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ABSTRACT 
 

Accurate determination of the flexion-extension axis of the elbow affects the 
outcome of implant replacement. The current study proposes an automated approach 
capable of determining the FE axis based on a stack of axial computer tomographic 
(CT) imaging slices of the distal humerus. The core of the algorithm consists of an 
original technique employing control polygon deformation used to approximate the 
segmented outer cortical bone points with closed B-Splines, followed by curvature-
based and least squares fitting methods for determination of the two relevant 
geometric centers. The new approach was validated against a conventional voxel-
based FE axis determination procedure involving marching cubes algorithm. 
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1 INTRODUCTION 

Among human body joints, elbow is generally regarded as the articulation with the most complex 
anatomy. The role of the elbow within the complex kinematics and dynamics of the upper limb is often 
more prominent than that of the wrist and shoulder. As such, any impairments of its functionality, 
caused either by accidents or by various pathological conditions (fractures, arthritis, bone tumors, etc.) 
have to be addressed promptly.  

One of common surgical procedures aiming to restore much of the lost functionality of middle 
articulation of the upper extremity is total elbow arthroplasty. Within the scope of this procedure, the 
damaged elbow articulation is partially or totally replaced by an artificial prosthetic device attempting 
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to match its native equivalent. One of the main factors contributing to the successful long term 
outcome of the surgical arthroplastic procedure is related to the accurate replication of the primary 
rotational axis of the elbow [13], commonly termed flexion-extension (FE) axis. Indeed, the 
misalignment between native and artificial FE axes alters elbow kinematics and eventually leads to 
implant failures, whose avoidance is highly desirable from both patient and health care economics 
perspectives [20].  

In conventional biomechanics, the FE axis is somewhat axiomatically defined as the line that 
connects the centers of a spherical-like and circular-like feature which are easily identifiable on the 
anatomy of the distal humerus and are termed capitellum and trochlear sulcus, respectively (Fig. 1). 
Historically, one of the first studies to characterize the direction of FE axis belongs to [17] who showed 
that the elbow rotates as a uniaxial joint. London proposed to define its rotational axis as the line 
passing through the centers of the arcs outlined by the bottom of the trochlear sulcus and the 
periphery of the capitellum. Further attempts to determine the location of the FE axis were performed 
in vitro by [25] who used milled slices of cadaveric humeral specimens to obtain points along the line 
connecting the proposed geometric centers. While the development of modern electromagnetic and 
radiostereometric devices allow “online” in vivo determinations of the perhaps variable FE axis posture 
(i.e. position and orientation) [26,11], these methods rely heavily on the accuracy of the equipment 
used and are relatively difficult to instrument in a clinical setting. 

 
Since accurate determination of the FE axis is of paramount importance during the elbow 

replacement procedure, surgeons are generally required to establish intereoperatively its position 
based on alternate humeral bony landmarks that are exposed and thereby visible during surgery [21]. 
However, the inherent subjectivity of this approach makes it susceptible for generation of clinically 
significant implant alignment errors [8].  

A different approach for FE axis determination relies on the use of alternate methods to 
reconstruct the shape of the distal humerus, followed by geometry-specific techniques to locate the 
position of the two relevant centers. While simple quasi-lateral radiographic images could be sufficient 
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Fig. 1: Anatomical position and orientation of the flexion-extension axis: a) medial, b) anterior, and 
c) lateral views of the distal humerus.  

b) c) 

trochlea 
center 



 

Computer-Aided Design & Applications, 10(4), 2013, 551-565 
© 2013 CAD Solutions, LLC, http://www.cadanda.com 

 

553 

to establish the position of the two anatomical landmarks [7], other types of digital data would also be 
suitable for more precise and in-depth analyses of the FE axis posture. One of the first ideas in this 
regard was to digitize the anatomy of the capitellum and trochlea by means of a contact-based stylus, 
followed by the use of least-square fitting method to determine the corresponding geometric centers 
[16,10]. However, since this approach is only possible in context of in vitro studies, its later 
enhancements relied on CT-acquired data [9,19,20]. One of the major advantages of the “offline” 
imaging-based methods is that after the incipient in vitro development and validation, they can be 
subsequenly extended to patients by means of conventional fiducial-based registration procedures 
[19]. On the other hand, since in this case user interaction along with manual manipulation of the data 
is required, it is relatively difficult to preserve the consistency of the results among users with 
undesirable consequences on FE axis posture accuracy.  

