
Computer- Aided Design & Applications, 10(3), 2013, 475- 487

© 2013 CAD Solutions, LLC, http://www.cadanda.com

475

GPU-Based Super-union for Minkowski Sum

Yuen- Shan Leung1, Charlie C. L. Wang1 and Yong Chen2

1The Chinese University of Hong Kong,

yleung@mae.cuhk.edu.hk

cwang@mae.cuhk.edu.hk

2University of Southern California,

yongchen@usc.edu

ABSTRACT

We present an efficient and robust algorithm to approximate the 3D Minkowski sum

of two arbitrary polyhedra on Graphics Processing Unit (GPU). Our algorithm makes

use of the idea of super- union, in which we decompose the two polyhedra into

convex pieces as usual, but the way we perform pairwise convex Minkowski sum and

merge the pairwise sums one by one is changed to group by group on GPU. The core

technique involved is to directly compute the convex hull of pairwise sum in image

representation and utilize voxelization to perform massive union operations. Despite

the lack of accuracy, we guarantee that the voxelization of Minkowski sum is

conservative, and the inner voids are well preserved. Our algorithm is also scalable

and fits well into GPU’s streaming architecture.

Keywords: Minkowski sum, voxelization, inner void, GPU, MAX/MIN blending.

DOI: 10.3722/cadaps.2013.475- 487

1 INTRODUCTION

Minkowski sum is fundamental to many applications, such as solid modeling, computer- aided

design, robot motion planning, penetration depth estimation and dynamic simulation. Given two point

sets P and Q in ℜ௡, the Minkowski sum of P and Q is defined as

ܲ⨁ܳ = +݌} ∋�݌�|�ݍ ∋ݍ,ܲ ܳ} (1.1)

In geometry, it is formed by translating the set Q by all vectors ݌ ∈ ܲ�or vice versa for polyhedra in

ℜଷ (polygon in ℜଶ). Although the definition looks simple, it is complicated in implementation and has a

high computation cost. Let the computation of P and Q consist of m and n primitives respectively, the

Computer- Aided Design & Applications, 10(3), 2013, 475- 487

© 2013 CAD Solutions, LLC, http://www.cadanda.com

476

Minkowski sum may have a complexity of up to ܱ(݉ ଷ ଷ݊). A lot of research has been conducted to

compute it accurately and efficiently [5, 9, 12, 24].

Generally, two main approaches have been adopted for the Minkowski sum computation of

complex polyhedra. The first approach decomposes both polyhedra into convex pieces, computes their

pairwise Minkowski sums and the union of pairwise Minkowski sums [25]. It is relatively easy to

implement this but the union step becomes the bottleneck of performance when the number of pairs

is large. The second approach is convolution- based. It generates a superset of the Minkowski sum and

filters out primitives that do not belong to the final boundary surface [10]. The hardest part of this

approach is to compute the arrangement of convolution and the wind number robustly in ℜଷ. In view

of the high complexity of computing the exact Minkowski sum, we have developed an approximation

algorithm.

Main results: In this paper, we present an efficient and robust approach for computing voxelized

3D Minkowski sums of polyhedra on GPU. Unlike most existing approximation algorithms [16, 17, 20],

which adopt a convolution- based approach and thus lead to the missing of inner voids, our method is

decomposition- based and aims at computing the Minkowski sum of arbitrary polyhedra and

preserving inner voids in terms of voxel. For some explicit applications like motion planning, these

voids cannot be neglected as they usually represent critical pathways. We know that even the

decomposition- based approaches are guaranteed to generate Minkowski sum with enclosed voids [23]

and allow voids within the input models, their performance are degraded when a large number of

components are united.

In order to solve the bottleneck of unions, this paper introduces a GPU- based streaming algorithm

to perform a massive union of pairwise Minkowski sum on GPU. We create solid voxelization of the

Minkowski sum and transmit it back to CPU once the whole union step is finished. Surface

voxelization can also be easily obtained. The accuracy of our results is governed by the volumetric

resolution and the quality of decomposition. As we use a resolution of 1024ଷ in this paper, holes can

be preserved as long as their length in one of the direction is larger than 10ିସ in magnitude.

