce, as opposed to the other methods, non 
– manifold vertices. Furthermore, when using the priority queue in the new version of G2S, in most 
cases there is a reduction of holes and boundary edges. In some cases, such as the raptor, the marked 
reduction in boundary edges is due to the elimination of the problem of twisting surface generation. 
Figure 9 shows the renderings of the tessellation obtained for the Raptor with both the G2S_old (a) and 
Robust G2S. In the same figure, the outside of triangles is coloured blue whereas the inside is coloured 
yellow. The Robust G2S performance is comparable with that of the Cocone family methods which are 
based on the Delaunay triangulation method, which is intrinsically more robust, but 300 times slower. 
The Robust G2S method generates defectiveness, essentially in those areas of the point clouds which 
cannot be considered to be locally flat since the sampling density is not accurate enough to reproduce 
surface details. 

5.2 Noisy Point Clouds 

In order to verify the performance of the Robust G2S in the tessellation of noised point cloud data, 
specific experiments are carried out. The performance of Robust G2S is compared with those of the 
G2S_old [27], Robust Cocone [17] and the Ball Pivoting [24].  
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The first experiment aims at comparing the four methods as regards the tessellation of the 
Stanford Bunny with different levels of noise added. Noise is randomly generated according to a 
Gaussian probability density distribution with different values of standard deviation expressed as 
percentage of the mean spacing of the original point cloud (σ%). Figure 10 illustrates the results of the 
renderings and table 7 reports the number of defects. In all the cases analysed, the Robust G2S method 
proves to be capable of reproducing even the smallest details of the model preventing non-manifold 
edges and vertices. On the contrary, the Robust Cocone and the BPA methods bring about a coarse 
reconstruction of the model and some important details are completely neglected. It is the case of the 
Bunny Stanford neck. For a high value of σ% (σ%>25%), the Robust G2S produces a tessellation with a 
high number of holes and boundary edges. Large random errors being applied to the original model 
destroy, depending on the ratio between error and point spacing, the characteristic regularity of the 
original surface to the extent it produces geometric nonsense. In these cases, the assumption of local 
flatness, which is basic to recognising the nature of a regular surface in a point cloud, is no longer 
valid. 

The second set of experiments is carried out in order to compare the four methods as regards the 
tessellation of the point cloud with different number of outliers. For this purpose, in the Stanford 
Bunny outliers are randomly added according to the following percentages of the total number of 
points: 5%, 10% and 20%. The Robust Cocone seems to be inadequate to tessellate point clouds with this 
type of noise (figure 11). Due to the use of a relatively large ball, the BPA does not process as outliers 
any points which are external to the regular surface and produce the typical cones shown in figure 11. 
All in all, the Robust G2S shows good results thanks to the intrinsic characteristic of the method which 
tends to search for candidate points mainly in the regular growth of the surface. Furthermore, the 
Robust G2S does not generate non-manifold vertices (table 8) and the number of holes and boundary 
edges is similar to those produced by the BPA method. 

6 CONCLUSION 

In a previous paper [27] these authors had already presented a new-mesh growing approach based on 
the Gabriel 2 – Simplex (G2S) criterion. The results obtained proved that the G2S is competitive in 
terms of tessellation rate, quality of the generated triangles and low defectiveness, especially when 
compared with the Cocone family and the Ball Pivoting methods. Its major limitation was that, in the 
presence of a mesh which was locally non – flat or was not sufficiently sampled, it proved to be less 
robust and holes and non – manifold vertices were generated. In order to improve the robustness of 
the G2S mesh-growing method, this paper proposes an original priority queue for the driving of the 
front growth and a post processing to efficiently erase the non – manifold vertices. The performance of 
Robust G2S has been compared with that of G2S_old, and that of the Cocone family and the Ball 
Pivoting methods in the tessellation of some benchmark point clouds and artificially noised test cases. 
The results derived from these experiments show that the improvements proposed and implemented 
prevent the generation of non – manifold vertices and make the Robust G2S more robust than G2S_old 
in terms of generation of defects such as holes and boundary edges, also in presence of noised point 
clouds. This performance improvement is achieved by a small reduction of the tessellation rate respect 
to the G2S_old method. However, the tessellation rate is still at least an order of magnitude higher than 
the Cocone family and the Ball Pivoting methods In the case of much noised meshes, Robust G2S 
produces more holes and boundary edges than the Robust Cocone and the Ball Pivoting methods, but 
the last named ones do not preserve important details of the object. Finally, in the presence of meshes 
with outliers, the number of holes and boundary edges produced by Robust G2S can be said to be 
comparable with those produced by the Ball Pivoting method. 
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Fig. 6: Explanation of the post processing used to erase the non – manifold vertices. 
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b) 

a) 

c) 

d) 

e) 

