

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

197

A Fast Mesh-Growing Algorithm for Manifold Surface Reconstruction

Luca Di Angelo1, Paolo Di Stefano2 and Luigi Giaccari3

1University of L’Aquila, luca.diangelo@univaq.it
2University of L’Aquila, paolo.distefano@univaq.it
3ANSYS Germany Gmbh, luigi.giaccari@ansys.com

ABSTRACT

In a previous paper these authors presented a new mesh-growing approach based on
the Gabriel 2 – Simplex (G2S) criterion. If compared with the Cocone family and the Ball
Pivoting methods, G2S demonstrated to be competitive in terms of tessellation rate,
quality of the generated triangles and defectiveness produced when the surface to be
reconstructed was locally flat. Nonetheless, its major limitation was that, in the
presence of a mesh which was locally non – flat or which was not sufficiently sampled,
the method was less robust and holes and non – manifold vertices were generated. In
order to overcome these limitations, in this paper, the performance of the G2S mesh-
growing method is fully improved in terms of robustness. The performances of the
new version of the G2S approach (in the following Robust G2S) has been compared
with that of the old one, and that of the Cocone family and the Ball Pivoting methods
in the tessellation of some benchmark point clouds and artificially noised test cases.
The results obtained show that the use of the Robust G2S is advantageous, as opposed
to the other methods here considered, even in the case of noised point clouds. Unlike
the other methods, the one which is proposed preserves manifoldness and geometric
details of the point cloud to be meshed.

Keywords: surface reconstruction, triangular meshes, reverse engineering.
DOI: 10.3722/cadaps.2013.197-220

1 INTRODUCTION

The approximation of a 3D surface from its point samples is a very important issue in the scientific
and engineering realms. Depending on the application, various formulations to this problem can be
furnished with various requirements in the input and the output. Among those formulations, the
applications of triangular meshes obtained from scanned point clouds are wide–ranging and include
Reverse Engineering, Collaborative Design, Inspection, Computer Vision, Dissemination of Museum
artifacts, Medicine, Movie Special Effects, Games and Virtual Worlds. For all the applications, the

mailto:luca.diangelo@univaq.it
mailto:paolo.distefano@univaq.it
mailto:luigi.giaccari@ansys.com

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

198

meshes obtained must match the original data set in terms of geometric and topological criteria.
Those objectives are hard to be achieved since scanned point clouds are typically noisy and badly
sampled in some areas difficult to access and they have a non-uniform density. Nowadays, these
critical aspects are only partially limited thanks to the introduction of scanning systems which offer
high resolutions with a measuring accuracy as high as 10 μm. As a direct result, the necessity to
manage very large data sets is becoming even more important. The typical triangulation speed of the
methods presented in literature may not be enough for the tessellation of a cloud with over one
million points. Furthermore, as regards the defectiveness produced, even the methods which are
considered to be very robust can generate non–manifold vertices. It is important to highlight the fact
that much of the software used for mesh elaboration may not work in the presence of this type of
vertices.

These authors have recently proposed a new mesh-growing method based on the Gabriel 2 –
Simplex (G2S) criterion. The results obtained are very promising since they demonstrate that this
method makes it possible to tessellate quickly clouds with over one million points even by using a
laptop. Its major limitation is however that, in the presence of a mesh which is locally non–flat or
which is not sufficiently sampled, the method is less robust and therefore holes and non–manifold
vertices are generated. We should bear in mind the fact that the mesh may be unusable without the
deletion of this kind of vertices, which has to be carried out without compromising the areas which
have been correctly reconstructed.

In order to overcome these limitations, and as it is going to be shown in this paper, the
performance of the G2S mesh-growing method is fully improved in terms of robustness. To this end,
an original priority queue for the driving of the front growth and a post-processing to efficiently erase
the non–manifold vertices are proposed. The improved method has been tested for the tessellation of
some benchmark point clouds and artificially noised test cases. The results derived from these
experiments are critically discussed hereinafter.

2 RELATED WORKS

Various algorithms to tessellate point clouds have been proposed throughout literature. Some recent
exhaustive overviews are available in [1] and [2]. Surface reconstruction algorithms are generally
divided into three categories:

• implicit;
• Voronoi/Delaunay-based;
• mesh growing - based.

2.1 Implicit Methods

In implicit methods the surface reconstruction is obtained by extracting the nominally zero – level set
of a properly defined implicit function f(p)=0 (where p is either the whole point cloud or only a part of
it), formulated so as to be negative inside the point cloud object and positive outside. Typically, the
tessellated surface is obtained by applying the Marching cubes algorithm [3] to the iso-surfaces. The
most important methods belonging to this group differ in whether the implicit function is defined:

• as the sum of radial basis functions (RBF) centred at the points [4], [5];
• as a set of constraints that force the function and its gradient to assume given values at the

sample points (Moving Least Squares) [6], [7], [8];
• as a Poisson problem [9].

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

199

A typical shortcoming of implicit methods is that they are sensitive to the outliers. With a view to
overcoming this limitation, some new methods ([10], [11], [12] and [13]), based on stratified
reconstruction strategies, have been recently developed.

By and large, all these methods, on the one hand, carry out a watertight surface reconstruction
even in the case of sparse and noisy data but, on the other hand, require many computations and,
sometimes, even the surface normal at each data point. Since the final surface may not pass through
all the points, the computational time increases as the fitting accuracy increases. Finally, as pointed
out by Yang et al. in [8], the resulting mesh must be further refined and optimised.

2.2 Voronoi/Delaunay-based Methods

This group includes algorithms that compute a volume tetrahedralisation by means of a 3D Delaunay
triangulation of the sample points. The most important methods presented in the related literature
([14], [15], [16], [17], [18], [19], [20] and [21]) differ essentially in the way they remove the tetrahedra
and build the external triangular mesh. In the Crust method, proposed by Amenta et al. in [14], the set
of candidate triangles (called Crust) are those having three vertices which are not poles (for each point
p of the cloud the poles are the two Voronoi vertices which are farthest from p). Since the Crust is still
not a manifold, in order to extract a topologically correct surface, a walking strategy is employed in
candidate triangles. The worst time complexity of the Crust algorithm is Θ(m2), where m is the number
of points plus poles. In order to reduce running time and memory consumption, while still providing
the same theoretical guarantees, Amenta et al. in [15] proposed an improvement of the Crust
algorithm, which they called Cocone. The candidate triangles are those triangles inside the Cocone
region, which is the complement of a double cone which has its apex at the point under analysis (p)
and an assigned opening angle and whose axis is the normal at p. The Cocone’s worst time complexity
is Θ(n2), where n is the number of points. As pointed out by Chang et al. in [2], the theoretical
guarantee of obtaining a correct reconstruction with the Crust and Cocone methods is only possible as
long as the point cloud is well sampled. Dey and Goswami proposed other Cocone versions, one suited
to provide a watertight closed surface reconstruction, which they called Tight Cocone [16] and the
other suited for noisy data called Robust Cocone [17]. Dey et al. in [18] proposed the Super Cocone
algorithm so as to manage large amounts of data. In that method, the entire set of sample points is
partitioned into smaller clusters using an octree subdivision, and the Cocone algorithm is applied to
each cluster separately. A further evolution of the Crust is the Power Crust proposed by Amenta et al.
in [19]. This algorithm can generate a watertight mesh for any point cloud which is sampled enough
but it could be non-manifold. Furthermore, sharp edges or noisy data can result in defectiveness.