To address this issue, automated shape recognition methods based on imaging techniques could 
be employed [22], especially when combined with appropriate orientation estimation techniques that 
are specifically oriented towards anatomical structures [5]. However, when it comes to practical 
engineering applications, the effectiveness of voxel-originated representations – regardless if surface 
or volume-based - that are omnipresent in medical imaging is at least questionable for at least two 
reasons [2,14]. On one hand, the accuracy of voxel-originated data is direct proportional with its 
overall size. Moreover, its accuracy is inherently limited by the initial size of the pixel/voxel used 
during body scan procedure that in turn cannot be decreased too much due to patient radiation 
overexposure concerns. Because of this, while the advancements in computer graphics might be 
arguably capable to keep up with the data volume requirements, resolution restrictions are 
unavoidable. Secondly, the use of the pixel/voxel-originated data within the wide range engineering 
applications available is impossible, since many of them require parametric (B-Spline/NURBS) data 
formats in order to make full use of their capabilities.  

Numerous attempts were made to develop heterogeneous parametric representation of various 
human body external or internal elements/organs [6]. In most studies, parametric models were 
generated through specialized reverse engineering operations performed on data acquired via CT or 
MRI scans. Very often, the reconstruction of the human anatomical features comes down to 
approximation of the planar segmented point datasets with parametric curves determined by means of 
custom-written routines [3,14] or commercial CAD software [1].  

The survey of the available literature reveals that in relatively rare instances the precision of the 
parametric models of the human body-originated shapes was checked either against their physical 
correspondent or against alternate imaging-based methods. Within the scope of the current study, an 
automated technique was developed to establish the orientation of the elbow FE axis based on the 
parametric models of the distal humerus. The position of the two geometric centers involved in FE axis 
determination was tested against a conventional method involving medical imaging-specific data and 
procedures. More details about the developed FE axis determination technique will be provided in the 
subsequent sections. 

2 B-SPLINE BASED DETERMINATION OF FLEXION-EXTENSION AXIS 

In order to determine the location of the two geometric centers that are determinant for the direction 
of the elbow FE axis, the first task to be accomplished is generation of a parametric representation of 
the distal humerus based on an input consisting of axial slices of the bone acquired through CT 
scanning.  
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2.1 Detection of Outer Cortical Bone Contours 

The method used in this study to extract the outer contours of the cortical bone represents a direct 
derivation of the concept proposed by [15], according to which an accurate threshold for geometric 
segmentation purposes has to be set at 49% of the difference of the density between the adjacent 
tissues. It is important to outline here that when CT data is acquired with low power – which is 
generally the case in clinical settings – the resulting images are blurred and this has a significant 
impact on the dimensional precision of the segmented bone contours. Specifically, when segmentation 
threshold value is set too high, the resulting representation of the bone will be smaller than its 
physical correspondent, whereas when threshold value is set too low, CT bone model will yield larger 
than the actual object.  

The thresholding technique used in this study was based on the percentage of the brightest pixel 
identified in each of the CT slices analyzed. After performing a series of preliminary tests involving 
outer bone contour segmentation with various thresholds, followed by verification against the scanned 
humeral specimen, it was established that the best dimensional match between digital and physical 
representations of the bone is achieved when 40% from the brightest pixel intensity is used as a cutoff 
value. By employing this threshold value, the segmentation algorithm zigzagged through the columns 
of the 2D matrix of pixels characteristic to each CT slice and retained the row of the first and last pixel 
of each column satisfying the set thresholding condition. Obviously, no pixels were extracted for 
columns placed away from bone cross sectional area (Fig. 2a). 

 

 
Fig. 2: Representative axial cross sections through distal humerus: (a) raw CT slices, and  
(b) parametric curve-approximated outer bone contours. 

 
Furthermore, the characteristics of the scanning (column zig-zag and horizontal left-right) process 
performed on the 2D matrix of pixels ensure that segmented CT data points form an array that can be 
easily ordered based on their X (or Y) coordinates, such that geometrically adjacent/neighboring points 
become consecutively placed in the array. This sequentiality bears a particular importance from the 
perspective of the curve fitting technique to be detailed below.  

2.2 Planar and Closed B-Spline Fitting by Control Polygon Deformation 

Given the level of maturity acquired by the parametric representations in context of engineering 
applications, this type of curves was chosen to approximate the point dataset extracted through the 
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thresholding technique outlined at Section 2.1. Furthermore, among the existing pool of parametric 
curves, planar and closed B-Splines are deemed to be capable to trace the outer contours of distal 
humerus with sufficient precision. Both planar and closed characteristics of the parametric curves 
used are dictated by the intrinsic features of the acquired CT slices and humeral cross sections, 
respectively.  