2 RELATEDWORK

There has been much work on finding practical algorithms for robust computation of Minkowski

sums of complex polyhedral models in three dimensions. This goal is relatively easy to achieve if the

models are convex and the process of Minkowski sum of polyhedra P and Q with m and n features

respectively takes�ܱ (݉)݊ time. Ghosh presented a unified algorithm to compute Minkowski operations

of polygons and polyhedra using a new representation scheme, called slope diagram representation

[10]. He merged the diagrams of two polyhedra and extracted the boundary of Minkowski sum from

the result. Some researchers followed this idea [3, 5, 9] but their implementations again work only for

convex objects. Lately, Barki et al. [4] improved his work and his new approach can be applied to

nonconvex- convex pair of polyhedra and deal with non- manifold situation.

Nevertheless, it is much more difficult to handle the Minkowski sum of two non- convex polyhedra

as it could have complexity ܱ(݉ ଷ݊ଷ) for the worst case. One of the common approaches is based on

decomposing the non- convex objects into simpler and convex polyhedra [7, 8], computing all pairwise

Minkowski sums of the convex pieces, and merging the pairwise sums [2]. Another similar strategy is

decomposing the polyhedra into affine cells instead of convex pieces [21]. Although the idea is simple,

decomposition and union steps can be difficult to implement robustly and efficiently [1, 13].

Hachenberger [12] introduced a robust and exact 3D Minkowski sum of two non- convex polyhedra

with a decomposition- based algorithm. His work was built upon an existing library CGAL [22] and is

able to optimize the union step through the use of Nef polyhedra. However, his results were still

Computer- Aided Design & Applications, 10(3), 2013, 475- 487

© 2013 CAD Solutions, LLC, http://www.cadanda.com

477

constrained by the number of convex pieces. At present, no existing union method can efficiently

compute the union of thousands of pairwise Minkowski sums. To reduce computational complexity, an

approximation of the union step was introduced by Varadhan and Manocha [23]. They generated

samples of Minkowski sum boundary in distance field and extracted the meshes using marching cube

technique.

Convolution is an alternative approach to compute Minkowski sum of non- convex objects. Guibas

et al. introduced the concept of convolution and proposed an output sensitive algorithm to compute

2D convolution curves [11]. Kaul et al. [15] constructed supersets of boundaries of Minkowski sums

and provided a set of criteria to remove facets which do not belong to the actual boundaries. This

concept can also be used in our algorithm to remove unnecessary facets of each pairwise Minkowski

sum. Wein [24] first described a robust and exact software implementation for non- convex polygons

based on a convolution method. His work can handle inputs with many degeneracies and yield

topologically correct results. Later on Lien [18] proposed a nearly exact algorithm for polyhedra. He

first generated a brute- force convolution of two input polyhedra and computed the 2D arrangement of

Fig. 1: Algorithm flow chart for computing Minkowski sum in voxels. Dotted boxes indicate sections

that can run on GPU. (a) Giving an example of Armchair⊕Torus in triangular meshes; (b) Decompose

two meshes, either exactly or approximately, into two set of convex pieces; (c) Compute the superset of

Computer- Aided Design & Applications, 10(3), 2013, 475- 487

© 2013 CAD Solutions, LLC, http://www.cadanda.com

478

Minkowski sum of convex components using convolution- based approach; (d) Rasterize the resultant

sum components group by group; (e)- (g) Union algorithm on a group of components. (e) Detect which

components intersect a ray; (f) Obtain the maximum and minimum depth values on ray for each

component (i.e. Convex hull of the Minkowski sum of convex components); (g) Voxels are set to ‘1’ in

the range [min,max], and then united by binary operator OR.

facet- facet intersections within the convolution. Then he grouped the facets into small regions and

filtered the inside using a collision detector. Recently, Campen et al. [6] presented a technique for an

efficient extraction of boundary from sweep operations including Minkowski sum. Approaches with

approximated representation were also explored [16, 17]. However, convolution- based methods

include difficulties in removing facets inside the Minkowski sum boundary and maintaining inner

voids.

Our algorithm in this paper appears to be similar to Varadhan- Manocha's approach. However,

there are crucial differences between our approach and theirs. We employ uniform voxel grids instead

of distance field to represent union results. Our union algorithm is designed for fully utilizing the

computational power and parallelism of modern graphics hardware. Moreover, we propose to

decompose a complex non- convex model into approximated convex pieces, producing fewer

components compared with the exact approach.