Gopi et al. in [22] proposed a different approach which, for each sample point, provides the
projection of the neighbouring points onto the approximating tangent plane as well as the tessellation
of the projections by means of a 2-D Delaunay triangulation. The 2D edges obtained are then applied
to 3D space. With a view to enhancing the performance of the Delaunay-based methods, Cohen-
Steiner and Da in [20] proposed the Greedy algorithm, which selects the triangles sequentially. The
selection of candidate triangles is carried out by the plausibility grade, which is an empirical function
of the circumradius and the dihedral angle between adjacent triangles. As stated by Cazals and Giesen
in [23], this method “may fail to interpolate all points or to provide a closed surface essentially due to
the presence of slivers”.

2.3 Mesh-growing Methods

In mesh – growing approaches the surface reconstruction starts with a seed triangle and the meshed
area is grown by pushing the fronts ahead using some criteria. Bernardini et al. [24] introduced the
Ball Pivoting Algorithm (BPA), by which the front grows as a ball of user-defined radius pivots around

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

200

the front edge. When the ball touches three points, a new triangle is formed. This method affords a
correct triangulation for any uniform data point, also in presence of noise, but it has some difficulties
in the tessellation of concave areas with little curvature radius. Huang and Menq in [25] proposed an
algorithm which, for each front edge, projects the k-nearest points of two endpoints onto the plane
that is defined by the triangle adjacent to the front edge. Any point generating triangles whose edges
intersect edges of already-existing triangles is discarded. Of the points which are retained, the point
showing the minimum sum of distances from the front-edge endpoints is chosen. Nonetheless, as
pointed out by Lin et al. in [26], this algorithm presents some shortcomings. In order to overcome
them, Lin et al. in [26] introduced the Intrinsic Property Driven (IPD) algorithm, which improves the
way of searching for the points to be triangulated. As stated by Chang et al. in [2], all the methods
based on mesh-growing approaches are fast, efficient and simple to implement but they, however,
may fall short whenever two surfaces are either close together or near sharp features. More recently, Li
et al. in [1] proposed a method based on a Priority Driven approach that evaluates shape changes from
an estimation of the original surface that is made at the front of the mesh-growing area. The
experimental results in [1] evidenced that the triangulation speed of the method was higher than that
of the Ball Pivoting and the Cocone. However, no reckoning was made of the defectiveness generated
by the method. Finally, in [27] these authors put forth a new mesh growing approach based on the
Gabriel 2 – Simplex (G2S) criterion: A triangle is a G2S if its smallest circumscribing ball is empty. This
criterion degenerates into the classical 2D Delaunay if all the points are coplanar. As a direct
consequence, the flatter the surface appears to be locally, the better is the guarantee of a good
reconstruction. More generally, the theoretical guarantee of a good reconstruction can be founded on
the following theorem demonstrated by Dyer et al. in [29]: A Gabriel mesh is a Delaunay mesh. In other
words, any mesh in which every triangle verifies the G2S criterion verifies also the 3D Delaunay one.
As opposed to the 2D and 3D classical Delaunay criterion, for a given data set, the G2S triangulation is
not unique and depends on the chosen seed triangle. The G2S criterion has already been used in some
tessellation methods presented in literature. Ruiz et al. in [30] used it as a basis for a method for
parametric surface meshing. This method cannot be used directly for the triangulation of point clouds
since it is based on information such as the pre-image in a parametric space, the boundary, and local
curvatures. Cohen-Steiner and Da in [20] and Ma et al. in [21] used the G2S criterion in order to select
the external triangular facets of tetrahedra coming from a 3D Delaunay triangulation. The method
proposed by Di Angelo et al. in [27] applied the G2S criterion directly to a point cloud so as to identify
triangles pertaining to the external surface. This method has proven to be competitive in terms of
tessellation rate, quality of the generated triangles and defectiveness produced when the surface to be
reconstructed is locally flat. Nonetheless, in the presence of a noisy mesh or a mesh which is locally
non–flat or which is not sufficiently sampled, the method generates defectiveness such as holes and
non–manifold vertices.

3 THE GABRIEL 2 – SIMPLEX CRITERION BASED METHOD

The mesh-growing method proposed in [27] consists of the following steps:
step 1. Import of the point cloud;
step 2. Building of a specific data structure to speed up the search for the nearest point;
step 3. Search for the seed triangle;
step 4. Surface triangulation.
The first step involves importing the point cloud which pertains to a continuous surface in the

form of the coordinates x, y, z. Other information, such as the normal at points, is not required. All
the points from the cloud are held in an original hash table data structure, applied to an improvement

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

201

of the typical space division approach ([31] and [32]), which makes it possible a more efficient search
for the nearest neighbourhoods. Then, the seed triangle is selected by using a new approach which
guarantees that it pertains to smooth features of the external surface of the point cloud. Starting from
the seed triangle, the meshed area grows, coherently with a manifold surface, by pushing the fronts
ahead using the G2S criterion.

3.1 Selection of the Seed Triangle

The G2S criterion being applied does not ensure that the triangles belong to the external surface. In
fact, the G2S triangles can either lie on the external surface or be transversal to it. Thus, as it happens
with the other mesh-growing approaches, the selection of the seed triangle is an important aspect of
the proposed method.

The seed triangle is selected based on an original strategy consisting of the following sub-steps:
Step 3.1. A point of the cloud is randomly chosen.
Step 3.2. Its nearest neighbour point is searched for, and an edge is formed between these two points.
Step 3.3. The third point of the triangle is searched for within a sphere centred at the midpoint of the

edge and whose radius is k-times the length of the edge (k can be either a user-defined
parameter or a default value).

Step 3.4. Each point in the range is connected to the edge in order to form a triangle.
Step 3.5. Selection of the seed triangle. The seed triangle verifies the G2S criterion and the points

contained in the infinite cylinder passing through its three vertices, and having the axis
parallel to its normal, are all above or all under the triangle (figure 1).

The procedure is repeated until a triangle, satisfying the conditions in step 3.5 is found. The
cylinder test also excludes any G2S triangles which are in correspondence of sharp points.

3.2 G2S Criterion-based Triangulation

The edges of the seed triangle constitute the initial advancing front of the growing-mesh method. For
each free edge (e

f
) (which are edges pertaining to only one triangle) of the growing front a triangle is

generated according to the following procedure sub-steps:

Step 4.1: Identification of all the candidate points near e
f
.

Typically, the reference point is chosen among the candidate points, which are those inside a properly
defined search region. In this paper the search region is a sphere having its centre (search region
centre) lying on the plane of the front triangle on the axis of the free edge under analysis in the
growing direction, and having the search radius as radius (figure 2). The search radius value affects
tessellation quality and time. A low search radius keeps the search region near the front edge, so the
method falls short in the meshing of under sampled areas. A high search radius, on the other hand,
reduces the tessellation rate and sometimes generates defectiveness. An automatic approach has been
implemented to set the search radius value. It changes the search radius value from an initial value (in
the following test cases it is equal to the length of the free edge under analysis) to an assigned
maximum value according to a given step value. The search radius is increased up to the maximum
value if no points are found inside the search region. Since the search region centre lies on the same
plane as the front triangle, the search method usually favours finding candidate points in the area
wherein the surface is expected to grow. In typical practical situations, this prevents further controls
that may cause the algorithm to slacken. Furthermore, this search region excludes from candidate
points those points which are farther away or those points which could generate thin and slivery
triangles. Finally, this criterion generally stops the front in the presence of sharp edges.

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

202

Fig. 1: The cylinder test to select a seed triangle.

Step 4.2: Selection of the reference point in the search region.
When more than one point is found inside the search region (cp

1
, cp

2
 and cp

3
 in figure 3a), for each

point the smallest sphere passing through it and the front edge’s points is traced. The point which
verifies the G2S triangle is the candidate point. Then, the candidate triangle (figure 3b) is submitted to
topological tests. In order to speed up the triangulation process, if only one point is found inside the
search region, that point is directly assumed to identify a candidate triangle with the free edge (e

f
)

without verifying whether or not it is a G2S. For a quasi–locally flat point cloud, the candidate triangle
has a high probability of being G2S. Finally, if no point is found inside the search region, e

f
 is removed

from the free edges’ queue and it is classified as boundary edge.

