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ABSTRACT 
 

Reliable estimation of normal vectors for point clouds is of practical importance in 
computer-aided geometric modeling and inspection.  This paper introduces a new 
normal vector estimation method for point clouds based on the matching results of 
the local Delaunay triangle mesh formed at each point.  The local mesh is a manifold 
patch of Delaunay triangles and resembles an open umbrella.  According to the 
matching results of these umbrellas, the local Delaunay neighbors at each point can be 
reliably identified, which leads to accurate normal vector calculations.  Compared with 
the existing methods, the proposed method yields normal vectors of notably improved 
accuracy, especially for points near edge or corner features.  The improvement has 
been demonstrated using both simulated and scanned point cloud data sets. 
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1 INTRODUCTION 

To date, a point cloud is becoming a new data format to represent 3D surface geometry due to the 
increasing application of 3D scanning systems.  Reliable and accurate estimation of normal vectors of a 
point cloud is important in many practical applications of computer-aided geometric modeling and 
inspection.  For instance, surface reconstruction from a point cloud with reliable normal vectors is a 
much easier problem to solve than surface reconstruction from a point cloud alone.  For many existing 
surface reconstruction algorithms, the quality of a reconstructed surface heavily relies on how closely 
the estimated normal vectors approximate the true normals on the scanned physical object surface.  In 
fact, normal vector estimation is often the very first data processing task in a surface reconstruction 
algorithm.  This is not only true for Delaunay-based and region-growing approaches [4],[7],[12],[31], 
but also for implicit-surface oriented approaches [1],[3],[5],[8],[14],[17].  Other applications requiring 
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accurate estimated normal vectors include segmentation of the point cloud [16],[18],[20],[29],[30] and 
point-based surface rendering [1],[15],[25]. 

Many normal vector estimation methods for point clouds have been proposed in the literature.  
These methods mainly fall into two dominant categories [13]: numerical optimization based on plane 
or surface fitting [17],[21],[24] and geometric analysis based on Voronoi diagram / Delaunay 
triangulation [4],[12],[14],[31].  In all of the reported methods, the normal vector estimation procedure 
generally involves two main steps.  The first step is to identify a set of local neighborhood points for 
each point in the point cloud data.  The second step is to determine the desired normal vector using 
the identified local neighborhood points.  Details on the existing normal vector estimation methods 
and their main features are presented in the next section. 

2 EXISTING METHODS 

Normal vector is a local geometric property of a surface and specific to each surface point.  As a result, 
it is sensible that reliable estimation of the normal vector at a point in a point cloud would depend 
significantly on the correct identification of the point’s local neighborhood points.  Using too many 
neighboring points for normal vector estimation can lead to inaccuracy in the estimated normal vector, 
especially for points near sharp or high-curvature features.  Using too few neighboring points may not 
represent the local geometry adequately, which again compromises the estimation accuracy.  A well-
chosen set of neighboring points is thus essential for reliable normal vector estimation. 

The first normal estimation method appears to be developed by Hoppe et al. [17] in the context of 
surface reconstruction.  The method finds the k-nearest neighbors of a given point v , for which the 
entire neighboring point set is denoted as ( )kN v , and takes the normal of the least-squares best-fitted 

plane to ( )kN v  as the surface normal at v .  Such an normal estimation method has been called the 

plane fitting (PF) method [13].  The k-nearest neighbors ( )kN v  can also be used to fit a local quadric 

surface for normal vector estimation [30].  Pauly et al. [24] improved the original PF method by a 
weighted least-squares formulation with different weight assigned to each neighboring point based on 
its distance to v .  If the distance of a neighboring point ip  to v  is small, a large weight is assigned via 

a Gaussian function formula.  The primary issue for the k-nearest neighbors is the assumed 
consistency in point distribution.  So, when the ideal ( )kN v  is non-uniform in size, the selected 

uniform-in-size ( )kN v  at each point may not provide reliable local geometric information throughout 

the point cloud data set.  Methods to select the neighboring points of v  according to a fixed or 
adaptive distance r  from v  have also been applied.  Mitra et al. [21] proposed a plane fitting method 
based on an adaptive distance r  to estimate the normal vectors in a point cloud.  It is evident that to 
determine the optimal r  at each point would then become the challenging issue. 