Fig. 7: Rendering of the following test cases: a) Red_circular_box; b) Raptor; c) Oil_pump; d)
Turbine_blade2; e) Hand; f) Thai Statue. 
 

f) 



 

Computer-Aided Design & Applications, 10(2), 2013, 197-220 
© 2013 CAD Solutions, LLC, http://www.cadanda.com 

 

211 
 

Name 
No. of 
points 

Robust G2S  G2S_old [27] Tight Cocone [16] Ball Pivoting [24] 
No. of 

triangles 
Rate 

[ktriangles/s] 
No. of 

triangles 
Rate 

[ktriangles/s] 
No. of 

triangles 
Rate 

[ktriangles/s] 
No. of 

triangles 
Rate 

[ktriangles/s] 
Rocker-arm (**) 10,044 20,084 320.9 20,084  380.1 20,088 1.33 18,848 26.18 

Stanford Bunny (*) 35,947 71,873 294.3 71,884  321.7 71,884 0.99 67,449 22.86 
Horse (**) 48,485 96,873 307.6 96,859  377.4 96,922 0.82 94,382 48.15 

Armadillo (*) 172,975 345,897 303.0 345,934  372.8 345,944 0.85 307,286 33.18 
Pulley (**) 293,672 587,266 328.5 587,181 371.8 587,312 0.67 571,738 52.82 
Hand (**) 327,323 649,768 292.3 649,527 376.6 654,550 0.67 554,266 23.89 

Turbine Blade 2 (****) 396,104 791,916 288.5 792,041 377.3 791,873 1.72 736,685 43.69 
Dragon (***) 435,545 834,771 304.5 805,376 348.1 867,282 0.62 782,185 35.46 
Bimba (**) 502,694 1,005,246 366.2 1,005,172 432.5 1,005,088 0.82 953,618 23.82 

Happy Buddha (***) 543,652 1,038,953 338.0 1,004,540 351.0 1,081,232 0.51 809,539 25.36 
Chinese Dragon (**) 655,980 1,311,307 322.0 1,311,296 475.2 1,310,435 0.99 966,266 25.28 

Red_circular_box (**) 701,322 1,401,530 243.7 1,400,720 369.5 1,401,725 0.78 1,367,913 51.15 
Turbine Blade (***)  882,954 1,740,362 351.9 1,759,357 364.4 1,759,514 1.11 1,630,254 47.28 

Raptor (**) 1,000,080 1,685,915 349.6 1,716,226 439.6 1,854,921 0.28 1,378,599 43.48 
Neptune (**) 2,003,933 4,007,522 261.8 4,007,628 362.8 -- -- 3,119,149 20.01 

Asian Dragon (*) 3,609,601 7,217,980 362.9 7,218,442 418.8 -- -- 6,715,376 26.22 
(*) http://www.graphics.stanford.edu/data/3Dscanrep/ 
(**) http://shapes.aimatshape.net/ 
(***) http://www.lodbook.com/models/ 
(****) http://www.scansystems.it 

 
Tab. 1: Comparison between the performance of Robust G2S, G2S_old [27], Tight Cocone [16] and Ball Pivoting [24] in closed surfaces. 

 
 
 
 
 
 
 

http://www/
http://shapes.aimatshape.net/
http://www.lodbook.com/models/
http://www/


 

Computer-Aided Design & Applications, 10(2), 2013, 197-220 
© 2013 CAD Solutions, LLC, http://www.cadanda.com 

 

212 
 
 
 
 
 
 
 

Name 
Robust G2S  G2S_old [27] Tight Cocone [16] Ball Pivoting [24] 

QF [26] μd % QF [26] μd % QF [26] μd % QF [26] μd % 
Rocker-arm 0.699 1.40∗10−2% 0.699  1.40∗10−2% 0.707 0,000% 0.651 5.46% 

Stanford Bunny 0.708 0.007% 0.708 0.007% 0.713 0,029% 0.675 4.45% 
Horse 0.714 0.51 % 0.714  0.51 % 0.714 0,42% 0.695 1.12% 

Armadillo 0.768 0.000% 0.768 0.000% 0.775 0,005% 0.708 6.97% 
Pulley 0.776 5.39*10−3% 0.776 5.39*10−3% 0.776 0,085% 0.761 3.77% 
Hand 0.648 0.005% 0.648 0.005% 0.713 0,009% 0.620 180.0% 

Turbine Blade 2 0.753 0.06% 0.753 0.06% 0.753 0,108% 0.698 1.68% 
Dragon 0.642 1.63% 0.642 1.83% 0.622 0,819% 0.611 37.28% 
Bimba 0.751 0.005% 0.751 0.194 % 0.751 0,322% 0.590 5.53% 