Step 4.3: Topological tests and algorithm control.

Each of the new triangles retained is formed by the front edge (e
f
) and two further edges (e

1
 and e

2
).

In order to check efficiently whether these two edges (e
1
 and e

2
) are really new or they already belong

to other triangles, a data structure called Point Edge Map (PEM) is proposed which relates every point to
its edges. For either edge (e

1
 and e

2
), the following conditions should be verified:

- If the edge already pertains to another triangle, the consistency of the orientation of the new
triangle with the triangle sharing the edge must be verified.

- If this edge is new, it is added to the Point Edge Map and to the front queue and e
f
 is removed from

the front queue.
The procedure ends when the free edges’ queue is empty.

The triangle is a good
seed triangle

The triangle is not a
good seed triangle

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

203

Fig. 2: The search region’s definition terms.

Fig. 3: Reference point selection.

3.3 Some Considerations

The theoretical basis of G2S is taken for granted by accepting the fact that point clouds can be
considered locally flat, or, in other words, that the surface to be reconstructed is locally oriented,
smooth, manifold, well sampled and not self-intersecting. Under this hypothesis, the G2S criterion
works like a 2D Delaunay tessellation through which surface reconstruction is guaranteed. These
requirements are not so restrictive anymore, especially since the advent of high-resolution non–
contact scanners which produce noise-free points clouds. More generally, as pointed out by Dyer et al.
in [29], a Gabriel mesh (a mesh for which each triangle verifies the G2S criterion) is a Delaunay mesh.
In [27] these authors already demonstrated it by analysing the typical benchmarks presented in the
related literature:
- the triangulation speed of G2S is comparable with a traditional 2D Delaunay-based mesher and it

is at least an order of magnitude higher than the other methods here considered;

cp
1

cp
2

cp
3

a)

candidate triangle

b)

Search region

Front triangle

free edge under
analysis

Search region
radius

Search region
centre

cp
1

cp
2

cp
3

Extreme points of the free edge under analysis
Candidate points
Outer points

Search region
radius

Search region

Search region
centre

Front triangle

free edge under
analysis

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

204

- G2S produces triangles whose quality is similar to that of those triangles obtained by the Cocone
methods and slightly better than the quality of the triangles obtained by the Ball Pivoting one;

- G2S can reproduce even the smallest details of well sampled surfaces, similarly to Cocone
methods, also in concave areas of strongly non–uniform point clouds where the Ball Pivoting
method shows some problems;

- G2S does not produce non–manifold edges, self-intersecting triangles or slivers;
- as regards non–manifold vertices, holes and boundary edges, the quantity and the extension of

defectiveness generated by the G2S tessellation are on average similar to those produced by the
Cocone and the Tight Cocone;

- in the presence of a mesh which is locally non–flat or which is not sufficiently sampled, G2S is less
robust and holes and non–manifold vertices are generated.

4 CRITICAL ASPECTS IN THE G2S METHOD AND IMPROVEMENTS

As mentioned in the previous section, the G2S version proposed in [27] presents some critical
aspects. In particular, in any area of a point cloud that is not locally flat or is not sufficiently sampled,
G2S can generate:
- holes, which identify unmeshed area;
- a twisting of the surface;
- non–manifold vertices.

In order to eliminate non-manifold vertices, in literature some methods are proposed ([33] and
[34]). Typically, these methods work as a step that is completely independent from the tessellation
phase, by using static large data structures which could be inadequate to repair meshes with some
millions of triangles.

This paper focuses on the improvement of the G2S performance as regards the generation of
twisted surfaces and non–manifold vertices. The methods here proposed take advance from the data
generated by the mesh growing algorithm and they can manage millions of triangles.

4.1 The Twisting of the Surface

In this paper, the twisting of the surface identifies the generation on the same body of different
tessellated surfaces not having congruent normal (figure 4). This in turn generates holes with extended
boundary edges since adjacent patches not having a congruent orientation cannot be merged. In order
to solve this problem, an original priority queue is proposed. The main idea at the basis of the priority
approach being presented is to mesh first those areas for which the front grows in the flattest way in
the neighbourhood.

Fig. 4: The twisting of the surface.

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

205

In order to speed up the algorithm, a set of discrete values is adopted for a priority index. The
strategy used involves the definition of:

- n priority levels for the search neighbourhood dimension, so that the smallest dimension has
priority pl

d
 = 1 and the greatest has priority pl

d
 = n);

- m priority levels for flatness, measured as the angle (β) between the normal of the triangle
containing the free edge under analysis (front triangle) and the candidate triangle (priority pl

f
 =

1 being assigned to β=0° and priority pl
f
 = m to β=180°).

The priority index (PI) is defined according to the following expression:
PI = m ·(pl

d
 – 1) + pl

f
 (4.1)

Next, these edges are positioned in the queue by sorting, in ascending order, the value of PV
calculated for the corresponding candidate triangle.

4.2 Non – manifold Vertices Elimination

In what follows, the triangles with at least one boundary edge are referred to as boundary triangles and
the vertices, for which the incident triangles form more than one fan are referred to as non-manifold
vertices. In this paper the two common types of non-manifold vertices, reported in the figure 5, are
considered. In order to verify that a vertex is manifold, the sequence of triangles sharing the vertex is
analysed. For this purpose, a specific data structure has been defined;
- a dynamic queue of edges (deq) containing the non-analysed edges which initially has n

e
 rows (n

e
 is

the number of edges that are not boundary) and six columns: the edge label (e
l
), its extreme points

(p
f
 and p

l
) and the triangles sharing the edge t

f
 and t

l
);

- a n
v
·4 matrix (ptt) (n

v
 is the number of vertices); in each row of ppt the sequence of adjacent

triangles sharing the vertex (v
l
) is represented by storing the first (front) and the last (back) triangle

of the sequence and the number of the triangles found (n
t,a
). A vertex is checked to be manifold if

n
t,a
 is equal to the number of triangles sharing the vertex.

Fig. 5: Common types of non – manifold vertices.

In order to explain this method, let us consider the mesh represented in figure 6a with the labels
of the vertices, edges and triangles superimposed. First, the deq is filled with the edges of the mesh,
except for the boundary ones (figure 6b) and in the ptt table, the labels of all vertices are added to the
first column (figure 6c). The process starts by popping the first element off the queue (e

3
) and the

corresponding labels of t
f
 (t

1
) and t

l
 (t

2
) are added to the related lines of the matrix (figure 6d). Then,

the first element of the new queue (figure 6e) is popped off (e
6
). Since the triangles’ labels associated

with v
1
 for e

6
 (t

3
and t

8
) are different from those reported in the corresponding row of the matrix, this

edge is pushed to the end of the queue (figure 6f). If once the queue has been scanned through, no
edges of intersection of one of two extreme triangles of the loop (t

1
 and t

2
) have been found for the

a)
v

v

b)

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

206

vertex under examination (v
1
), the loop is defined as open since t

f
 ≠ t

l
. In the case that there are other

edges incident to v
1
 in the queue, the front and back columns of the ptt are emptied (figure 6g). Again,

the first element of the queue is popped off (e
8
); the triangles t

1
 and t

6
 are added to the corresponding

rows of the matrix of the vertices v
1
 and v

6
 (figure 6h). Once more, the first element of the new queue

(figure 6i) is popped off (e
9
). Since one of the two triangles incident to the edge (t

4
) is a terminal point

(front) of the loop, in the corresponding row of ptt, this triangle is substituted with the other (t
3
)

(figure 6l). This procedure is iterated until the triangles of the front and the back column are the same
for a vertex (figure 6m), or, in other words, the loop is closed. In the case that in the deq there are
edges incident to that vertex (figure 6n), the corresponding triangles are erased (figure 6o). The
procedure ends when the deq is empty.

