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ABSTRACT 
 

In the "Project GEMA" geometry and mathematics, 62 prototypes were created to 
establish a conceptual and formal language of the internal architecture of the solids 
that maintains a progressive continuity through mathematics, to explore and analyze 
the changes generated by the points, lines, planes and volume of the cube, the sphere 
and the tetrahedron. The idea of this project came from mixture of geometric graphics 
and mathematics to construct models in three dimensions using CAD applications and 
rapid prototyping through the resources and elements of descriptive geometry. This 
paper illustrates step by step the construction of the "Project GEMA"® cube # 022, 
from the standpoint of mathematics and design with CAD applications.  
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1 INTRODUCTION 

The "Project GEMA" geometry and mathematics [4], focuses on the perception of the three dimensions 
through modeling and rapid prototyping of geometric shapes, to observe and understand the 
compositions of a mathematical pattern that expresses harmony, scale and proportion [2]. 

The aim of this project is investigate, experiment, explore and evaluate the design and modeling 
process of complex shapes to conceptualize three dimensions, and even to create a method of spatial 
reasoning, to understand and interpret the different elements of descriptive geometry and perform the 
necessary operations to create rapid prototypes. 

In this project, CAD applications are used as part of the procedures and techniques currently used 
for rapid prototyping, based on the following methodology: 
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a) Knowledge, in this first stage, geometric shapes are traced, using the resources and elements 

that gives us descriptive geometry. 
b) Evaluation, in this second stage, each of the shapes is evaluated from the standpoint of 

functional, aesthetic, constructive and technological, to analyze their advantages and 
disadvantages for rapid prototyping. 

c) Development, in this third stage involves modeling each of the shapes. 
d) Analysis, in this fourth stage, to get to know the properties of the shapes, it is necessary to 

create an animation to see the figure from all points of view, since only in this way, it can see 
the shapes from the inside out and vice versa. 

e) Execution, in this fifth stage, the file is saved in STL, 3DS or VRML format and passed to the 3D 
printer for rapid prototyping. 

f) Completed, in this last stage is the cleaning and infiltration of the shape. 
 

This process creates a new concept of learning in the creation of rapid prototyping, which 
fulfills a very important role, the development of the spatial factor, what is known as the ability to 
"see the space," the translation of the mental representation of the object from two to three 
dimensions, through the knowledge and skills acquired to solve a given problem by:  

1. Geometrical language: it is a mechanical process of learning the resources and elements of 
orthographic projections, and then, through practice, learning how to use them correctly. 

2. Conceptualization of the three-dimensionality: when we understands the elements in space 
through the resources from Descriptive Geometry. 

3. Development of a method of spatial reasoning: when we think carefully to perceive the image 
of an object through the mental representation of it, and then we define the objectives and the 
limits of the method, we analyze situations, we choose the elements to synthesize and, finally, 
we find the best solutions.  

This project consists of 62 prototypes, using the properties of: the cube, the sphere and the 
tetrahedron, and for its development took into account the mathematical principles of Cantor, 
Archimedes, and Thales of Miletus theorems.  

                     
 

Fig 1: Prototypes: (a) Cube, (b) Sphere, (c) Tetrahedron. 

It is impossible to present all the work done in so few pages, so this paper is organized as follows: in 
section 2 gives a brief explanation of Descriptive Geometry, in Section 3, we explain the mathematical 
principles that were used to create the cubes, the spheres and the tetrahedron. In Section 4, it is 
illustrates step by step the construction of the cube module # 022 from the standpoint of mathematics 
and design using CAD applications. Section 5 shows the final cube # 022 that consists of 20 modules. 
Section 6 presents the results and finally Section 7, the conclusions. We want to mention that all the 
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figures presented in this paper are original and created by the authors at the Autonomous 
Metropolitan University, Cuajimalpa in Mexico City. 

2 DESCRIPTIVE GEOMETRY 

As we know, the geometry is a creation of Greek mind, its origins date back to earlier times in 
Mesopotamia and Egypt, and it has its uses descriptive when Gaspar Monge, (1746-1818 French 
military engineer), made a graphical analysis of the representation of points in space (dihedral system), 
and gave rise to science we know today as descriptive geometry (1799), “part of mathematics that 
represent the projections of plane figures in space”. 