3 MINKOWSKI SUM COMPUTATION

In this section we introduce a robust algorithm for generating voxelized Minkowski sum with

enclosed void regions preserved. Preserving the region is important in some applications like CAD,

collision detection and medical imaging.

3.1 Algorithm Overview

Fig.1 shows the flow of our work. The algorithm starts with decomposing two input polygonal

meshes into convex pieces either exactly or approximately. If the approximate approach is sufficiently

accurate, lesser number of components can be produced and processed; thus it is able to reduce the

overall computational complexity. After making all convex pieces ready the pairwise Minkowski sums

are performed. It is well known that a common method for computing Minkowski sum of two convex

polyhedral is to calculate the convex hull of all vector sums of their vertex pairs. In this stage, we

adopt a similar approach but work completely on GPU. The approach first computes the supersets of

pairwise Minkowski sums using a parallel convolution based method and then extracts their

boundaries in image space representation. To handle large number of supersets, we develop a GPU-

based streaming algorithm to perform super- union for Minkowski sum. The idea is like this: loading

the supersets group by group; in which all supersets in one group are assigned an index and being

rasterized to obtain the corresponding maximal and minimal samples at each pixel location, then fill

up the voxels within the max- min distance; finally using binary operator OR to accumulate the voxel

results from group, one by one. Notice that the maximal and minimal samples are just a variation of

the boundary of a superset; as a result it is able to simplify the computation of pairwise Minkowski

sum and fit well on GPU architecture.

3.2 Convex Decomposition

The problem of decomposing a polyhedron into a minimum number of pieces is known to be

NP- hard. Chazelle [7] proposed a basic decomposition method which generates (ଶݎ)ܱ convex pieces in

(ଷݎ݊)ܱ time for an input model with complexity ݊ and reflex edges .ݎ However, constructing an exact

Computer- Aided Design & Applications, 10(3), 2013, 475- 487

© 2013 CAD Solutions, LLC, http://www.cadanda.com

479

decomposition can be expensive in processing time and result in an extremely large number of

components. Computing Minkowski sum with these components is not practical at all. Therefore, we

prefer using an approximate approach to partition complex models into few components. In addition,

we found that detail features are usually eliminated in Minkowski sum — that means an approximated

decomposition is sufficient to some models (see Fig.2 and Fig.5).

Fig. 2: A convex decomposition result in different degrees of simplification. Left: original model,

Middle & Right: simplified model consists of 656 and 1055 components (i.e. Vol. diff: + 0.5% and 0%)

respectively. The zoom- in view shows that there is no significant difference between the original and

simplified model.

In this paper we employ the approach of Huang and Wang [14], which is a general solid

simplification algorithm that can produce conservative bounding of simplified models with watertight

and intersection- free guaranteed. Combined with the voxelization process in a conservative manner,

the final result must be conservative as well. Note that any other exact or approximate convex

decomposition approaches can be used (conservativeness may not guaranteed) as long as they

generate convex pieces (e.g.[19]).

3.3 Pairwise Minkowski Sum

Given two polyhedra P and Q which consist of m and n convex pieces respectively, the pairwise

Minkowski sum generates ݉ × ݊ pairs, and we denote them asܯ��௜௝. It is well known that the Minkowski

sum of two convex polyhedra ௉ܥ
௜ and ொܥ

௝
is a convex polyhedron, and ௜௝�canܯ be obtained by computing

the convex hull of the vector sum of vertices in ௉ܥ
௜ andܥ�ொ

௝
. Although this standard convex hull

algorithm is simple to be implemented, it is time consuming and cannot make full use of GPU

parallelism. A more efficient algorithm is to use convolution to compute .௜௝[11]ܯ However, the constant

factors in the time complexity can be high and it is non- trivial to implement them robustly. Until

recently, Li and McMains [16] provided a convenient way to perform convolution on GPU. Here we

combine their work with our culling technique to robustly generate a complete Minkowski sum

boundary of ௜௝ܯ�� on GPU, which is applied to the following steps:

 For eachܯ��௜௝, compute a superset��ܵ௜௝ of the Minkowski sum boundary of ௉ܥ
௜ andܥ�ொ

௝
, where ௜௝ܯ�

is a subset of��ܵ௜௝. The�ܵ௜௝ is generated by translating triangles in ௉ܥ
௜ by vectors in ொܥ�

௝
(and vice

versa) and sweeping edges in ௉ܥ
௜ along edges in ொܥ�

௝
. The facets of ��ܵ௜௝ have to fulfill several

propositions described in [15].