5 EXPERIMENTAL RESULTS AND DISCUSSION

The methodology described in the previous sections has been implemented in original software, coded
in C++. The method being proposed has been tested for the tessellation of several scanned point
clouds characterised by different value and uniformity in sampling rate, geometries, topologies and
noise level. Most of the test cases used are typical benchmarks taken from the related literature,
although some others are artificially noised test cases purposely designed. All the tests have been run
on a laptop with 1.86 GHz Intel Pentium M Processor and 1 GB RAM.

The performance of the algorithm has been assessed in terms of the tessellation rate
([ktriangles/s]) and the quality of the generated mesh. The latter has been analysed by evaluating:

- The mean value of the following quality factor of the generated triangles [35]:

()

p

dp

d
12QF

3

1i
i∏

=

−

=
(5.1)

where d
i
 is the length of the i-th side of the triangle, ()i

i
dd max
3,2,1=

= and 2d
3

1
i∑

=

=
i

p . The value of

QF varies from 0 (for triangles having null area) to 1 (for equilateral triangles). This factor is
very significant since uniform meshes characterised by equilateral triangles are required in
most of the practical uses of tessellated surfaces.

- The mean value of the distance (μ
d
%) of the unmeshed points from the tessellated surface,

normalised on the mean spacing of the point cloud. Since the data points lie on the original
surface and outliers are excluded, this index is an estimation of the error in meshing data
points.

- The number of the following defects:
§ non–manifold vertices (n

nmv
);

§ non–manifold edges (n
nme

);
§ holes (n

holes
): unmeshed areas;

§ boundary edges (n
be
): edges bordering the holes.

The performance of the Robust G2S method is compared with that of the old one [27] (henceforth
G2S_old) that of the Cocone methods (Cocone [15], Tight Cocone [16] and Robust Cocone [17]), whose
implemented software has been kindly provided by the authors, and is also compared with our
implementation of the Ball Pivoting [24]. The last two methods can be considered to be reference
implementations of the Delaunay tessellation and of the mesh-growing approaches. In the following
experiment the closed point clouds are analysed with the Tight Cocone, the open point clouds with the
Cocone method and the noisy ones are tessellated by using the Robust Cocone. Neither the G2Ss nor

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

207

the Cocone family methods require any empirical input parameters. On the contrary, the BPA needs
the ball pivoting radius. The Ball Pivoting performance is largely affected by the setting parameters
which must be accurately defined to obtain satisfactory results but a tedious and time-consuming
trial–and-error process is required.

5.1 Typical Benchmarks

The first set of experiments consists of the typical benchmarks used in the related literature to
evaluate tessellation methods. In particular, 16 closed point clouds and 10 open point clouds, all of
them having different geometries and having been scanned with different technologies, are considered.
Eight of these point clouds have more than one million points and can be considered to be very large
data sets. Figure 7 illustrates renderings of some test cases tessellated with the proposed method. The
testing results are reported in table 1 – 6.

Some of the benchmark test cases (Neptune, Asian Dragon, Amphora and Thai Statue) cannot be
tested with the available Cocone and Tight Cocone implementations which cannot work for them.

When analysing the results obtained, it is easy to conclude that all the methods here considered
fall short for point clouds (Toywheel, Turtle and Galaad) characterised by a strongly non–uniform
sampling.

The improvements introduced in Robust G2S, are achieved by a small reduction of the tessellation
rate respect to the G2S_old. However, Robust G2S yields results which are, on average, about 300 times
and 8 times higher than the Cocone and the BPA methods, respectively. Our implementation of the BPA
shows a tessellation rate comparable with the implementation proposed in literature.

If we analyse the values for the QF index, the Robust G2S method is verified to produce triangles
whose quality is similar (99.58%) to those obtained with the Cocone methods and slightly better than
those obtained by means of the Ball Pivoting one (95.29%).

Generally speaking, the Robust G2S method (μ
d
%=0.65%) and the Cocone methods (μ

d
%=0.57%) can

reproduce even the smallest details of well-sampled surfaces. On the contrary, and owing to
difficulties in tessellating concave areas of point clouds, the BPA method produces many unmeshed
points (μ

d
%=21.45%). Figure 8 shows the maps of the μ

d
% of the Chinese_Dragon. The Robust G2S

reconstructs better the concave areas since, unlike the BPA, the ball radius is locally adapted to point
spacing.

For all the cases analysed, the Robust G2S does not produce, as opposed to the other methods, non
– manifold vertices. Furthermore, when using the priority queue in the new version of G2S, in most
cases there is a reduction of holes and boundary edges. In some cases, such as the raptor, the marked
reduction in boundary edges is due to the elimination of the problem of twisting surface generation.
Figure 9 shows the renderings of the tessellation obtained for the Raptor with both the G2S_old (a) and
Robust G2S. In the same figure, the outside of triangles is coloured blue whereas the inside is coloured
yellow. The Robust G2S performance is comparable with that of the Cocone family methods which are
based on the Delaunay triangulation method, which is intrinsically more robust, but 300 times slower.
The Robust G2S method generates defectiveness, essentially in those areas of the point clouds which
cannot be considered to be locally flat since the sampling density is not accurate enough to reproduce
surface details.

5.2 Noisy Point Clouds

In order to verify the performance of the Robust G2S in the tessellation of noised point cloud data,
specific experiments are carried out. The performance of Robust G2S is compared with those of the
G2S_old [27], Robust Cocone [17] and the Ball Pivoting [24].

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

208

The first experiment aims at comparing the four methods as regards the tessellation of the
Stanford Bunny with different levels of noise added. Noise is randomly generated according to a
Gaussian probability density distribution with different values of standard deviation expressed as
percentage of the mean spacing of the original point cloud (σ%). Figure 10 illustrates the results of the
renderings and table 7 reports the number of defects. In all the cases analysed, the Robust G2S method
proves to be capable of reproducing even the smallest details of the model preventing non-manifold
edges and vertices. On the contrary, the Robust Cocone and the BPA methods bring about a coarse
reconstruction of the model and some important details are completely neglected. It is the case of the
Bunny Stanford neck. For a high value of σ% (σ%>25%), the Robust G2S produces a tessellation with a
high number of holes and boundary edges. Large random errors being applied to the original model
destroy, depending on the ratio between error and point spacing, the characteristic regularity of the
original surface to the extent it produces geometric nonsense. In these cases, the assumption of local
flatness, which is basic to recognising the nature of a regular surface in a point cloud, is no longer
valid.

The second set of experiments is carried out in order to compare the four methods as regards the
tessellation of the point cloud with different number of outliers. For this purpose, in the Stanford
Bunny outliers are randomly added according to the following percentages of the total number of
points: 5%, 10% and 20%. The Robust Cocone seems to be inadequate to tessellate point clouds with this
type of noise (figure 11). Due to the use of a relatively large ball, the BPA does not process as outliers
any points which are external to the regular surface and produce the typical cones shown in figure 11.
All in all, the Robust G2S shows good results thanks to the intrinsic characteristic of the method which
tends to search for candidate points mainly in the regular growth of the surface. Furthermore, the
Robust G2S does not generate non-manifold vertices (table 8) and the number of holes and boundary
edges is similar to those produced by the BPA method.

