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ABSTRACT 
 

In the class of problems containing embedded boundaries, the fields approximating 
behavior on the boundaries are often blended with approximations built on the 
underlying domain using weight functions. For example, analysis of objects in which 
bounding surfaces are embedded into regularly structured grids, or when the 
boundaries are moved by the governing physics as in crack propagation or 
solidification problems.  The blending weight functions in the approximations are 
typically dependent on the distance from the bounding surface. For general domains, 
bounded by free form curves or surfaces, the distance fields have to be constructed 
numerically. This may require either a polytope approximation to the boundary and/or 
an iterative solution to determine the exact distance to the boundary. In this paper, we 
describe a purely algebraic, and computationally efficient, technique for constructing 
distance measures as level sets from Non-Uniform Rational B-Splines (NURBS) 
boundaries that retain the geometric exactness of the boundaries while eliminating the 
need for iterative distance calculation.  
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1 INTRODUCTION 

Problems with embedded boundaries commonly occur both in analysis of solid models in which 
bounding surfaces are embedded in a regular grid, and in the so-called moving boundary problems. 
Moving boundary problems, in general, require tracking the motion of physics driven complex 
boundaries within the domain (Fig. 1). Boundaries of the geometric models in such problems may also 
evolve as a result of design intent such as in an optimal design problem. Fig. 2 summarizes the various 
types of boundaries that need to be modeled in engineering analysis problems. The geometrical 
shapes of these boundaries may be modeled either implicitly or explicitly. The computational 
techniques to such problems commonly rely on implicit representation of boundaries wherein the 
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boundary location is “diffusely” captured using approaches such as phase-field models [4, 5, 18]. Such 
interface capturing schemes will require more degrees of freedom than an explicit or interface-
tracking scheme [9]. Further, the local geometric properties (naturally existing tangents, normals and 
curvature) are often less accurate (in implicit geometries) or not uniquely defined. Also, a common 
challenge in implicit schemes is the numerical stability of evolution algorithms [11]. On the other 
hand, in an explicit technique, there always exists an accurate parametric description of the 
boundaries, which can be explicitly manipulated/evolved.  
 

 
 

Fig. 1: Moving boundary problems: (a) Cracks in semiconductor chip dielectric stacks (adapted from 
[12]), and (b) Electromigration driven void growth (adapted from [22]). 
 

 
   

Fig. 2: Illustration of the different types of boundaries encountered in engineering analysis. 
 

The modeling strategy adopted in this work relies on the Hierarchical Partition of Unity Field 
Compositions (HPFC) theory [14], which describes a complex design state (represented by a triad of 
functions describing geometry, material and behavior), through hierarchical compositions of sub-
domains, with each sub-domain possessing a primitive design state. Further, the global design state is 
constructed through a weighted composition of primitive design states such that the weights satisfy 
partition of unity [1, 10] over the global domain (Fig. 3). Such partitions of unity ensure convergence of 
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the global approximations when errors in local approximations are bounded. The form of the 
constructed fields (geometry, material or behavior) is: 
  (1.1) 

  (1.2) 

 

 
 

Fig. 3: The Hierarchical Partition of Unity Field Compositions theory describes a complex design state 
consisting of a triad of functions (belonging to an appropriate function space and) approximating 
geometry, material and behavior through compositions of functions defined on the primitive entities in 
a manner analogous to the constructive solid geometry procedure. 
 

The HPFC theory has since been further generalized to model enrichments of one field by another 
defined on lower-dimensional geometric entities by Tambat et al. [21].  They further extended and 
generalized the HPFC theory to enrich the global approximations with known behavior or material 
property on surfaces within the domain. These enrichments enable the application of 
Dirichlet/Neumann boundary conditions on the boundaries of solids, as well as model displacement 
discontinuities caused by cracks or strain discontinuities at material interfaces in the interior of the 
solids. The influence of these internal and external boundaries at any point in the domain is blended 
using weight functions, which in turn depend on the distance from the boundaries. Hence, inexpensive 
distance calculations are essential for the analysis scheme to be computationally efficient. In general, 
the weight functions are required only to be monotonically decreasing functions of distance from the 
enriching boundaries, and the exact distance to a boundary is usually not necessary for analysis. 