An alternative concept to adaptively select the local neighboring points is through the construction 
of a local polygonal mesh surface at each point.  This has been done based on the geometric analysis of 
the Voronoi diagram/Delaunay triangulation of the input point cloud.  Voronoi diagram and Delaunay 
triangulation are closely associated global geometric structures of a point set and can be built for any 
point cloud data set with arbitrary non-degenerative point distribution and density.  They provide a 
powerful means to approximate the local neighborhood at each point in a point cloud – the local 
neighboring points at each point can always be extracted from the local Delaunay triangle set incident 
to each point.  Adamy et al. [2] proposed to build an umbrella using a set of connected Delaunay 
triangles at each point, taken from the Gabriel subset of the complete Delaunay triangle set.  The 
building of the umbrella is an incremental triangle-adding process based on the proposed  -interval 
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concept, which often requires an additional manifold post-processing step.  The resulting umbrella is 
in fact a local manifold triangle mesh.  OuYang and Feng [23] proposed to build the local Delaunay 
triangle mesh at each point based on the region growing concept, which is similar to the ball-pivoting 
algorithm [7].  A set of quadric curves were then constructed using the identified neighboring points 
from the built local triangle mesh to calculate the normal vector.  The main benefit of this algorithm is 
that the required number of neighboring points could be only three.  It should be emphasized that all 
of the methods mentioned above do not evaluate the quality of the built local triangle mesh (thus the 
reliability of the identified local neighboring points).  Also, the procedure to estimate the normal vector 
from the identified neighboring points for these existing methods is assumed to be applicable across 
the overall surface region, smooth or non-smooth.  In practical situations, however, the local triangle 
mesh at a point cannot always be built reliably.  It is thus much desirable to apply differentiated 
normal vector calculation procedures to points with varied degree of reliability for their respective 
identified neighboring points.  In this work, a new algorithm has been developed to address the issues 
described above in order to provide better normal vector estimates for point clouds. 

3 PROPOSED METHOD 

As discussed in the previous sections, existing normal vector estimation methods in general follow a 
distinct two-step approach: identifying local neighborhood points first and then calculating the 
desired normal vector from the identified neighboring points.  Unlike these existing methods, an 
improved and integrated method is proposed in this paper to link the quality (reliability) of the 
identified local neighborhood points to the specific numerical procedure to calculate the desired 
normal vector.  More specifically, a matching scheme is developed to quantify the reliability of each 
plausible neighboring point candidate.  When a good percentage of the neighboring point candidates 
are evaluated as reliable, the point of interest is deemed to be in a region without much geometric 
variation and data inconsistency.  An accurate normal vector estimate can thus be obtained from the 
reliably identified neighboring points.  On the other hand, when only a small number of reliable 
neighboring points can be attained, it is likely that the point of interest is in a region with large 
geometric variation or data inconsistency.  In this case, a more inclusive procedure that would accept 
contributions from all the plausible neighboring point candidates to estimate the normal vector is 
more appropriate.  Details of the proposed method are presented in the following subsections. 

3.1 Local Neighborhood 

The neighborhood at each point in a point cloud P  has been widely studied and applied in the 
computational geometry community [22].  Typical employed point neighborhoods include the k-
nearest neighbors ( )kN v , Euclidean minimum spanning tree ( )EMST P , Gabriel graph ( )GG P , and 

Delaunay triangulation ( )D P .  These geometric structures all have specific properties that are of 
benefit in establishing the neighborhood at a point.  These geometric properties have also been used 
by researchers in formulating the initial step for 2D curve reconstruction.  Let the edge set of Delaunay 
triangulation in 2D be denoted by ( )ED P .  The relationship of the relevant graphs of a 2D point cloud 

P  can be expressed as: 
 ( ) ( ) ( )EMST P GG P ED P   (3.1) 

Graph is a geometric representation in which pairs of points are linked by an edge.  For example, as an 
initial graph, ( )EMST P  guarantees that the resulting edges are the shortest possible.  Therefore, points 
close to one another in a point cloud are likely to be linked together.  ( )GG P  gives some clue about the 
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best interconnection among points in reconstructing the boundary of a 2D point cloud [27],[28].  
Nonetheless, in most cases, ( )EMST P  provides too few neighboring points while ( )GG P  and ( )ED P  
provide too many neighboring points for local neighborhood estimation. 