6 CONCLUSION

In a previous paper [27] these authors had already presented a new-mesh growing approach based on
the Gabriel 2 – Simplex (G2S) criterion. The results obtained proved that the G2S is competitive in
terms of tessellation rate, quality of the generated triangles and low defectiveness, especially when
compared with the Cocone family and the Ball Pivoting methods. Its major limitation was that, in the
presence of a mesh which was locally non – flat or was not sufficiently sampled, it proved to be less
robust and holes and non – manifold vertices were generated. In order to improve the robustness of
the G2S mesh-growing method, this paper proposes an original priority queue for the driving of the
front growth and a post processing to efficiently erase the non – manifold vertices. The performance of
Robust G2S has been compared with that of G2S_old, and that of the Cocone family and the Ball
Pivoting methods in the tessellation of some benchmark point clouds and artificially noised test cases.
The results derived from these experiments show that the improvements proposed and implemented
prevent the generation of non – manifold vertices and make the Robust G2S more robust than G2S_old
in terms of generation of defects such as holes and boundary edges, also in presence of noised point
clouds. This performance improvement is achieved by a small reduction of the tessellation rate respect
to the G2S_old method. However, the tessellation rate is still at least an order of magnitude higher than
the Cocone family and the Ball Pivoting methods In the case of much noised meshes, Robust G2S
produces more holes and boundary edges than the Robust Cocone and the Ball Pivoting methods, but
the last named ones do not preserve important details of the object. Finally, in the presence of meshes
with outliers, the number of holes and boundary edges produced by Robust G2S can be said to be
comparable with those produced by the Ball Pivoting method.

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

209

Fig. 6: Explanation of the post processing used to erase the non – manifold vertices.

v1

v6

v
9

v7

v8
v10

v5

t8
t7

t4

t6

t5
t3

e6

e7 e8 e9
e11

e10

e16

e14

e15
e17 e13

e12

a)

b)

c) d)

front

ptt
 v

l

v
1

back

n
t,a

2

v
2

0

v
3

2

v
4

0

v
5

0

v
6

0

v
7

0

v
8

0

v
9

0

v
10

0

v
11

0

v
12

0

v
13

0

t2 t1

t1 t2

e) f)

g)

front

ptt
 v

l

v
1

back

n
t,a

0

v
2

0

v
3

0

v
4

0

v
5

0

v
6

0

v
7

0

v
8

0

v
9

0

v
10

0

v
11

0

v
12

0

v
13

0

h)

i)
l) m)

front

ptt
 v

l

v
1

back

n
t,a

6

v
2

0

v
3

0

v
4

0

v
5

2

v
6

2

v
7

2

v
8

2

v
9

2

v
10

2

v
11

0

v
12

2

v
13

0

t3 t3

t4
t

5

t4
t

3

t6
t

5

t7
t

6

t8
t

7

t10
t

9

t8
t

3

n)

o)

front

ptt
 v

l
 back

n

t,a

v
1

 v
2

 v
3

 v
4

 v
5

 v
6

 v
7

 v
8

 v
9

 v
10

 v
11

 v
12

 v
13

0

0

0

0

0

0

0

0

0

0

0

0

0

p
f

deq

e
l
 p

l
t

f
t

l

e
6

v1

v5 t8 t3

e
8

v1

v6 t5 t4

e
9

v1

v7 t4 t3

e
12

 v1 v9
t6 t5

e
13

 v1
v8 t7 t6

e
15

v1
v10 t8 t7

e
18

v1 v12
t

10 t9

e
3

v1 v3

t2 t1

t
10

t8 t7

t9
v12 v1

e
18

e
15

v1
v10

e
13

 v1
v8 t6 t7

t6 t5
v9 v1

e
12

e
9

v1 v7 t3 t4

t5 t4
v6 v1

e
8

e
6

v1 v5

t3 t8

p
f

deq

e
l
 p

l
t

f
t

l

t
10

t8 t7

t9
v12 v1

e
18

e
15

v1
v10

e
13

 v1
v8 t6 t7

t6 t5
v9 v1

e
12

e
9

v1

v7 t3 t4

e
6

v1

v5 t3 t8

p
f

deq

e
l
 p

l
t

f
t

l

t
10

t8 t7

t9 v12
v1

e
18

e
15

v1 v10

e
13

 v1 v8
t6 t7

t6 t5
v9 v1

e
12

e
9

v1

v7 t3 t4

t5 t4 v6
v1

e
8

e
6

v1 v5

t3 t8

p
f

deq

e
l
 p

l
t

f
t

l

t
10 t9 v12

v1
e

18

p
f

deq

e
l
 p

l
t

f
t

l

v1

v2

v3

v4

v6

v
9

v7

v8
v10

v5

e1

e2

e3

e4

e5
t1

t2

t8 t7

t4

t6

t5
t3
e6

e7 e8
e9

e11

e10

e16
e14

e15
e17 e13

e12

v11

v12

v13

e18

e19

e20

e21

e22

t9

t10
v

9

e10
t4

e16

e12
e6

v7

e19

e22

e21

v13

v11

e18

t10

v12

v6

e11 t5

e20

v8

v1
v5

v10

t6

t9

e14

t3

t7

t8

e9 e8

e13

e7

e15
e17

front

ptt
 v

l

v
1

back

n
t,a

2

v
2

0

v
3

0

v
4

0

v
5

0

v
6

2

v
7

0

v
8

0

v
9

0

v
10

0

v
11

0

v
12

0

v
13

0

t5 t4

t4 t5

front

ptt
 v

l

v
1

back

n
t,a

3

v
2

0

v
3

0

v
4

0

v
5

0

v
6

2

v
7

0

v
8

0

v
9

0

v
10

0

v
11

0

v
12

0

v
13

0

t5 t3

t4 t5

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

210

b)

a)

c)

d)

e)

Fig. 7: Rendering of the following test cases: a) Red_circular_box; b) Raptor; c) Oil_pump; d)
Turbine_blade2; e) Hand; f) Thai Statue.

f)

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

211

Name
No. of
points

Robust G2S G2S_old [27] Tight Cocone [16] Ball Pivoting [24]
No. of

triangles
Rate

[ktriangles/s]
No. of

triangles
Rate

[ktriangles/s]
No. of

triangles
Rate

[ktriangles/s]
No. of

triangles
Rate

[ktriangles/s]
Rocker-arm (**) 10,044 20,084 320.9 20,084 380.1 20,088 1.33 18,848 26.18

Stanford Bunny (*) 35,947 71,873 294.3 71,884 321.7 71,884 0.99 67,449 22.86
Horse (**) 48,485 96,873 307.6 96,859 377.4 96,922 0.82 94,382 48.15

Armadillo (*) 172,975 345,897 303.0 345,934 372.8 345,944 0.85 307,286 33.18
Pulley (**) 293,672 587,266 328.5 587,181 371.8 587,312 0.67 571,738 52.82
Hand (**) 327,323 649,768 292.3 649,527 376.6 654,550 0.67 554,266 23.89

Turbine Blade 2 (****) 396,104 791,916 288.5 792,041 377.3 791,873 1.72 736,685 43.69
Dragon (***) 435,545 834,771 304.5 805,376 348.1 867,282 0.62 782,185 35.46
Bimba (**) 502,694 1,005,246 366.2 1,005,172 432.5 1,005,088 0.82 953,618 23.82

Happy Buddha (***) 543,652 1,038,953 338.0 1,004,540 351.0 1,081,232 0.51 809,539 25.36
Chinese Dragon (**) 655,980 1,311,307 322.0 1,311,296 475.2 1,310,435 0.99 966,266 25.28

Red_circular_box (**) 701,322 1,401,530 243.7 1,400,720 369.5 1,401,725 0.78 1,367,913 51.15
Turbine Blade (***) 882,954 1,740,362 351.9 1,759,357 364.4 1,759,514 1.11 1,630,254 47.28