When we speak of space, we talk about “distance”, [1] and these are represented in orthogonal 
projections, and to produce geometric shapes, we do through the elements of geometry: point, line, 
plane and volume. But today we can say that has changed the way to create geometric shapes, due to 
the use of the innovative digital technologies, i.e., now we are modeling geometric shapes, where it is 
necessary understand the relationship between geometry and virtual space where a mathematical 
language is used to transform, through mathematical patterns, complex geometric shapes that years 
ago were impossible to do, and today are generated in CAD applications and rapid prototyping. 

In geometry, the geometric shapes are classified in polyhedral and round shapes. We define a 
polyhedron as a solid figure whose faces are polygonal and are classified as prisms and pyramids. A 
prism is a solid formed by two polygons parallel to each other at their bases and when we define its 
height parallelograms are created with the number of faces that have the base. The prisms that we 
know are the cube, and based prisms of three, four, five, six, or N-sides. 

The cube or regular hexahedron is a polyhedron of six congruent square faces, and is one of the 
Platonic solids. We can also classify the cube as a straight, rectangular parallelepiped, because their 
faces are four sides in parallel pairs. The regular hexahedron, satisfies the Euler polyhedron theorem, 
(c + v = a + 2, where "c" is the number of faces, "v" is the number of vertices and "a" is the number of 
edges), because it has six faces, eight vertices and twelve edges, 8 + 6 = 12 + 2. 

A pyramid in geometry is a solid formed by a polygon in its base, and when we define the vertex 
isosceles triangular planes are created in the number of faces that have the base. The pyramids we 
know are: the tetrahedron, and based pyramids of three, four, five, six, or N-sides. 

A tetrahedron is a polyhedron formed by four equilateral triangles, and four vertices. It is one of 
five perfect polyhedral called Platonic solids, and meets the Euler polyhedron theorem, 4 + 4 = 6 + 2. 

The round shapes are solids that have curved surfaces and are classified as cylinder, cone and 
solids of revolution as the ellipsoid, paraboloid, hyperboloid, torus and sphere. A sphere in geometry is 
a solid body bounded by a curved surface where all points are equidistant from an inner called center 
of the sphere. The sphere, as a solid of revolution is generated by rotating a semi-circular area around 
its diameter (Euclid, L XI). But we can also build a sphere with pyramids (Rochman, 1996). The pyramid 
that we use to construct a sphere is formed at its base by four-sides whose vertex is the center of the 
sphere and formed in its sides equal isosceles triangles and their edges measure the same thing. 
 

                        
 

Fig 2: Prototype: (a) Cube, (b) Tetrahedron, (c) Sphere. 
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3 MATHEMATICAL PRINCIPLES 

The mathematician George Cantor was able to establish a correspondence between points 
discontinuous in space "p" dimensional and the interval [0, 1] called the Cantor set. In Cantor´s 
theorem it divide the interval [0, 1] into three equal intervals, it is removed the central interval, and 
kept the closed intervals of the first level. If Cantor´s set is traced on a two-dimensional graphical 
representation the result is a 3x3 grid base, known as fractal [3]. 
 
 

 
 

Fig 3: Cantor' theorem: Interval [0, 1] first level. 
 
 

                     
 

Fig 4: Cantor' theorem: (a) Grid 3x3, (b) Orthogonal projection cube, (c) Prototype cube.  
 
 

Archimedes, in his work in Siracuza in the year 287 BC, tells us that if we have a circle of radius 1, its 
area is exactly equal π (1)² = π. To approximate the number π, Archimedes devised a regular octagon 
inscribed in a circle, the area found was 2.8, i.e., 2.8 < π, doubling the number of sides of the circle, 
i.e., using 16-sides regular polygons inscribed in the circumference, we get areas much closer to π. So 
on, we can build polygons inscribed with large numbers of sides, which means that their fields are 
increasingly closer to the area of the circle, which is π. 
 