In some existing 3D surface reconstruction approaches, the reconstructed triangle mesh surface is 
extracted from the Delaunay triangle set ( )D P  of a point cloud P .  The Gabriel triangle set ( )GT P , a 
subset of ( )D P , is often applied at the initial step to help identify the Delaunay triangle candidates for 
reconstructing the triangle mesh surface [2],[6],[19].  For a point v  in P , the relationship ( ) ( )GT P D P  

could also be locally described at v  as: 
 v vGT DT  (3.2) 

The concept of local mesh neighbors does avoid the bias issue of adopting the k-nearest neighbors in 
normal vector estimation.  However, as noted in the previous section, these existing local mesh 
construction methods do not provide information on the quality of the constructed local mesh. 

3.2 Reliable Local Mesh Neighbor Determination 

In the Umbrella Facet Matching algorithm presented in the authors’ previous work [19], a full umbrella 
at each point is guaranteed to be generated.  In particular, based on the built umbrella at each point, a 
novel methodology to evaluate the matching results of all the umbrella facets is proposed with the 
matching resulting quantified using a set of matching indices.  This in effect provides a way to evaluate 
the reliability of the established local mesh neighbors at each point.  The matching index fM  was 

devised to indicate the degree of overlap among the generated full umbrellas.  For example, for a 
triangle facet f  in an umbrella with three vertices 1v , 2v  and 3v , when fM  equals three, this means 

that all the three neighboring umbrellas incident to  1v , 2v  and 3v  include the triangle f .  A fully 

matched triangle facet is denoted as f .  When fM  equals two, only two of the three umbrellas 

incident to 1v , 2v  and 3v  include the triangle f .  If only one of the neighboring umbrellas incident to 

1v , 2v  and 3v  include the triangle f , fM  equals one.  Thus, the matching index fM  of a triangle f  

reflects the degree of overlap among all of its three neighboring umbrellas.  The triangle f  with a 
larger fM  value means it is more reliable to be part of the local triangle mesh for determining the local 

neighborhood points to estimate the desired normal vector.  The constructed local mesh at each point 
is in fact a subset of Delaunay triangulation.  For a point v , the following relationship exists: 
 

  
U(f )

v
U(f )

v
 DT(U)

v
 DT

v
 (3.3) 

where vDT  denotes all the Delaunay triangles incident to v , ( )vDT U  all the (Delaunay) triangles 

incident to point v  that belong to a umbrella at any point, ( )vU f  all the Delaunay triangles in the 

umbrella at v , and ( )vU f  all the fully matched Delaunay triangles at v . 
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Fig. 1: Neighboring points and their umbrellas. 
 

An example is illustrated in Fig. 1, where three input points 1v , 2v  and 3v  and their umbrellas 
1v

U , 

2vU  and 
3vU  are shown with 

1 1 2 3 4 5 6{ , , , , , }vU f f f f f f , 
2 6 7 8 9{ , , , }vU f f f f  and 

3 5 6 9 10 11{ , , , , }vU f f f f f .  In 

these Delaunay triangles incident to 1v , 2v  and 3v  , there exists one fully matched triangle 6f  

(
6

3fM  ).  The matching index of triangle 5f  and 9f  is two (
5

2fM   and 
9

2fM  ).  The matching index 

of the other triangles is one.  According to Eqn. (3.3), different local mesh neighbors can be attained for 
point 1v : 

1 6( ) { }vU f f , 
1 1 2 3 4 5 6( ) { , , , , , }vU f f f f f f f  and 

1 1 2 3 4 5 6 7( ) { , , , , , , }vDT U f f f f f f f .  For clarity, all the 

associated neighboring points in 
1

( )vDT U  of point 1v  are shown in red in Fig. 1. 