Happy Buddha 0.613 0.145 % 0.613 0.145 % 0.614 1,39% 0.734 32.49% 
Chinese Dragon 0.771 0.027% 0.771 0.027 % 0.769 0,208% 0.673 32.33% 

Red_circular_box 0.785 0.038% 0.785 0.038% 0.783 0,053% 0.765 1.037% 
Turbine Blade  0.585 0.68% 0.585 0.68 % 0.580 0,553% 0.580 70.01% 

Raptor  0.723 11.52% 0.723 17.75% 0.704 7,345% 0,663 29.26% 
Neptune  0.765 0.008% 0.765 0.008% -- -- 0.749 46.12% 

Asian Dragon  0.903 0.012% 0.903 0.012% -- -- 0.887 7.81% 
 

Tab. 2: Comparison between the quality reconstruction of Robust G2S, G2S_old [27], Tight Cocone [16] and Ball Pivoting [24] in closed 
surfaces. 
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Model name 

Robust G2S G2S_old [27] Tight Cocone [16] Ball Pivoting [24] 
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Rocker-arm 0 0 0 -- 0 0 0 -- 0 0 0 -- 2 0 5 54 
Stanford Bunny 0 0 0 -- 0 0 0 -- 0 0 0 -- 1 0 0 0 

Horse 0 0 7 83 0 0 8 149 0 0 1 4 11 0 6 111 
Armadillo 0 0 0 -- 0 0 0 -- 0 0 0 -- 0 0 4 16 

Pulley 0 0 1 4 0 1 2 10 0 0 0 -- 0 0 0 -- 
Hand 0 0 13 90 0 0 19 126 8 0 6 58 0 0 32 186 

Turbine Blade 2 0 0 2 9 0 10 12 77 1 0 1 11 0 0 1 3 
Dragon 0 0 40 579 0 1 28 249 23 0 24 166 2 0 31 115 
Bimba 0 0 6 117 0 11 12 220 8 0 5 54 0 0 0 -- 

Happy Buddha 0 0 54 508 0 32 47 462 39 0 11 93 0 0 8 41 
Chinese Dragon 0 0 19 103 0 47 35 928 18 0 13 119 0 0 12 40 

Red_circular_box 0 0 97 635 0 27 42 327 12 0 10 75 53 0 501 6538 
Turbine Blade 0 0 164 2089 0 42 66 1054 295 0 109 864 3 0 49 180 

Raptor 0 0 36 207 0 269 91 1508 7751 0 4335 34781 0 0 7 37 
Neptune 0 0 4 34 0 13 19 107 -- -- -- -- 0 0 7 37 

Asian Dragon 0 0 31 193 0 41 88 721 -- -- -- -- 0 0 7 92 
 

Tab. 3: Comparison between the defectiveness produced by Robust G2S, G2S_old [27], Tight Cocone [16] and Ball Pivoting [24] in closed 
surfaces. 
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Name 
No. of 
points 

Robust G2S  G2S_old [27] Tight Cocone [16] Ball Pivoting [24] 
No. of 

triangles 
Rate 

[ktriangles/s] 
No. of 

triangles 
Rate 

[ktriangles/s] 
No. of 

triangles 
Rate 

[ktriangles/s] 
No. of 

triangles 
Rate 

[ktriangles/s] 
Foot (**) 10,010 19,970 310.8 19,972 352.9 19,982 2.25 18,332 37.05 

Support (*) 549,007 1,096,742 322.5 1,097,412 397.6 1,097,538 1.82 1,074,677 49.65 
Rolling Stage (**) 596,903 1,190,806 319.7 1,193,303 373.5 1,193,688 1.49 1,168,744 57.07 

Body (****) 675,049 1,349,076 299.7 1,349,609 279.7 1,344,039 1.2 1,326,963 59.47 
Nicolò da 
Uzzano (**) 946,760 1,891,949 367.0 1,891,992 464.5 

1,891,669 1.93 1,795,917 40.33 

Toy wheel (**) 1,001,231 -- -- -- -- 1,702,234 0.41 959,810 0.27 
Amphora (**) 1,317,152 2,590,549 274.6 2,616,596 295.9 -- -- 2,544,331 62.67 
Galaad (**) 1,451,502 -- -- -- -- 2,215,146 0.53 272,561 0.47 

Toy turtle (**) 1,472,131 -- -- -- -- 2,226,103 0.60 670,035 0,53 
Thai Statue (*) 4,999,997 9,994,088 275.1 9,994,088 303.8 -- -- 8,335,937 19.48 

(*) http://www.graphics.stanford.edu/data/3Dscanrep/ 
(**) http://shapes.aimatshape.net/ 
(***) http://www.lodbook.com/models/ 
(****) http://www.scansystems.it 

 
Tab. 4: Comparison between the performance of Robust G2S, G2S_old [27], Tight Cocone [16] and Ball Pivoting [24] in open surfaces. 