 Rasterize the facets and obtain the intersecting points of Minkowski sum boundaryܯ�௜௝ per ray.

The second step is introduced in next section since the rest of implementation is based on

rendering��ܵ௜௝. The ∪ ௜ܵ௝ is written to the Vertex Buffer Object (VBO) as the intermediate result and is

Computer- Aided Design & Applications, 10(3), 2013, 475- 487

© 2013 CAD Solutions, LLC, http://www.cadanda.com

480

directly rendered using OpenGL. Note that any other approaches (e.g. [3, 11]) that can compute the

Minkowski sum boundary of two convex polyhedra are also acceptable in our union method.

3.4 Super-union in Image Space

In this section, we present our GPU- based algorithm for merging massive convex objects, which

is usually the bottleneck of the decomposition- based approach. Most existing exact union approaches

cannot handle a large number of objects robustly and efficiently. This limitation prevents their usage

in practical applications. Our streaming algorithm here has the benefit of accepting void- enclosed

polyhedra and producing voxelized void- enclosed polyhedra, where each unit can unify at most 1024

components simultaneously. Despite the lack of accuracy, we achieve a good trade- off between

complexity and quality of results. Our approach consists of the following steps as a main GPU- based

kernel for one unit (see Fig. 1(e)- (g)):

1. Convex Indexing: assign an index �݅× �݆for each superset�ܵ௜௝.

2. Compute Convex Boundary: render all �ܵ௜௝ and generate the fragments of boundary of ௜௝ܯ with

MAX/MIN blending operator.

3. Construct 1- D bitmask: assign a column of voxel for each fragments of ௜௝ܯ and perform the

binary operation OR.

3.4.1 Convex Indexing

After the superset of pairwise Minkowski sum is done, ∪ ௜ܵ௝ is written to VBO, which can be

directly rendered using OpenGL. As the first step of the union, we index each ௜ܵ௝��with ݅× �݆so that after

rendering it is easy to find which ௜ܵ௝��the ray is intersecting. For implementation, we simply put ∪ ௜ܵ௝

into one single VBO and then render them separately with an array of indices. The array is constructed

with size �݅× �݆and stores the total number of triangles of each��ܵ௜௝. Through the rasterization process

of VBO, the index of ௜ܵ௝��is voxelized into ݎ݁ ×ݏ ݎ݁ ×ݏ ݎ݁ ௧ݏ grids. This indicates the existence of ௜ܵ௝�per ray.

Note that ݎ݁ ௧��isݏ not necessary equal to ݎ݁ ݏ as ݎ݁ ௧��refersݏ to the maximum unit size of �ܵ௜௝�. If we set

ݎ݁ =�௧ݏ 1024, it means that we allow at most 1024 components can be found on a ray for each

rendering. A 3D texture, denoted as �ܶଵ, is used to store the voxelization results.

3.4.2 Computation of Convex Boundary

The goal of this step is to compute the boundary of ௜ܵ௝�along one direction. Once the VBO is

rendered, every fragment of ௜ܵ௝�can be located according to its order in ଵܶ�and the corresponding index

݅× .݆ What we already know is that every ௜ܵ௝ is convex; correspondingly there are two outermost

fragments for each ௜ܵ௝ on their intersecting ray. In our implementation, we reserve two channels (odd

and even) in texture for ௜ܵ௝ on their intersecting ray to store the maximum and minimum values. To

compute the minimum/maximum depth values, we assign each incoming depth value ௙݀�to both

channels as follows:

ቊ
௜݌������ = max(1 − ௙݀)

௜ାଵ݌ = max(௙݀)
(3.1)

With the aid of the Max blending function in OpenGL, we can get the fragments on the boundary

of ௜ܵ௝ with values stored in another texture which is denoted as ଶܶ.