Fig. 2 compares the resulting meshes based on the employment of different local mesh neighbors 
in order to shed some light on the reliability of these different options.  Fig. 2(a) is the original 
Mannequin triangle mesh surface for a point cloud P  (downloaded from the CGAL website), Fig. 2(b) 
the global Delaunay triangulation of P , and Fig. 2(c) the Gabriel triangles subset.  Figs. 2(d) and 2(e) 
respectively illustrate ( )PU f , which is equivalent to ( )PDT U , and ( )PU f  based on the umbrella facet 

matching results at all the points in P .  It can be seen that the triangle mesh in Fig. 2(d) is the best 
approximation of the original triangle mesh surface.  Fig. 2(e) perhaps depicts the most reliable local 
mesh neighbors but some points/triangles are clearly missing.  In this work, the desired normal 
vectors will be computed based on a detailed analysis of the local Delaunay neighbors shown in Figs. 
2(d) and 2(e), as will be presented in the next subsection. 
 

                     

                     
 

         (a)                          (b)                         (c)                          (d)                         (e) 
 

Fig. 2: Combined meshes resulting from different local mesh neighbors. 
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3.3 Normal Vector Computation 

The well-known Euler formula [10] describes the relationship between the numbers of vertices V , 
edges E  and faces F  in a closed 2-manifold polygonal mesh: 
   V E  F  2(1G)  (3.4) 

where G  is the genus of the meshed object and intuitively represents the number of through-holes in 
the object.  As the genus of a typical mesh is generally small compared to the number of mesh 
elements, the right-hand side of Eqn. (3.4) can be assumed to be close to zero.  For a closed 2-
manifold triangle mesh, each triangle is bounded by three edges and each edge is incident to two 
triangles, the following triangle mesh statistics can thus be derived [9]: 

• The number of edges is about three times the number of vertices:   E  3V ; 
• The number of triangles is about twice the number of vertices:   F  2V ; and 
• The average number of edges or triangles incident to a vertex/point is 6. 

The average number of incident edges to a point v  is also called the average vertex degree or valence.  
As stated previously, the triangles in ( )vU f  likely provide the most reliable local neighborhood 

information.  If the number of triangles in ( )vU f  is more than half of the average valence, the 

estimated normal vector at v  based on the normals of the identified incident triangles is considered to 
be of high confidence.  In other words, when the number of fully matched umbrella facets at v  is equal 
to or greater than three, the normal vector vN  is to be estimated as a weighted average of the normal 

vectors of all the k  triangles in ( )vU f : 
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
 (3.5) 

where in  and iw  are the normal vector and weight of the ith triangle if  in ( )vU f , respectively.  The 

weight iw  is a product of the matching index 
if

M  and 
  
 p

i
vp

i1
 for if .  When the number of fully 

matched umbrella facets at v  is less than three, this means that the local neighborhood triangles at v  
cannot be reliably attained.  More specifically, this is generally an indication that large geometric 
variation or data inconsistency is present in the neighborhood.  To reduce the estimation errors 
introduced by the associated data uncertainty, the normal vector vN  is thus best estimated via the 

weighted plane fitting method by Pauly et al. [24] using all the neighboring points in the ( )vDT U  

triangle set (all the red points in Fig. 1).  Also, the estimated normal vectors should always be 
consistently oriented with one another on the same side of the surface (inside or outside).  Finding a 
globally consistent orientation for the estimated normal vectors is not simple, especially for point 
clouds that are of low density or containing sharp features.  In this work, the widely-used method 
proposed by Hoppe et al. [17] is employed to orient all the estimated normal vectors. 

4 IMPLEMENTATION RESULTS AND DISCUSSION 

Numerous case studies have been performed to validate the performance of the proposed normal 
vector estimation method.  The computed results were analyzed and compared with those generated 
by the plane fitting (PF) method of Hoppe et al. [17], the weighted plane fitting (WPF) method of Pauly 
et al. [24] and the local Delaunay neighbors (LDN) method of OuYang and Feng [23]. 
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4.1 Employed Point Cloud Data Sets 

In order to compare the estimated normal vectors from different methods, it is necessary to quantify 
the deviation of an estimated normal vector from its true normal vector.  For scanned point cloud data 
sets, such ideal reference normal vectors are not available.  As a result, synthesized or simulated point 
cloud data sets, for which the reference normal vectors are known, have been employed.  A few 
conditioned scanned point cloud data sets available in the Internet have also been employed in the 
comparison.  The comparison is thus made on three different types of point clouds. 