The exact distance at a point P for a parametric boundary  is defined through the following 
minimization problem:  
  (1.3) 

The solution for distance requires Newton-Raphson type iterative schemes that are computationally 
expensive for complex boundaries. The exact distance field may also not be sufficiently smooth for 
many engineering applications as spurious artifacts in the field may appear at points equidistant from 
the boundary. Other distance field computation techniques linearize geometry to avoid iterative 
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calculations [8]. Such techniques not only compromise the exactness of the boundary, they also do not 
guarantee smoothness of field due to linear approximation of the distance function. To obtain a 
smooth distance field, an R-function based approximate distance field construction technique was 
developed in reference [3]. But, this technique also relies on linearization of geometry.  

The methodology proposed in this paper is based on two observations. First, the behavioral 
approximation constructed by weighted compositions of “primitive” entities does not require exact 
measures of distance, and any monotonically decreasing function of distance is sufficient for analysis.   
Second, an algebraic representation of the boundary is more accurate than a polytope approximation, 
while retaining the advantage of computational efficiency. Therefore, in this paper, a purely algebraic 
description of distance measures as level sets from NURBS boundaries is developed, preserving the 
geometric exactness of the boundaries. The proposed technique overcomes the need for the iterative 
exact distance computations at every quadrature point during analysis while providing smoother and 
more robust (i.e., without artifacts of the exact) measure of distance as shown later in the paper. 
Further, the enriched field modeling technique [21] is extended to enable meshless analysis of B-rep 
CAD models using the proposed algebraic distance field.  

2 ALGEBRAIC DISTANCE FIELD CONSTRUCTION 

Given a NURBS curve bounding a geometric domain, an algebraic distance measure to the curve is 
constructed here, which is sufficiently smooth for engineering applications. The technique exploits 
Bezout’s resultant [17] based algebraic implicitization and R-functions [15, 19] for algebraic 
manipulations.  

2.1 Implicitization using Bezout’s Resultant 

Implicit representation of geometry is an equation of the form in n-dimensional space. 

In two-dimensional space, an implicit representation  can be obtained from a parametric 
curve through the process of implicitization [17], which is based on the elimination theory [6]. 
Elimination theory investigates the conditions under which sets of polynomials have common roots. 
Consider the familiar example of linear system of equations , or  

  (2.1) 

This system will have a non-trivial solution if and only if the determinant of the coefficient matrix 
vanishes ie. . Thus, resultant of a set of polynomials is an expression involving the coefficients 

of the polynomials such that the vanishing of the resultant is a necessary and sufficient condition for 
the set of polynomials to have a common non-trivial root.  

Given a rational parametric curve  where , , two auxiliary 

polynomials can be formed as:  

  (2.2) 

By algebraic manipulation, these polynomials give rise to the following resultant system of equations 
. 
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  (2.3) 

where , a and b are linear functions of x and y respectively. Bezout’s resultant of 

and is . The resultant in this case is a polynomial in x and y, denoted here as . 

For the values of t for which  and , there exist points  lying on the curve 
 such that . This is the implicit equation of the parametric curve 
.  

2.2 Normalization 

Implicitization of the constituent Bezier patches of the NURBS surfaces gives distance measures (level 
sets) from the boundary. Let  be an exact distance function from a boundary defined by the 

implicit function . Then, this implicit function is a distance measure from the 

boundary. Let  be the normal at the boundary. Taylor series expansion of  with respect to d near 
the boundary can be written as    (2.4)  
The algebraic function  that gives a measure of distance from a boundary could be locally 
converted into a distance function by the following scaling.  

  (2.5)  
Then,  yields a first order normalized distance function. 

2.3 Boolean Compositions using R-functions 

A disadvantage of the implicitized distance function is that it extends beyond the parametric range of 
the Bezier patch as shown in Fig. 4(b). This implies that this distance function, at a point in space, may 
not always correspond to the shortest distance to the Bezier patch.  
 

 
Fig. 4: Implicitized distance function: (a) An example of a Bezier curve and the corresponding implicit 
representation, and (b) Implicit representation does not give a distance measure from the Bezier curve.  
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Hence, a sequence of Boolean operations (described below) is performed between the convex hull  
of the control polygon of the Bezier patch and the implicitized distance function  as shown in Fig. 
5 to obtain the algebraic distance function  for a Bezier patch.  

  (2.6)  

 
Fig. 5: Illustration of Boolean operations between the implicit function of Bezier curve and convex hull 
of Bezier control polygon (Note that ~ operator is applied only to change sign of the distance field g 
for plotting purposes and has no effect on the absolute value of the distance field). 