3.4.3 Construction of 1-D bitmask

Current graphics hardware supports at most 32- channels for blending in one single pass. In

other words, only 16 convex boundaries (௜௝ܯ) on rays can be collected simultaneously. By rendering a

Computer- Aided Design & Applications, 10(3), 2013, 475- 487

© 2013 CAD Solutions, LLC, http://www.cadanda.com

481

rectangle primitive with size��݁ݎ ×ݏ ݎ݁ ,ݏ the union of these 16 components (32 values) in voxel on each

ray can be obtained easily. We simply fill the voxels within the range of two channels, ௜�and݌ ,௜ାଵ݌ and

then integrate them with others using the OR operator.

To generate a united voxelization of ݎ݁� ௧ݏ components, our algorithm may require iteratively

running ݎ݁ ௧ݏ 16⁄ times of the steps of Computation of Convex Boundary and Construction of 1-D

bitmask. But this rarely happens since not all ݎ݁� ௧ݏ components intersecting the same ray. We now

focus on merging a large number of ௜ܵ௝. If the convex decomposition produces an incredibly large

number of components, one possible solution is to subdivide the problem into subproblems until the

subproblems can be dealt with. In our work, we partition the components into a set of groups. Each

group (unit) consists of at most 1024 components that are possible to be applied in the step of

Convex Indexing and be rendered multiple times in the other two sections. A larger size of the group

can reduce the transition time between the CPU and the GPU, but at the cost of the memory space.

Moreover, since each pairwise Minkowski sum ௜ܵ௝ can be completely voxelized and merged

independently, we do not have to store all primitives into GPU. Instead, only one 3D texture with size

ݎ݁ ×ݏ ݎ݁ ×ݏ ݎ݁ ݏ storing the voxelization result is necessary to be kept throughout the whole process.

The union kernel is easy and simple to be implemented since there is no complicated testing involved.

The pseudocode for our framework is given in Algorithm 1.

Fig. 3: Minkowski sum that (a) having voids and (b) without voids. From left to right: the input models,

outer view of Minkowski sum, (zoom in) inner view of Minkowski sum. This figure shows that voids are

usually ignored but our approach can generate a correct boundary of the Minkowski sum.

4 EXPERIMENTAL RESULTS AND DISCUSSION

In this section we show the experimental results of our Minkowski sum algorithm. All tests were

carried out on a PC with Intel Core i5 CPU 750 2.67GHz + 4GB RAM and GeForce GTX580 graphics

card. Tab. 2 gives the solid voxelization timing of Fig.3 and 4 under two different resolutions. Our

implementation runs on both CPU and GPU — the CPU is used to decompose the polyhedra and

compute superset of pairwise Minkowski sum while GPU is used to perform union continuously. The

superset is also possible to be computed on GPU as [16] provided a detailed description of how to

efficiently generate a superset on CUDA.

Fig. 3 shows that the Minkowski sum results can be look alike from the outside but completely

different on the inside. Enclosed voids are usually ignored by some previous work for ease of

Computer- Aided Design & Applications, 10(3), 2013, 475- 487

© 2013 CAD Solutions, LLC, http://www.cadanda.com

482

computation. For example, Li- McMain 's approach [16], to the best of our knowledge, is the fastest way

to compute the Minkowski sum of two arbitrary polyhedra. However, their approach can’t handle

enclosed voids. See the cases of Void⨁ Sphere and Grate2⨁Frame as shown in Fig. 4, which either

input models with enclosed void or yield voxelized Minkowski sum with enclosed voids. These two

cases are not applicable to the outer- boundary- only approaches. Moreover, our method is able to run

out- of- core, which means polyhedra with large number of convex pieces can also be handled in

limited memory space. This is comparatively more practical since the workload is dividable and the

main core part is able to be parallel.

Concerning the ways to achieve the best performance, determining the size of group is important.