The first type is simulated point cloud data generated from parametric mathematical expressions.  
The true normal vector at each point is readily available.  Two simulated point cloud data sets of 
uniform point distribution were generated for the Torus and Ellipsoid model, shown in Figs. 3(a) and 
3(b), respectively.  Since the local surface shape at a point on a smooth surface can be approximated by 
a quadric surface, the point can be considered as a parabolic, an elliptical or a hyperbolic point 
according to its curvature tensor [26].  All these three types of points can be found on a Torus surface.  
The point cloud from the Ellipsoid surface is examined as it contains high-curvature regions. 
 

                                                 
 

       (a) Torus                    (b) Ellipsoid                  (c) Cube           (d) SimulationSolid           (e) Fandisk 
 

Fig. 3: Simulated/Synthesized point cloud data sets. 
 

The second type is also simulated point cloud data extracted from well-known idealized uniform-
mesh models.  The reference normal vector at each (mesh) point can be computed as an area-weighted 
average of the normal vectors of its local incident mesh triangles.  Although the reference normal 
vectors in this type of point cloud data are not the true surface normal vectors as those in the first 
type, they are considered applicable reference normal vectors as the involved meshes are uniform and 
of high point resolution.  The point clouds of Cube, SimulationSolid and Fandisk are members of this 
type and shown in Figs. 3(c), 3(d) and 3(e), respectively. 

The third type is actual scanned point cloud data that have been conditioned and made available in 
the Internet.  A proven mesh surface reconstruction algorithm [11] was first used to produce a triangle 
mesh surface for each point cloud data set.  The area-weighted average of the normal vectors of the 
triangles incident to a point v  was then taken as the reference normal vector at v .  Such a calculated 
reference normal vector is not the same as the true normal vector but offers a reasonable 
approximation for the actual scanned point cloud data. 

4.2 Results and Comparison 

The error e  of an estimated normal vector is quantified as the angle between the estimated normal 
vector N  and the reference normal vector RN  as: 

 

  

e  cos1 N NR

N N
R












 (4.1) 
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The number of k-nearest neighbors ( )kN v  employed for the PF and the WPF method was set as 30 and 

40, respectively, as recommended [32].  The computed results, including mean errors, standard 
deviations (variation about the mean error), and computational time, on the simulated point cloud data 
sets shown in Fig. 3 using the various methods are listed in Tab. 1. 
 

Model Torus Ellipsoid Cube 
Simulation-

Solid 
Fandisk 

No. of Points 3,600 9,950 866 6,988 6,475 

Mean Error 
(radian) 

Current 0.0011 0.0013 0.0312 0.0225 0.0179 
LDN 0.0059 0.0020 0.0753 0.0237 0.0255 

PF 0.0158 0.0041 0.1564 0.0730 0.1365 

WPF 0.0082 0.0034 0.1678 0.0702 0.1372 

Standard 
Deviation 
(radian) 

Current 0.0006 0.0017 0.1023 0.1236 0.0777 

LDN 0.0035 0.0013 0.1651 0.1209 0.0828 

PF 0.0087 0.0040 0.1532 0.1675 0.1669 

WPF 0.0101 0.0056 0.1548 0.1598 0.1609 

Computational 
Time (sec.) 

Current 2.94 5.67 1.44 5.10 4.51 
LDN 3.07 7.12 0.65 5.15 5.08 

PF 0.36 1.34 0.17 0.50 0.55 

WPF 0.51 2.64 0.23 0.58 0.82 
 

Tab. 1: Comparison of normal vector estimation results. 
 