 
The theory of R-functions [15, 19] provides smooth functional equivalents of Boolean operations and 
is therefore appropriate in an algebraic procedure. Hence, R-functions are chosen here to enable 
Boolean operations on functional descriptions of domains and obtain desired smoothness in the 
composed field. The function equivalent of the set-theoretic intersection of two functions  and  is 

the R-conjunction operation given by 

  (2.7)  
Further compositions are then carried out between adjoining Bezier patches using the R-disjunction or 
union operations as shown in Fig. 6(d). The R-disjunction operation is given by 

  (2.8)  
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Fig. 6: Algebraic distance field construction: (a) Degree two NURBS curve with control polygon, (b) 
Bezier curves with respective convex hulls, (c) Distance field of each Bezier curve, and (d) Composed 
distance field of the NURBS curve. 
 
Exact distance field and Algebraic distance field for a S-shaped curve are compared in Fig. 7. The 
encircled regions in the exact distance field are locations of spurious artifacts that occur at points 
equidistant from the curve. The algebraic distance field, on the other hand, gives smoother 
approximate distance to the curve. 

 
Fig. 7: Comparison of distance fields: (a) Exact distance field with spurious artifacts, (b) Algebraic 
distance field. 

 

2.4 Sign Calculation for Closed Geometries 

For closed curves, sign of the distance field is calculated as a by-product of the proposed technique. A 
bounding box is first constructed from the convex hull of the control polygon of Bezier segments. The 
solid edges of the convex hulls in Fig. 8(a) contribute towards constructing the bounding box while the 
dashed edges are removed. In this way, the bounding box encloses two types of regions as illustrated 
in Fig. 8(b). One is the region enclosed by the NURBS curve; the other type of region is referred to as 
curved Bezier polygon in this paper. Curved Bezier polygon is defined as a region bounded by a Bezier 
curve and a set of linear edges. Each shaded region in Fig. 8(b) is a curved Bezier polygon, same as  

or in Fig. 5 obtained by the Boolean operations between implicitized distance function f and the 

convex hull  in Eqn. (2.6).  

      
 

Fig. 8: Signed distance field: (a) Bounding box construction, (b) Shaded regions represent curved Bezier 
polygons, and (c) Signed field of the closed geometry. 
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Let P

i
 be a point in the plane and  be the distance field of the closed NURBS curve with 

bounding box field  and m curved Bezier polygons (Fig. 8(b)) with distance fields . 

The sign of  is calculated by a point in polygon test [7]. The signed field  is 

constructed as a by-product of the Boolean operations in Eqn. (2.6). It is equal to either  or 

 whichever corresponds to the shaded region in Fig. 8(b). A test vertex of the convex hull that 

does not lie on the Bezier curve is used to choose the right curved polygon. The test vertex must lie on 
the bounding box. Then, the correct curved polygon (  or ) is the one for which the corresponding 

field value (  or ) is zero at this test point. The sign of  (Fig. 8(c)) at the point P
i 
is 

given by the following scheme. 
 

  (2.9)  
3 MESHLESS ANALYSIS TECHNIQUE USING ALGEBRAIC DISTANCE FIELD 

The analysis technique developed here is based on the hierarchical partition of unity field 
compositions (HPFC) theory as well as its generalization to enriched field modeling developed in the 
references [14, 20, 21]. In this paper, the HPFC theory is further applied to construct approximations 
by weighted compositions of the moving boundaries with the underlying domain.  
 

 
Fig. 9: Global approximation constructed by hierarchical composition of lower order boundaries with 
higher order primitive. 

 

Let the geometry of the underlying domain  be defined as  and the behavioral field as 

. Let the geometry of the moving boundary  or lower order primitive be defined 
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parametrically as  and the behavioral field as . Then, the global approximation 

field  at any point  in the domain is given by the following weighted composition (Fig. 9). 

  (3.1)  
Here, the weights and  obey the partition of unity property [1] such that . The 

influence of the boundary on the underlying domain is modeled using weight field  constructed as 

a monotonically decreasing function of the algebraic distance field. Some possible functions for weight 
field  include the exponential function (Eqn. (3.2)) and the spline function (Eqn. (3.3)) [2] 

  (3.2)  
 

  (3.3)  
where, d is the algebraic distance measure from the boundary, d

e
 and d

s
 are scaling factors and  is 

the assigned weight value at the boundary.  
 

In the present paper, the field approximations over the domain as well as the lower order 
boundaries are constructed using the NURBS basis functions. Thus, the behavioral field  is defined 

as 
  (3.4)  
where  are the NURBS basis functions over the underlying domain and  is the field value at 

the I-th control point of the NURBS geometric domain. The behavioral field  is defined as  

 
  (3.5)  
where,  are NURBS basis functions over the lower order primitive and  is the field value at 

the J-th control point of the NURBS boundary, is a projection from the point x on the 
underlying domain to the closest point P(s,t)  on the lower order primitive.  