Raptor (**) 1,000,080 1,685,915 349.6 1,716,226 439.6 1,854,921 0.28 1,378,599 43.48
Neptune (**) 2,003,933 4,007,522 261.8 4,007,628 362.8 -- -- 3,119,149 20.01

Asian Dragon (*) 3,609,601 7,217,980 362.9 7,218,442 418.8 -- -- 6,715,376 26.22
(*) http://www.graphics.stanford.edu/data/3Dscanrep/
(**) http://shapes.aimatshape.net/
(***) http://www.lodbook.com/models/
(****) http://www.scansystems.it

Tab. 1: Comparison between the performance of Robust G2S, G2S_old [27], Tight Cocone [16] and Ball Pivoting [24] in closed surfaces.

http://www/
http://shapes.aimatshape.net/
http://www.lodbook.com/models/
http://www/

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

212

Name
Robust G2S G2S_old [27] Tight Cocone [16] Ball Pivoting [24]

QF [26] μd % QF [26] μd % QF [26] μd % QF [26] μd %
Rocker-arm 0.699 1.40∗10−2% 0.699 1.40∗10−2% 0.707 0,000% 0.651 5.46%

Stanford Bunny 0.708 0.007% 0.708 0.007% 0.713 0,029% 0.675 4.45%
Horse 0.714 0.51 % 0.714 0.51 % 0.714 0,42% 0.695 1.12%

Armadillo 0.768 0.000% 0.768 0.000% 0.775 0,005% 0.708 6.97%
Pulley 0.776 5.39*10−3% 0.776 5.39*10−3% 0.776 0,085% 0.761 3.77%
Hand 0.648 0.005% 0.648 0.005% 0.713 0,009% 0.620 180.0%

Turbine Blade 2 0.753 0.06% 0.753 0.06% 0.753 0,108% 0.698 1.68%
Dragon 0.642 1.63% 0.642 1.83% 0.622 0,819% 0.611 37.28%
Bimba 0.751 0.005% 0.751 0.194 % 0.751 0,322% 0.590 5.53%

Happy Buddha 0.613 0.145 % 0.613 0.145 % 0.614 1,39% 0.734 32.49%
Chinese Dragon 0.771 0.027% 0.771 0.027 % 0.769 0,208% 0.673 32.33%

Red_circular_box 0.785 0.038% 0.785 0.038% 0.783 0,053% 0.765 1.037%
Turbine Blade 0.585 0.68% 0.585 0.68 % 0.580 0,553% 0.580 70.01%

Raptor 0.723 11.52% 0.723 17.75% 0.704 7,345% 0,663 29.26%
Neptune 0.765 0.008% 0.765 0.008% -- -- 0.749 46.12%

Asian Dragon 0.903 0.012% 0.903 0.012% -- -- 0.887 7.81%

Tab. 2: Comparison between the quality reconstruction of Robust G2S, G2S_old [27], Tight Cocone [16] and Ball Pivoting [24] in closed
surfaces.

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

213

Model name

Robust G2S G2S_old [27] Tight Cocone [16] Ball Pivoting [24]

n
nmv

 n
nme

holes

n
nmv

 n
nme

holes

n
nmv

 n
nme

holes

n
nmv

 n
nme

holes

n
ho
 n

be
 n

ho
 n

be
 n

ho
 n

be
 n

ho
 n

be

Rocker-arm 0 0 0 -- 0 0 0 -- 0 0 0 -- 2 0 5 54
Stanford Bunny 0 0 0 -- 0 0 0 -- 0 0 0 -- 1 0 0 0

Horse 0 0 7 83 0 0 8 149 0 0 1 4 11 0 6 111
Armadillo 0 0 0 -- 0 0 0 -- 0 0 0 -- 0 0 4 16

Pulley 0 0 1 4 0 1 2 10 0 0 0 -- 0 0 0 --
Hand 0 0 13 90 0 0 19 126 8 0 6 58 0 0 32 186

Turbine Blade 2 0 0 2 9 0 10 12 77 1 0 1 11 0 0 1 3
Dragon 0 0 40 579 0 1 28 249 23 0 24 166 2 0 31 115
Bimba 0 0 6 117 0 11 12 220 8 0 5 54 0 0 0 --

Happy Buddha 0 0 54 508 0 32 47 462 39 0 11 93 0 0 8 41
Chinese Dragon 0 0 19 103 0 47 35 928 18 0 13 119 0 0 12 40

Red_circular_box 0 0 97 635 0 27 42 327 12 0 10 75 53 0 501 6538
Turbine Blade 0 0 164 2089 0 42 66 1054 295 0 109 864 3 0 49 180

Raptor 0 0 36 207 0 269 91 1508 7751 0 4335 34781 0 0 7 37
Neptune 0 0 4 34 0 13 19 107 -- -- -- -- 0 0 7 37

Asian Dragon 0 0 31 193 0 41 88 721 -- -- -- -- 0 0 7 92

Tab. 3: Comparison between the defectiveness produced by Robust G2S, G2S_old [27], Tight Cocone [16] and Ball Pivoting [24] in closed
surfaces.

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

214

Name
No. of
points

Robust G2S G2S_old [27] Tight Cocone [16] Ball Pivoting [24]
No. of

triangles
Rate

[ktriangles/s]
No. of

triangles
Rate

[ktriangles/s]
No. of

triangles
Rate

[ktriangles/s]
No. of

triangles
Rate

[ktriangles/s]
Foot (**) 10,010 19,970 310.8 19,972 352.9 19,982 2.25 18,332 37.05

Support (*) 549,007 1,096,742 322.5 1,097,412 397.6 1,097,538 1.82 1,074,677 49.65
Rolling Stage (**) 596,903 1,190,806 319.7 1,193,303 373.5 1,193,688 1.49 1,168,744 57.07

Body (****) 675,049 1,349,076 299.7 1,349,609 279.7 1,344,039 1.2 1,326,963 59.47
Nicolò da
Uzzano (**) 946,760 1,891,949 367.0 1,891,992 464.5

1,891,669 1.93 1,795,917 40.33

Toy wheel (**) 1,001,231 -- -- -- -- 1,702,234 0.41 959,810 0.27
Amphora (**) 1,317,152 2,590,549 274.6 2,616,596 295.9 -- -- 2,544,331 62.67
Galaad (**) 1,451,502 -- -- -- -- 2,215,146 0.53 272,561 0.47

Toy turtle (**) 1,472,131 -- -- -- -- 2,226,103 0.60 670,035 0,53
Thai Statue (*) 4,999,997 9,994,088 275.1 9,994,088 303.8 -- -- 8,335,937 19.48

(*) http://www.graphics.stanford.edu/data/3Dscanrep/
(**) http://shapes.aimatshape.net/
(***) http://www.lodbook.com/models/
(****) http://www.scansystems.it

Tab. 4: Comparison between the performance of Robust G2S, G2S_old [27], Tight Cocone [16] and Ball Pivoting [24] in open surfaces.