 

Name 
Robust G2S  G2S_old [27] Tight Cocone [16] Ball Pivoting [24] 

QF [26] μd % QF [26] μd % QF [26] μd % QF [26] μd % 
Foot 0.699 0.000% 0.699 0.000% 0.698 0.000% 0.682 4.66% 

Support  0.730 0.237% 0.730 0.237% 0.729 0.013% 0.714 0.40% 
Rolling Stage 0.616 0.006% 0.616 0.006% 0.616 0.005% 0.616 0.36% 

Body  0.760 0.250% 0.760 0.250% 0.759 0.018% 0.739 0.58% 
Nicolò da 
Uzzano 

0.747 
0.007% 

0.747 
0.007% 

0.746 
0.467% 

0.707 
5.1% 

Toy wheel -- -- -- -- 0.492 4.69% 0.365 16.18% 
Amphora 0.614 0.004% 0.614 0.004% -- -- 0.619 0.23% 
Galaad  -- -- -- -- 0.631 1.22% 0.444 817.77% 

http://www/
http://shapes.aimatshape.net/
http://www.lodbook.com/models/
http://www/
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Toy turtle  -- -- -- -- 0.635 17.72% 0.460 720.98% 

Thai Statue 0.734 0.015% 0.734 0.015% -- -- 0.701 12.73% 
 

Tab. 5: Comparison between the quality reconstruction of Robust G2S, G2S_old [27], Tight Cocone [16] and Ball Pivoting [24] in open 
surfaces. 

 

Model name 

Robust G2S G2S_old [27] Tight Cocone [16] Ball Pivoting [24] 
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Foot 0 0 0 -- 0 0 0 -- 1 0 2 10 0 0 3 49 
Support 0 0 7 43 0 85 21 57 14 0 2 8 0 0 13 159 

Rolling Stage 0 0 1 5 0 3 6 28 3 0 5 36 0 0 0 -- 
Body 0 0 8 49 0 166 25 336 87 0 30 161 0 0 50 354 

Nicolò da Uzzano 0 0 1 4 0 1 0 -- 98 0 284 1289 41 0 12 94 
Toy wheel - - -- -- - - -- -- 79073 2795 29542 206799 5755 0 4079 26105 
Amphora 0 0 4 39 0 0 1 10 -- -- -- -- 3 0 9 165 

Galaad - - -- -- - -- -- - 141928 8945 47228 347125 126 0 164 873 
Toy turtle - - -- -- - - -- -- 144735 10771 49255 354636 199 0 403 2418 

Thai Statue 0 0 25 205 0 0 64 1348 -- -- -- -- 1742 0 539 7068 
 

Tab. 6: Comparison between the defectiveness produced by Robust G2S, G2S_old [27], Tight Cocone [16] and Ball Pivoting [24] in open 
surfaces. 
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Fig. 8: Maps of the deviations between the original point cloud of the Chinese_Dragon mesh obtained 
by Ball Pivoting (a) and Robust G2S (b). 

 

 
 

Fig. 9: Renderings of the tessellations obtained for the Raptor with the old (a) and the new versions of 
the G2S criterion. 
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Fig. 10: Comparison between the two versions of the G2S, the Robust Cocone [17] and the Ball Pivoting 
[24] algorithms in the tessellation of noise added point clouds.  
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Fig. 11 Comparison between the two versions of the G2S, the Robust Cocone [17] and the Ball Pivoting 
[24] algorithms in the tessellation of point clouds with outliers added. 
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σ=10% 0 0 -- 1 1 6 0 0 -- 0 0 -- 
σ=25% 0 17 30 15 22 71 1 0 -- 0 3 9 
σ=50% 0 241 1474 720 457 2967 1 0 -- 0 6 36 

 
Tab. 7: Comparison of defectiveness generated by Robust Cocone [17] and Ball Pivoting [24] in the 
tessellation of noise added point clouds. 
 

 

Defectiveness generated 
New G2S Method Old G2S Method [27] Robust Cocone method [17] BPA method [24] 
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5% 0 0 -- 0 2 4 -- -- -- 7 11 149 
10% 0 20 244 114 17 725 -- -- -- 13 34 206 
20% 0 31 457 123 24 757 -- -- -- 12 45 326 

 
Tab. 8: Comparison of defectiveness generated by Robust Cocone [17] and Ball Pivoting [24] in the 
tessellation of point clouds with outliers added. 
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