4 NUMERICAL IMPLEMENTATION 

In this paper, the developed analysis technique has been applied for solving linear elasticity problems 
with boundary representation (B-rep) of the CAD models. The boundary conditions on the CAD model 
are represented as lower order primitives and composed with the approximations on the underlying 
domain through weight fields constructed using the algebraic distance function. The construction of 
discretized solution system is briefly described for such problems and the adaptive quadrature scheme 
used for numerical integration of stiffness matrices is discussed. 
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4.1 Formulation of Discretized Solution System 

Consider the domain  with boundary . The boundary  consists of the displacement and traction 
boundary conditions. The corresponding Dirichlet boundary , or traction boundary is modeled 

explicitly as lower order NURBS primitive. In general, the total potential energy for linear elastic 
systems is given by 
 

  (4.1)  
where,  is the generalized Hooke’s law relating stress  to strain , and  is the fourth 

order elasticity tensor. The displacement field u
i 

is approximated by the weighted composition 
between the domain and the boundary as described in Eqn. (3.1). 
  (4.2)  
such that . Superscripts d and b correspond to domain and boundary respectively. The 

strain and stress components in terms of the domain and boundary displacements are as follows 

  (4.3)  
  (4.4)  
The total potential energy is then written as a function of ud and ub. 

  (4.5)  
The stationarity of the total potential energy with respect to ud and ub yields the following equilibrium 
conditions. 

  (4.6)  
  (4.7)  
 
The displacement fields of the higher and lower order primitives are next discretized using NURBS 
basis functions as shown in Eqns. (3.4) and (3.5).   
  (4.8)  
 
  (4.9)  
 
After substituting the approximating fields into the equilibrium equations, the following matrix system 
is obtained: 
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  (4.10)  
where, the stiffness matrices are constructed as   

  (4.11)  
,the work equivalent forces are determined by integration of tractions on primitive boundaries 

  (4.12)  
and the body forces are determined as follows 

  (4.13)  
 
If is a traction boundary, then the matrix system reduces to 

  (4.14)  
since wd=0 on  

If  is a Dirichlet boundary, then the matrix system reduces to 

  (4.15)  
since  are known displacements on the boundary. 
For more than two primitives, the solution system is formed by a pairwise interaction between the 
primitives following an approach similar to that described in reference [14]. 

4.2 Numerical Integration 

An adaptive quadrature scheme [23] developed earlier is used to accurately take into account the 
influence of the internal boundaries on the underlying NURBS control grid. In the implemented 
quadrature scheme, the parametric space of the NURBS geometry of the domain naturally forms the 
quadrature cells. Further, a quad-tree algorithm as shown in Fig. 10 is used to adaptively subdivide 
the integration cells that are intersected by internal boundaries. Point containment based on the 
proposed signed field is used in the quadrature scheme to ignore quadrature points that do not lie 
inside the material domain of the CAD model.  
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Fig. 10: Illustration of adaptive quadrature scheme for a domain with internal boundaries 

5 NUMERICAL EXAMPLES 

In this section, the analysis technique described in Sections 3 and 4 is applied to some elasticity 
problems with known analytical solutions to validate the scheme. In all of the examples, meshless 
analysis of B-rep CAD models is demonstrated. It is assumed that the geometric models are 
represented only by NURBS boundaries and that a parametric description of the domain of analysis is 
not available. A background mesh is constructed in each problem using a rectangular NURBS primitive. 
The geometric model does not conform to the background mesh. Boundary conditions are defined on 
the explicitly modeled lower order NURBS primitives. Weight fields are constructed using the 
exponential function given in Eqn. (3.2). Algebraic distances are computed from the boundaries of the 
lower order primitives. Material assignment is based on point containment checks using the signed 
field from the boundaries of the geometric model. Thus, the proposed technique allows direct analysis 
on B-rep CAD models without tedious mesh generation. 