Name
Robust G2S G2S_old [27] Tight Cocone [16] Ball Pivoting [24]

QF [26] μd % QF [26] μd % QF [26] μd % QF [26] μd %
Foot 0.699 0.000% 0.699 0.000% 0.698 0.000% 0.682 4.66%

Support 0.730 0.237% 0.730 0.237% 0.729 0.013% 0.714 0.40%
Rolling Stage 0.616 0.006% 0.616 0.006% 0.616 0.005% 0.616 0.36%

Body 0.760 0.250% 0.760 0.250% 0.759 0.018% 0.739 0.58%
Nicolò da
Uzzano

0.747
0.007%

0.747
0.007%

0.746
0.467%

0.707
5.1%

Toy wheel -- -- -- -- 0.492 4.69% 0.365 16.18%
Amphora 0.614 0.004% 0.614 0.004% -- -- 0.619 0.23%
Galaad -- -- -- -- 0.631 1.22% 0.444 817.77%

http://www/
http://shapes.aimatshape.net/
http://www.lodbook.com/models/
http://www/

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

215
Toy turtle -- -- -- -- 0.635 17.72% 0.460 720.98%

Thai Statue 0.734 0.015% 0.734 0.015% -- -- 0.701 12.73%

Tab. 5: Comparison between the quality reconstruction of Robust G2S, G2S_old [27], Tight Cocone [16] and Ball Pivoting [24] in open
surfaces.

Model name

Robust G2S G2S_old [27] Tight Cocone [16] Ball Pivoting [24]

n
nmv

 n
nme

holes

n
nmv

 n
nme

holes

n
nmv

 n
nme

holes

n
nmv

 n
nme

holes

n
ho
 n

be
 n

ho
 n

be
 n

ho
 n

be
 n

ho
 n

be

Foot 0 0 0 -- 0 0 0 -- 1 0 2 10 0 0 3 49
Support 0 0 7 43 0 85 21 57 14 0 2 8 0 0 13 159

Rolling Stage 0 0 1 5 0 3 6 28 3 0 5 36 0 0 0 --
Body 0 0 8 49 0 166 25 336 87 0 30 161 0 0 50 354

Nicolò da Uzzano 0 0 1 4 0 1 0 -- 98 0 284 1289 41 0 12 94
Toy wheel - - -- -- - - -- -- 79073 2795 29542 206799 5755 0 4079 26105
Amphora 0 0 4 39 0 0 1 10 -- -- -- -- 3 0 9 165

Galaad - - -- -- - -- -- - 141928 8945 47228 347125 126 0 164 873
Toy turtle - - -- -- - - -- -- 144735 10771 49255 354636 199 0 403 2418

Thai Statue 0 0 25 205 0 0 64 1348 -- -- -- -- 1742 0 539 7068

Tab. 6: Comparison between the defectiveness produced by Robust G2S, G2S_old [27], Tight Cocone [16] and Ball Pivoting [24] in open
surfaces.

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

216

Fig. 8: Maps of the deviations between the original point cloud of the Chinese_Dragon mesh obtained
by Ball Pivoting (a) and Robust G2S (b).

Fig. 9: Renderings of the tessellations obtained for the Raptor with the old (a) and the new versions of
the G2S criterion.

a)

b)

2.5

2.1

1.7

1.3

0.9

0.5

0.1
-0.1

-0.5

-0.9

-1.3

-1.7

-2.1

-2.5

a) b)

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

217

 New G2S method Old G2S method [27] Robust Cocone method [17] Ball Pivoting [24]

σ=
1

0
%

σ=
2

5
%

σ=
5

0
%

Fig. 10: Comparison between the two versions of the G2S, the Robust Cocone [17] and the Ball Pivoting
[24] algorithms in the tessellation of noise added point clouds.

 New G2S method Old G2S method [27] Robust Cocone method [17] Ball Pivoting [24]

5
%

The exe program
generates an empty file

1
0

%

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

218

2
0

%

Fig. 11 Comparison between the two versions of the G2S, the Robust Cocone [17] and the Ball Pivoting
[24] algorithms in the tessellation of point clouds with outliers added.

 New G2S Method Old G2S Method [27] Robust Cocone method [17] BPA method [24]

n
nm

holes

n
nm

holes

n
nm

holes

n
nm

holes

n
holes

 n
be
 n

holes
 n

be
 n

holes
 n

be
 n

holes
 n

be

σ=10% 0 0 -- 1 1 6 0 0 -- 0 0 --
σ=25% 0 17 30 15 22 71 1 0 -- 0 3 9
σ=50% 0 241 1474 720 457 2967 1 0 -- 0 6 36

Tab. 7: Comparison of defectiveness generated by Robust Cocone [17] and Ball Pivoting [24] in the
tessellation of noise added point clouds.

Defectiveness generated
New G2S Method Old G2S Method [27] Robust Cocone method [17] BPA method [24]

n
nm

holes

n
nm

holes

n
nm

holes

n
nm

holes

n
holes

 n
be
 n

holes
 n

be
 n

holes
 n

be
 n

holes
 n

be

5% 0 0 -- 0 2 4 -- -- -- 7 11 149
10% 0 20 244 114 17 725 -- -- -- 13 34 206
20% 0 31 457 123 24 757 -- -- -- 12 45 326

Tab. 8: Comparison of defectiveness generated by Robust Cocone [17] and Ball Pivoting [24] in the
tessellation of point clouds with outliers added.

REFERENCES

[1] Li, X.; Han, C.Y.; Wee, W. G.: On surface reconstruction: A priority driven approach. Computer-
Aided Design, 41 (9), 2009, 626-640, http://dx.doi.org/10.1016/j.cad.2009.04.006.

[2] Chang, M. C.; Leymarie, F. F.; Kimia, B. B.: Surface reconstruction from point clouds by
transforming the medial scaffold. Computer Vision and Image Understanding, 113 (11), 2009,
1130 – 1146, http://dx.doi.org/10.1016/j.cviu.2009.04.001.

[3] Lorensen, W. E.; Cline, H. E.: Marching Cubes: A high resolution 3D surface construction
algorithm. Computer Graphics, 21 (4), 1987, 163 – 169, http://dx.doi.org/10.1145/37402.37422.

[4] Carr, J.; Beatson, R.; Cherrie, H.; Mitchel, T.; Fright, W.; Mccallum, B.; Evans, T.: Reconstruction and
representation of 3D objects with radial basis functions. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques (SIGGRAPH), 2001, 67–76.

[5] Turk, G.; O’Brien, J.: Modelling with implicit surfaces that interpolate. ACM Transaction on
Graphics, 21 (4), 2002, 855–873, http://dx.doi.org/10.1145/571647.571650.

[6] Dey, T. K.; Sun, J.: An adaptive MLS surface for reconstruction with guarantees. In Proceedings of
the third Eurographics symposium on Geometry processing, July 04-06, 2005, Vienna, Austria.

http://dx.doi.org/10.1016%2Fj.cad.2009.04.006
http://dx.doi.org/10.1016%2Fj.cviu.2009.04.001
http://dx.doi.org/10.1145%2F37402.37422
http://dx.doi.org/10.1145%2F571647.571650

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

219

[7] Kolluri, R.: Provably good moving least squares. ACM Transactions on Algorithms, 4 (2), 2008, 1-
25, http://dx.doi.org/10.1145/1361192.1361195.

[8] Yang, Z.; Seo, Y.H.; Kim, T.W.: Adaptive triangular-mesh reconstruction by mean-curvature-
based refinement from point clouds using a moving parabolic approximation. Computer-Aided
Design, 42 (1), 2010, 2-17, http://dx.doi.org/10.1016/j.cad.2009.04.014.

[9] Kazhdan, M.; Bolitho, M.; Hoppe, H.: Poisson surface reconstruction. In Symposium on Geometry
Processing, 2006, 61–70.

[10] Saleem, W.; Schall, O.; Patane, G.; Belyaev, A.;, Seidel, H.: On stochastic methods for surface
reconstruction. International Journal of Computer Graphics, 23 (6), 2007, 381-395,
http://dx.doi.org/10.1007/s00371-006-0094-3.

[11] Jalba, A.C.; Roerdink, J.B.T.: Efficient surface reconstruction using generalized coulomb
potentials. IEEE Transactions on Visualization and Computer Graphics, 13 (6), 2007, 1512-1517,
http://dx.doi.org/10.1109/TVCG.2007.70553.