          
 

Fig 5: Archimedes' theorem: (a) 8_sides polygon, (b) 16_sides polygon, (c) 24_sides polygon, (d) 
32_sides polygon. 
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Fig 6: (a) Orthogonal projection sphere, (b) Prototype sphere. 
 

The Thales of Miletus theorem says that if three lines, a, b, c, cut two secant lines r, r ', the resulting 
segments are proportional. 
 

 

                             
 

Fig 7: (a) Miletus´ theorem: Proportional segments, (b) Orthogonal projection tetrahedron, (b) Prototype 
tetrahedron. 
 

4 CONSTRUCTION OF MODULE 

This section will begin by presenting the render, prototype and orthogonal representations in two and 
three-dimensional "Project GEMA"® [5].cube module # 022, where it can be seen the geometrical shape 
to understand the steps that below are illustrated. 

 

                                
 

Fig 8: (a) Render, (b) Prototype, (c) Orthogonal projection, (d) Three-dimensional graphical 
representation. 

4.1 STEP BY STEP CONSTRUCTION "PROJECT GEMA"® CUBE MODULE # 022 

4.1.1 Step one 

The basis of our design is a cube that measures 300 x 300 x 300 mm, so in this first step we located a 
center from the origin. 
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Fig 9: Center of the cube module. 

4.1.2 Step two 

In the second step we trace and model four cubes, the measure of each one is 300 x 300 x 300 mm, 
where the cube_one remains in its original position, the cube_two is rotated 45° on the axis "z" in the 
vertical plane, the cube_three is rotated 45° on the axis "y" in the horizontal plane, and the cube_four is 
rotated 45° on the axis “x” in the lateral plane. 

              

Fig 10: The four cubes in space. 

4.1.3 Step three 

Before proceeding to find the intersections in the orthogonal projections, in this step we will analyze 
mathematically the distances of intersection between the cube_one with cube_two, to give the 
numerical values. This same process is done with the other cubes, due the length of the work is not 
possible to write all data. 

 

We find the measure of the hypotenuse of cube_two: 
d = L √2 

             d = 300 x 1.4142 
       d = 424.2641 

 

 
 

Origin  Center  
X 0 X 350 
Y 0 Y 350 
Z 0 Z 350 
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We find the measure of each of the cathetus 
of the triangles protruding from cube_one, as 
follows, we subtract from the measure of the 
hypotenuse of cube_two the measure of the 
side of cube_one, and divided between two. 
 
    a = (424.26 – 300) / 2 
     
    a = 124.2641 / 2 
 
    a = 62.132 

 
 

We find the measure of the 
hypotenuse of the triangle 
protruding from cube_one. 
 
d = L √2 
 
d = 62.13 x 1.4142 
 
d = 87.868 
 

We find the measure of the hypotenuse of the 
triangle. We can do it in two ways: by 
multiplying the distance of the cathetus by two, 
or finding the measure of the hypotenuse. 
 
c = L * 2 
 
c = 62.13203436 * 2 
 
c = 124.2640687 
 
                                       
 

We find the measure of the cathetus 
of the triangle protruding from 
cube_two. 

a = (300 – 124.2640687) / 2 

           a = 87.86796565 

We find the intersections points 
between cube_one and cube_two. 
As we can see we have eight 
intersections between the two 
cubes. 

 

d = L √2 
 
d = 87.86796565 √2 
 
d = 87.867965665 * 1.4142 
 
d = 124.2640687 
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Cube_one Cube_two 
vertex x y z vertex x y z 

1 500 500 200 9 562 350 200 
2 200 500 200 10 350 562 200 
3 200 500 500 11 350 565 500 
4 500 500 500 12 562 350 500 
5 500 200 200 13 350 138 200 
6 200 200 200 14 138 350 200 
7 200 200 500 15 138 350 500 
8 500 200 500 16 350 138 500 

Tab 1:  Location of the vertices of cube_one and cube_two, from the origin (0,0,0). 