5.1 Plate with an Elliptical Hole 

An elastic plate with an elliptical hole under uniform tension is known to have an analytical stress 
concentration factor that is dependent on the ratio of the major to minor diameter of the ellipse. The 
geometry and boundary conditions for this problem are shown in Fig. 11(a). The modulus of elasticity 
of the plate is assumed to be 100 units and the Poisson’s ratio is 0.3. A background mesh is 
constructed as a rectangular (2l X2w) NURBS primitive with the dimensions indicated in Fig. 11. The 
two traction boundaries are modeled explicitly as lower order NURBS primitives. The geometric model 
and the background mesh are independent of each other as shown in Fig. 11(b). Point containment 
checks in the B-rep CAD model of the plate with elliptical hole were used to eliminate quadrature 
points on the mesh lying outside the material domain. 
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Fig. 11: Plate with elliptical hole: (a) Geometry (a = 0.2, b = 0.1, w = 0.5, l = 1) and boundary 
conditions, (b) Underlying control point grid is independent of the geometry, and (c) Stress plot in y-
direction ( ). 

 

The analytical stress concentration factor for elliptical hole with  accounting for the finite 

plate width is 5.9 [13]. The stress plot ( ) is shown in Fig.11(c) for a uniform control point grid 

spacing of h = 0.03 units and local refinement around the hole. The stress concentration factor 
obtained was 5.5292. Further local refinement resulted in an improved stress concentration factor of 
5.7348. 

5.2 Curved Cantilever Beam under Tip Loading 

In this example, a curved cantilever beam is subjected to tip loading as shown in Fig. 12(a). The 
modulus of elasticity of the beam was assumed to be 100 units and the Poisson’s ratio was 0.3. The 
analytical stress field solution is given by the following equations [16]: 

    (5.1)  
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Fig. 12: Curved cantilever beam: (a) Geometry (a = 0.2, b = 0.4) and boundary conditions (P = 0.2 
units), and (b) Underlying control point grid is independent of the geometry.  
 
A background mesh was constructed as a rectangular (2b X2b) NURBS primitive with the specific 
numerical values as indicated in Fig. 12. The displacement and traction boundary conditions were 
modeled explicitly as lower order NURBS primitives. The geometric model and the background mesh 
are independent of each other as shown in Fig. 12(b). The variation of the numerical solution of stress 

field  is plotted with radial distance at  and compared with the analytical solution in Fig. 13. 

 

 

Fig. 13: Variation of stress field  with radial distance r at . 

 

5.3 Analysis of a Wrench under Use Load 

A problem with relatively complex two-dimensional geometry is considered next; a wrench is analyzed 
under the loading and boundary conditions shown in Fig. 14(a). A rectangular background mesh was 
constructed independent of the wrench geometry as shown in Fig. 14(b). The modulus of elasticity of 
the wrench was assumed to be 100 units and the Poisson’s ratio was 0.3. The displacement and 
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traction boundary conditions were modeled explicitly as lower order NURBS primitives. Weight fields 
were constructed from each of these primitives using the algebraic distance field measure. The 
effective weight field corresponding to the rectangular domain NURBS primitive in the analysis 
problem is shown in Fig. 15(a). Deformed shape is plotted in Fig. 15(b). 

  
Fig. 14: Analysis using boundary representation of a wrench: (a) Loading and boundary condition on 
the wrench, (b) Underlying control point grid is independent of the geometry.  

 

 
Fig. 15: Analysis results: (a) Weight field of the rectangular domain NURBS primitive constructed using 
algebraic distance from the displacement and traction boundaries, (b) The resultant displacement as 
well as the deformed shape shown magnified five times. 
 
 These examples demonstrate analysis of two-dimensional B-rep CAD models without the need 
for mesh generation in the domain. While the theoretical development of the algebraic distance field 
and the proposed meshless analysis technique for B-rep CAD models is general, an extension of this 
work to three-dimensions is in progress and will be reported shortly.   

6 SUMMARY 

In this work, a purely algebraic technique for estimating distance fields from boundaries (both internal 
and external) was developed. The proposed technique preserves the geometric exactness of the NURBS 
boundaries, and eliminates the iterative solution required of exact distance calculation. The technique 
enables explicit modeling of boundaries with geometric independence from the underlying domain. 
The fields on the boundaries are blended using weight functions with approximations built on the 
underlying domain while obeying the partition of unity requirement for the composed approximation.  
Weight functions depend on distance measures from the boundaries. The proposed algebraic distance 
field technique enables inexpensive distance computations at every quadrature point. It is recognized 
that the resultant obtained by algebraic implicitization is a distance measure. The algorithmic 
development of the algebraic distance field from the resultant based implicit function is discussed 
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using normalization techniques and Boolean compositions. Also, algorithms for construction of signed 
distance measures for bounded domains are presented. The signed distance field enables inexpensive 
point-containment checks for complex geometries. Analysis of B-rep CAD models has been 
demonstrated without the need of mesh generation in the domain. 
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