Two factors need to be considered for choosing an appropriate value for�݁ݎ :௧ݏ the maximum number of

components per ray and the computing power of GPU. From Tab.1 we can see that if ݎ݁� ௧ݏ is large, the

number of components per ray (௠݊ ௔௫�) will be large too, meaning that more looping is required in the

parallel union kernel. If�݁ݎ ௧ݏ is small, the number of components per ray will be small; this requires

more looping in creating VBO. Based on the experimental result, we found that if the value of�݁ݎ ௧ݏ can

control the maximum number of components on rays (௠݊ ௔௫�) to be within 14- 30, the algorithm would

yield the best result. Small number is preferred because the parallel power is constrained by the

limited color channels for blending. In addition, since a high resolution will reduce the parallel power

while a large number of components in sequential streaming will degrade the performance, a medium

size of ݎ݁� ௧ݏ is a better choice.

In addition, the level of the approximation involved in our algorithm is determined by two

parameters. A typical one is the resolution of voxelization ݎ݁) .(ݏ Since voxelization is a sampling

process, the result is always discretized and loses continuous information. Another parameter is the

volume difference (Vol. diff) between the approximated result and the original model in convex

decomposition. The approximation provides a result of ignoring certain features of the original model.

In the case of fig. 2, although the edge of the decomposed chair at the bottom is rougher than the

input one, it still provides a similar result in Minkowski sum with better runtime performance

achieved (fig.5).

4.1 SPEEDUP

To achieve faster performance, we may consider multi- GPU acceleration, which allows us to speed

up because our algorithm involves a large number of independent computations. We have previously

shown computations run in a reasonable amount of time using a single GPU. Hence, our method with

the help of GPUs, is able to solve computationally expensive problems quickly. In addition, our

implementation does not necessarily require a particular advanced graphics card or a large amount of

memory as our algorithm is streaming- based; therefore, the cost of speedup is relatively small.

5 CONCLUSION

In this paper, we present a practical algorithm to compute the voxelized 3D Minkowski sum of

two arbitrary polyhedra on Graphics Processing Unit (GPU) efficiently and robustly. Our algorithm

employs a BSP tree to decompose polyhedra into convex pieces conservatively. Then we perform

pairwise Minkowski sum by generating the superset and extracting the boundary in image

representation. The image representation are then converted to solid voxels and the final result is

merged by logic operation OR. Our algorithm is out- of- core and parallel. Nevertheless we guarantee

that the voxelization of Minkowski sum is conservative and the inner voids are well preserved. The

experimental result shows that our algorithm can handle a massive number of unions efficiently and

takes advantage of the parallel computation power of GPU.

Computer- Aided Design & Applications, 10(3), 2013, 475- 487

© 2013 CAD Solutions, LLC, http://www.cadanda.com

483

rest Avg. of Avg. of GPU time

nmax VBO 512 1024

12 11.4 31.0K 3.52 8.74

24 21.6 62.1K 3.14 8.77

48 39.8 124.2K 3.45 9.11

96 66.4 248.4K 4.04 11.7

192 96.2 496.7K 4.77 N/A

Tab. 1: Performance of different rest on Bunny⊕Sphere in second.

A⊕B Convex Pieces CPU
Time

GPU Time
(i×j) 512 rest 1024 rest

Void⊕Sphere 965 3.24 2.65 36 7.3 36

Ear⊕Frame 14,424 9.62 12.5 96 38.1 96

Grate2⊕Frame 696 0.46 3.20 48 10.5 24

Grate2⊕Grate 1,624 1.01 7.28 56 20.7 28

Bunny⊕Sphere 960 6.38 3.14 24 8.77 24

Armchair⊕Torus 746,940 152.7 378.2 180 1295.3 200

Armchair_Simp⊕Torus 464,448 118.7 301.9 160 1060.2 180

Tab. 2: Timing for computing voxelized Minkowski sum from convex decomposed models.

CPU time (in second) includes all the computation time for generate supersets of pairwise

Minkowski sums and the transmission time for uploading VBO to GPU. GPU time (in second)

includes all the computation time of union.

Trgl. Num. Piece. Volume. Diff

Void 13.3K 965 0%

Ear 24.2K 1202 + 5%

Grate2 0.67K 58 0%

Torus 11.3K 708 0%

Bunny 39.1K 960 + 2%

Armchair 14.0K 1055 0%

Armchair_Simp 10.4K 656 + 0.5%

Sphere 0.82K 1 0%

Frame 0.14K 12 0%

Grate 0.34K 28 0%

Tab. 3: Convex decomposition of input models. For each model, from left to right: the face

number, the number of pieces and the volume difference of the approximated result and the

original model. 0% indicates that an exact decomposition is performed.