 
Points of intersection cube_one with cube_two 

vertex x y z vertex y z x 
17 412.1320344 500 200 25 500 287.867966 200 
18 287.8679656 500 200 26 200 287.867966 200 
19 287.867966 500 500 27 200 287.867966 500 
20 412.132034 500 500 28 500 287.867966 500 
21 500 412.132034 200 29 412.132034 200 200 
22 200 412.132034 200 30 287.867966 200 200 
23 200 412.132034 500 31 287.867966 200 500 
24 500 412.132034 500 32 412.132034 200 500 

Tab 2:  Location of the points of intersection of cube_one and cube_two, from the origin (0,0,0). 

4.1.4 Step four 
 
In the fourth step we find orthographically the intersections of: the cube_one with cube_two, the 
cube_two with cube_three and the cube_three with cube_four. Once we identified the intersections, the 
geometric structures are truncated so as to obtain eight irregular geometric shapes, in which each are 
located at the vertexes of the base cube. As we see the intersections of the four cubes was performed 
in a counter-clockwise, because it is necessary that the basis of irregular shapes are directed into the 
center of the base cube. 
 
 

                           
 

Fig 11: The eight irregular geometric shapes. 
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4.1.5 Step five 

In the fifth step we trace and model inclined prisms, ranging from the base of each of the geometric 
structures toward the cube center, where the eight prisms intersect to form a single shape. 

                

Fig 12: The eight irregular geometric shapes with inclined prism. 

4.1.6 Step six 

In this last step saves the file in STL format to send to the 3D printer. 
 
 

 

Fig 13: STL file. 

5 “PROJECT GEMA”® CUBE # 022 

 
To generate the final cube, 20 modules are joined, considering Cantor's theorem. There is no rule to 
accommodate each module; we can rotate, to create different visual effects, each module in the "x", "y", 
"z" axis with an angle of 90°. 
 
 

                         

Fig 14: (a) Orthogonal projection, (b) Three-dimensional graphical representation (c) STL file.       
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Fig 15: Render from various points of view. 
 

             
 

Fig 16: Prototype from various points of view. 

6 RESULTS 

The results obtained in the design and modeling of the "Project GEMA"® cube # 022 based on fractal 
geometry, led us to create new designs using Cad applications, since in this process was built a rapid 
prototyping dimensionally stable to support its own weight, was obtained the transmission of a visual 
language through modeling structurally balanced, and was established a conceptual language for 
creating complex shapes. The use of CAD applications in this project allowed us to model, analyze and 
visualize the mathematical patterns of the fractal geometry of each of the models created, as we can 
see below in the Fig. 17, Fig. 19, Fig 21, Fig. 23 and Fig. 25 the modules that were used to generate the 
new models, then we note in the Fig. 18, Fig. 20, Fig. 22, Fig. 24 and Fig. 26 that although the 
arrangement of the twenty modules is very different in each of the models, each model meets the 
characteristics of fractal geometry [3]: 1) look the same at any scale of observation 2) have length 
infinite, 3) not differentiable and 4) have fractional or fractal dimension. 
 

    
 

Fig 17: (a) Orthogonal projection, (b) Three-dimensional graphical representation. 
 

         
 

Fig 18: (a) Orthogonal projection, (b) Prototype, (c) Rendered image. 
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Fig 19: (a) Orthogonal projection, (b) Three-dimensional graphical representation. 
 
 

               
 

Fig 20: (a) Orthogonal projection, (b) Prototype, (c) Rendering. 
 
 

      
 

Fig 21: (a) Orthogonal projection, (b) Three-dimensional graphical representation. 
 

          
 

Fig 22: (a) Orthogonal projection, (b) Prototype, (c) Render. 
 
 

        
 

Fig 23: (a) Orthogonal projection, (b) Three-dimensional graphical representation. 
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Fig 24: (a) Orthogonal projection, (b) Prototype, (c) Rendering.  
 

           
 

Fig 25: (a) Orthogonal projection, (b) Three-dimensional graphical representation. 
 

        
 

Fig 26: (a) Orthogonal projection, (b) Prototype, (c) Render. 

7 CONCLUSIONS 

As we can see in this project, the activity of designing prototypes is linked to creative thinking and the 
ability to understand three-dimensional space, where the geometric graphics and mathematics, are the 
vehicle that encourage self-expression, imagination, creativity and spatial development to understand 
the characteristics of orthogonal projections in two and three dimensions and their interrelationships. 
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