Since the simulated point cloud data sets are noise-free, all the examined methods produced good 
normal vector estimates as indicated by the small mean errors and standard deviations in Tab. 1.  It 
can be seen that the current method works better than the other three methods.  The corresponding 
error maps are shown in Fig. 4, where blue indicates small e  and red indicates large e .  In the first row 
of Fig. 4, both PF and WPF generate large e  at the top of the Torus.  This is because the distribution of 

( )kN v  for each point in this area is much biased.  The fitted plane is thus not capable of approximating 

the ideal tangent plane well, which leads to relatively large e  in this area than in other areas.  Likewise, 
for a point in high-curvature areas in Ellipsoid, ( )kN v  do not lie consistently about a plane; hence, the 

fitted plane computed by PF or WPF cannot approximate the ideal tangent plane satisfactorily.  For 
point clouds containing sharp features, such as Cube, SimulationSolid and Fandisk, the current method 
offers a clear advantage over the plane fitting methods, especially in areas around sharp features.  This 
can be attributed to the reliable determination of local mesh neighbors by the current method. 
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          Point Cloud                 Current                      LDN                          PF                          WPF 
 

Fig. 4: Color maps of normal vector estimation errors for the simulated point clouds.  
 

                         

                   
                   (a) WPF                              (b) Current 

 
Fig. 5: Detailed comparison of the estimated normal vectors for the Cube point cloud. 
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Fig. 5 gives a more detailed analysis of the estimated normal vectors in areas near sharp features 
for the Cube point cloud data set.  The normal vectors were estimated by the WPF method, shown in 
Fig. 5(a), and the current method, shown in Fig. 5(b).  The top-row 3D color maps depict the direction 
cosine in the X-axis direction nx  of the estimated normal vector at a point.  So, if the estimated 
normal vector is exactly in the +X direction, 1nx   and the normal vector footing is marked in red.  If 
the estimated normal vector is in the –X direction, 1nx    and its footing is marked in blue.  For 
normal vectors perpendicular to the X axis, 0nx   and their footing is marked in green.  The bottom 
row shows the projected view of the estimated normals on one of the six Cube faces.  It can be seen 
that the current method yields much improved normal vector estimations in areas near the sharp 
features. 

Fig. 6 illustrates the normal vector estimation error maps for some scanned point cloud data set 
samples downloaded from the Internet.  As stated previously, the reference normal vector at each 
point is not the true surface normal vector and is itself an estimate.  Nonetheless, compared to the 
current method, the plots shown in Fig. 6 do provide a clear indication of the relatively large normal 
vector deviations of the existing methods in areas of high curvature or near sharp features. 
 

    

    

    
 

   Current        LDN                      PF                    WPF 
 

Fig. 6: Color maps of normal vector estimation errors for the scanned point clouds. 
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5 CONCLUSIONS 

A new normal vector estimation method for point clouds has been presented in this paper.  This new 
method uses the matching results of the local manifold Delaunay triangle mesh established at each 
point to reliably identify the neighboring points for calculating the normal vector.  The well-identified 
neighboring points make it possible to produce reliable normal vector estimates, especially for points 
near sharp features.  The calculation of the normal vector is in fact via a hybrid scheme.  When the 
local mesh matching results at a point are deemed of high confidence (the number of fully matched 
triangles is equal to or more than three), the normal vector is to be approximated as a matching-based 
weighted average of the normal vectors of all the triangles in the local manifold mesh.  Otherwise, 
large geometric variation or data inconsistency appears to be present and the normal vector is to be 
approximated via the existing weighted plane-fitting technique [24] from an increased number of 
neighboring points in order to reduce the estimation errors due to data uncertainty. 

Unlike the existing method that is based on the similar idea of adaptively selecting the neighboring 
points for normal vector estimation, the current method uses local mesh matching to improve the 
reliability in identifying the neighboring points.  This in turn leads to improved normal vector 
estimation accuracy.  Compared with the existing plane-fitting methods, the current method yields 
much more reliable results, especially for points near sharp features, although increased 
computational time is involved.  Accurate normal vector estimates for points near sharp features 
would greatly facilitate the sharp-feature preservation issue in surface reconstruction.  The related 
work is underway in our research group and will be reported later. 
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