* N/A indicates that the computation is out of memory.

Computer- Aided Design & Applications, 10(3), 2013, 475- 487

© 2013 CAD Solutions, LLC, http://www.cadanda.com

484

Algorithm 1 Tile-based Union in Image Space

Input: Pairwise Minkowski sum → ௠ܵ ×௡

Output: ଷܶ

1: for ݅= 1 ⟶ (݉ × ݎ݁/݊(௧doݏ

2: ݒܾ ⟵݋ gl.UnloadToVBO ((ܵ௜ି ଵ)×௥௘௦೟݋ݐ ௜ܵ×௥௘௦೟);

3: glEnable(or);

4: //Rendering ݒܾ with݋ index by shader

5: for all fragments ௞݂ do

6: ݖ ⇐ GetVoxelPosition (IndexOf(௞݂));

7: ଵܶ⇐ Update voxel in position ;ݖ

8: end for

9: glDisable(or);

10: //Rendering a quad by shader

11: ௠݊ ௔௫ ⟵ GetMaxIntersectMKS(ଵܶ);

12: for ݆= 0 ⟶ ܿ݁ ݈݅(௠݊ ௔௫)/16 do

13: glEnable(BLEND);

14: glBlendEquation(MAX);

15: //Rendering ݒܾ with݋ index by shader

16: for all fragments ௞݂ do

17:)GetIntersectMKSpos(IndexOf⇐݌ ௞݂));

18: ଶܶ(݌,ݕ,ݔ) ⇐ 1 − ݀)ℎݐ݁݌ ௞݂);

19: ଶܶ(݌,ݕ,ݔ+ 1) ⇐ ݀)ℎݐ݁݌ ௞݂);

20: end for

21: glDisable(BLEND);

22: glEnable(or);

23: //Rendering a quad by shader

24: ଷܶ ⟸ VoxelRange(ଶܶ(݌), ଶܶ(݌+ 1));

25: glDisable(or);

26: end for

27: ݒܾ ݋ ⟶ gl.ClearVBO();

28: end for

Computer- Aided Design & Applications, 10(3), 2013, 475- 487

© 2013 CAD Solutions, LLC, http://www.cadanda.com

485

Fig. 4: Voxelized Minkowski sum results of five pairs of models in resolution 512 × 512 × 512. From left

to right: Bunny⊕Sphere, Void⊕Sphere, Grate2⊕Frame, Grate2⊕Grate, Armchair⊕Torus.

Fig. 5: A comparison of voxelized Minkowski sum results of Armchair⊕Torus using (a) approximating

decomposition and (b) exact decomposition approaches in resolution of 512 × 512 × 512. The result

shows no significant difference in appearance but great improvement in the runtime performance.

ACKNOWLEDGEMENT

The third author acknowledges the support of National Science Foundation grant CMMI- 0927397.

Computer- Aided Design & Applications, 10(3), 2013, 475- 487

© 2013 CAD Solutions, LLC, http://www.cadanda.com

486

REFERENCES

[1] Agarwal, P.; Flato, E.; Halperin, D.: Polygon decomposition for efficient construction of Minkowski

sums, In M. Paterson (Ed.), Algorithms –ESA 2000, volume 1879 of Lecture Notes in Computer

Science, 20- 31, Springer Berlin/Heidelberg, 2000.

[2] Aronov, B.; Sharir, M.; Tagansky, B.: The union of convex polyhedra in three dimensions, SIAM J.

Computing, 26, 1670- 1688, 1997.

[3] Barki, H.; Denis, F.; Dupont, F.: Contributing vertices- based Minkowski sum computation of

convex polyhedra, Computer- Aided Design, 41, 525- 538, 2009.

[4] Barki, H.; Denis, F.; Dupont, F.: Contributing vertices- based Minkowski sum of a nonconvex-

convex pair of polyhedra, ACM Transactions on Graphics, 30, 3:1- 3:16, 2011.

[5] Bekker, H.; Roerdink, J.B.T.M.: An efficient algorithm to calculate the Minkowski sum of convex

3d polyhedral, 619- 628, 2001.