[12] Yoon, M.; Lee, Y.; Lee, S.; Ivrissimtzis, I.; Seidel, H.-P.: Surface and normal ensembles for surface
reconstruction. Computer-Aided Design 39 (5); 2007, 408-420,
http://dx.doi.org/10.1016/j.cad.2007.02.008.

[13] Couprie, C.; Bresson, X.; Najman, L.; Talbot, H; Grady, L.: Surface reconstruction using Power
Watershed. In Proceeding of International Symposium on Mathematical Morphology, 2011.

[14] Amenta, N.; Bern, M.; Kamvysselis, M.: A new Voronoi-Based Surface Reconstruction Algorithm.
In the Proceeding of Computer Graphics (SIGGRAPH ‘98), 1998, 415 – 421.

[15] Amenta, N.; Choi, S.; Dey, T. K.; Leekha, N.: A simple algorithm for homeomorphic surface
reconstruction. International Journal of Computational Geometry & Applications, 12 (1 & 2),
2007, 125 – 141.

[16] Dey, T.K.; Goswami, S.: Tight cocone: A watertight surface reconstructor. Journal of Computing
and Information Science in Engineering, 3 (4), 2003, 302–307,
http://dx.doi.org/10.1115/1.1633278.

[17] Dey, T.K.; Goswami, S.: Provable surface reconstruction from noisy samples. Computational
Geometry, 35 (1 – 2), 2006, 124 –141, http://dx.doi.org/10.1016/j.comgeo.2005.10.006.

[18] Dey, T.K.; Giesen, J.; Hudson, J.: Delaunay based shape reconstruction from large data. In the
Proceeding of the IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2001,
19–27, http://dx.doi.org/10.1109/PVGS.2001.964399.

[19] Amenta, N.; Choi, S.; Kolluri, R.: The Power Crust, In the proceeding of the ACM Symposium on
Solid Modeling and Applications, 2001, 249-260.

[20] Cohen-Steiner, D.; Da, F.: A greedy Delaunay-based surface reconstruction algorithm. The Visual
computer, 20 (1), 2004, 4-16, http://dx.doi.org/10.1007/s00371-003-0217-z.

[21] Ma, J.; Feng, H.Y.; Wang, L.: Delaunay-based triangular surface reconstruction from points via
Umbrella Facet Matching. In Proceeding of 6th Annual IEEE Conference On Automation Science
and Engineering, 2010, 580-585.

[22] Gopi, M; Krishnan, S.; Silva, C.: Surface reconstruction using lower dimensional localized
Delaunay triangulation. In the Proceeding of Eurographics, 19 (3), 2000, 467 - 478.

[23] Cazals, F.; Giesen, J.: Delaunay triangulation based surface reconstruction. In Effective
Computational Geometry for Curves and Surfaces, Boissonnat J., Teillaud M., (Eds.). Springer-
Verlag, Math. and Visualization, 2006, 231–276, http://dx.doi.org/10.1007/978-3-540-33259-
6_6.

[24] Bernardini, F.; Mittleman, J.; Rushmeier, H.; Silva, C.; Taubin, G.: The ball-pivoting algorithm for
surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5 (4), 1999,
349-59, http://dx.doi.org/10.1109/2945.817351.

http://dx.doi.org/10.1145%2F1361192.1361195
http://dx.doi.org/10.1016%2Fj.cad.2009.04.014
http://dx.doi.org/10.1007%2Fs00371-006-0094-3
http://dx.doi.org/10.1109%2FTVCG.2007.70553
http://dx.doi.org/10.1016%2Fj.cad.2007.02.008
http://dx.doi.org/10.1115%2F1.1633278
http://dx.doi.org/10.1016%2Fj.comgeo.2005.10.006
http://dx.doi.org/10.1109%2FPVGS.2001.964399
http://dx.doi.org/10.1007%2Fs00371-003-0217-z
http://dx.doi.org/10.1007%2F978-3-540-33259-6_6
http://dx.doi.org/10.1007%2F978-3-540-33259-6_6
http://dx.doi.org/10.1109%2F2945.817351

Computer-Aided Design & Applications, 10(2), 2013, 197-220
© 2013 CAD Solutions, LLC, http://www.cadanda.com

220

[25] Huang, J.; Menq, C. H.: Combinatorial manifold mesh reconstruction and optimization from
unorganized points with arbitrary topology. Computer – Aided Design, 34 (2), 2002, 149–65,
http://dx.doi.org/10.1016/S0010-4485(01)00079-3.

[26] Lin, H. W.; Tai, C. L.; Wang, G.-J.: A mesh reconstruction algorithm driven by an intrinsic property
of point cloud. Computer-Aided Design, 36 (1), 2004, 1–9, http://dx.doi.org/10.1016/S0010-
4485(03)00064-2.

[27] Di Angelo, L.; Di Stefano, P.; Giaccari, L.: A new mesh-growing algorithm for fast surface
reconstruction. Computer – Aided Design, 43 (6), 2011, 639-650,
http://dx.doi.org/10.1016/j.cad.2011.02.012.

[28] Adamy, U.; Giesen, J.; John, M.: New techniques for topologically correct surface reconstruction.
In the Proceedings of the conference on Visualization ’00, 2000, Los Alamitos, CA, USA, 373–380,
IEEE Computer Society Press, http://dx.doi.org/10.1109/VISUAL.2000.885718.

[29] Dyer, R.; Zhang, H.; Möller, T.: Observations on Gabriel meshes and Delaunay edge flips. Tech.
Rep. TR 2008-22, 2008, Simon Fraser University. SFU-CMPT.

[30] Ruiz, O. E.; Cadavid, C.; Lalinde, J. G.; Serrano, R.; Peris-Fajarnes, G.: Gabriel-constrained
parametric surface triangulation. Proceedings of World Academy of Science, Engineering, and
Technology, 34, 2008, 578–585.

[31] Hoppe, H.; Derose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W.: Surface reconstruction from
unorganized point clouds. In ACM SIGGRAPH, 1992, 71-78,
http://dx.doi.org/10.1145/142920.134011.

[32] Turk, G.; Levoy, M.: Zippered polygon meshes from range images. In ACM SIGGRAPH, 1994, 311-
318.

[33] Guéziec A.; Taubin G.; Lazarus F.; Horn B.: Cutting and stitching: Converting sets of polygons to
manifold surfaces. IEEE Transactions on Visualization and Computer Graphics, 7(2), 2001, 136–
151, http://dx.doi.org/10.1109/2945.928166.

[34] Campen M.; Attene M.; Kobbelt L.: A Practical Guide to Polygon Mesh Repairing, Eurographics
2012 Tutorial.

[35] Bèclet, E.; Cuilliere, J. C.; Trochu, F.: Generation of a finite element MESH from stereolithography
(STL) files. Computer-Aided Design, 34 (1), 2002, 1-17, http://dx.doi.org/10.1016/S0010-
4485(00)00146-9.

http://dx.doi.org/10.1016%2FS0010-4485%2801%2900079-3
http://dx.doi.org/10.1016%2FS0010-4485%2803%2900064-2
http://dx.doi.org/10.1016%2FS0010-4485%2803%2900064-2
http://dx.doi.org/10.1016%2Fj.cad.2011.02.012
http://dx.doi.org/10.1109%2FVISUAL.2000.885718
http://dx.doi.org/10.1145%2F142920.134011
http://dx.doi.org/10.1109%2F2945.928166
http://dx.doi.org/10.1016%2FS0010-4485%2800%2900146-9
http://dx.doi.org/10.1016%2FS0010-4485%2800%2900146-9