[6] Campen, M.; Kobbelt, L.: Polygonal boundary evaluation of Minkowski sums and swept volumes,

Computer Graphics Forum, 29(5), 1613- 1622, 2010.

[7] Chazelle, B.M.: Convex decompositions of polyhedra, In Proceedings of the thirteenth annual

ACMsymposium on Theory of computing (STOC '81).ACM, New York, NY, USA, 70- 79, 1981.

[8] Ehmann, S.A.; Lin, M.C.: Accurate and fast proximity queries between polyhedra using convex

surface decomposition, Computer Graphics Forum, 500- 510, 2001.

[9] Fogel, E.; Halperin, D.: Exact and efficient construction of Minkowski sums of convex polyhedra

with applications, Computer- Aided Design, 39, 929- 940, 2007.

[10] Ghosh, P.K.: A unified computational framework for Minkowski operations, Computers &

Graphics, 17(4), 357- 378, 1993.

[11] Guibas, L.; Seidel, R.: Computing convolutions by reciprocal search, In Proceedings of second

annual symposium on Computational geometry, SCG’86 New York, NY, USA: ACM, 90- 99, 1986.

[12] Hachenberger, P.: Exact Minkowski sums of polyhedra and exact and efficient decomposition of

polyhedra into convex pieces, Algorithmica, 55, 329- 345, 2009.

[13] Halperin, D.: Robust geometric computing in motion, I.J. Robotic Res., 21(3), 219- 232, 2002.

[14] Huang, P.; Wang, C.C.L.: Volume and complexity bounded simplification of solid model

represented by binary space partition. In Proceedings of 14th ACM Symposium on Solid and

Physical Modeling, SPM’10 New York, NY, USA: ACM, 177- 182, 2010.

[15] Kaul, A.; Rossignac, J.R.: Solid- interpolating deformations: Construction and animation of pips,

Computers & Graphics, 16(1), 107- 115, 1992.

[16] Li, W.; McMains, S.: A gpu- based voxelization approach to 3d Minkowski sum computation, In

Proceedings of the 14th ACM Symposium on Solid and Physical Modeling, SPM’10 New York, NY,

USA: ACM, 31- 40, 2010.

[17] Lien, J.M.: Point- based Minkowski sum boundary, In Proceedings of the 15th Pacific Conference

on Computer Graphics and Applications (PG '07), IEEE Computer Society, Washington, DC, USA,

261- 270, 2007.

[18] Lien, J.M.: A simple method for computing Minkowski sum boundary in 3d using collision

detection, In Proceedings of WAFR’ 08, 401- 415, 2008.

[19] Lien, J.M.; Amato, N.M.: Approximate convex decomposition of polyhedra and its applications,

Computer- Aided Geometric Design, 25, 503- 522, 2008.

[20] Peternell, M.; Steiner, T.: Minkowski sum boundary surfaces of 3d- objects, Graphical Models, 69,

180- 190, 2007.

[21] Evans, R.C.; O'Connor, M.A.; Rossignac, J.R.: Construction of Minkowski sums and derivatives

morphological combinations of arbitrary polyhedra in CAD/CAM systems, US Patent 5159512,

1992.

Computer- Aided Design & Applications, 10(3), 2013, 475- 487

© 2013 CAD Solutions, LLC, http://www.cadanda.com

487

[22] The CGAL Project: CGAL User and Reference Manual, CGAL Editorial Board, 3.9 Edition,

http://www.cgal.org/, 2011.

[23] Varadhan, G.; Manocha, D.: Accurate Minkowski sum approximation of polyhedral models,

Graphical Models, 68, 343- 355, 2006.

[24] Wein, R.: Exact and efficient construction of planar Minkowski sums using the convolution

method, In Proceedings of the 14th conference on Annual European Symposium - Volume

14(ESA'06), Yossi Azar and Thomas Erlebach (Eds.), Vol. 14, Springer- Verlag, London, UK, 829-

840, 2006.

[25] de Berg, M.; Cheong, O.; van Kreveld, M.; Overmars, M.: Computational Geometry: Algorithms and

Applications. Springer- Verlag, Berlin, 1997.