According to generic computer-aided geometric modeling theory, the parametric form of planar 
and closed B-Splines (Fig. 2b) is:    
    

P
B
(u)  N

i,k
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are the 1n   vertices of the control polygon, and 

  
u  [u

p
,u

n1
]  is the inherent 

parameter of the curve. In Eq. (1) 1k p   represents the order of the p -th degree curve. The 
present study relied on the control point wrapping technique to generate the parametric expression of 
closed and planar ( CPi

Z = const.) B-Splines as described by [4]. According to this method, the last p  

points are to coincide with the first p  points of the control polygon in order to close an initially open 
B-Spline: 
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The closed form of the curve implies that  
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with initial conditions set by: 
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It is important to emphasize here that while the total length of the knot vector 
0 1

{ ... }
m

u u uU  

of the cubic B-Spline curve is 1m n k   , the active range of its closed form is defined only 
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between p
u and

1n
u


, to a total of   m  2p  knots. The planar and closed B-Splines built on these 

theoretical premises are 1pC  continuous. 
When it comes to the actual determination of knot values, numerous attempts were made to 

propose robust parametrization schemes capable to trace even highly sparse and/or unevenly 
distributed datapoints. While the number of studies focused on determination of adequate 
parametrizations for closed B-Spline is considerably smaller, some progress in this direction was also 
reported in the literature [23]. Within the limited scope of the current study, and by taking into 
consideration the relative uniformity and density of the datapoints to be approximated by the closed 
B-Spline, just uniform parametrization was tested: 

 
  
u

i1
 u

i
 1, fori  {p,(p 1),...,n}

 
(6) 

Based mathematical formulation outlined by Eqs. (1-7) above, planar and closed B-Spline curves 
are fully determined once their control polygon and knot vector are known. Because of this, the current 
problem at hand comes down eventually to the development of a robust B-Spline fitting technique, 
capable to approximate with a certain tolerance/accuracy a given of extracted data points. Many of the 
presently available solutions in this regard rely or are derived – to a larger or a lesser extent – on the 
knot removal techniques as originally detailed by [24] in their comprehensive monograph on NURBS. 
Nevertheless, the current work employed a completely different approach, essentially inspired from a 
recent observation according to which a “good” B-Spline would not deviate much from its control 
polygon [12].  

The novel approach developed in the framework of the present study for B-Spline fitting purposes 
is based on a knot insertion technique performed to support a deforming control polygon whose 
length increases progressively to enable a superior approximation of the given datapoints. The 
continuous reshaping of the closed B-Spline is controlled at two different levels, via global and local 
tolerances, respectively. To satisfy this condition, global control 

 mean
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i
to the closed B-Spline curve: 
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where
D

n represents the number of extracted CT data points, and 
D

B
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i
P represents the location of 

the projection (footprint) of D
i
 on the closed B-Spline curve. For each analyzed data point, the 

projection is determined through a nonlinear bounded optimization technique employing golden 
section search and parabolic interpolation while seeking for the point on the curve whose normal 
passes through D

i
. As expected, | |P in Eq. (7) represents the Euclidian norm of the three-dimensional 

vector P .  

In addition to 
 mean

, a local control was also used: 
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The core of the developed curve fitting algorithm consists in the iterative addition of new control 
points that are selected in a manner capable to gradually reduce the distance between given dataset 
and approximating curve. Following Floater’s idea [12], control points are in fact intentionally chosen 
to be a subset of the data points to be approximated (

  
CP

i
 {D
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,D

1
,...,D

nD
} ).  Due to the particularities 
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of the CT thresholding method used, each control point of the approximating B-Spline can be uniquely 
identified within the initial array of given data points (

  
CP

i
 D

CPi
 D

l
). 

The algorithm used to fit a closed and planar cubic B-Spline to the segmented points of the distal 
humerus consists of the three major steps: 

Step 1: Initialization.  
The algorithm starts off by generating a closed B-Spline whose shape is determined by the location 

of four control points selected in extreme positions with respect to the initial dataset of segmented CT 
points (Fig. 3a): 
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(9) 

 
Step 2: Global modification.  
This step ensures that the mean error defined by Eq. (7) becomes smaller than a certain predefined 

tolerance: 

  


mean
 

global
  (10) 

To achieve this goal, a new control point is dichotomically added between each pair of successive 
control points, such that each control point segment is practically replaced by two new ones.  The new 
points added to the control dataset in each iteration are those located at maximum distances with 
respect to the current location of the control polygon segments according to the following relationship: 
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(11) 

This step iterates around the contour of the bone until global tolerance condition in Eq. (10) is 
satisfied. The new control point newCPi

P  is inserted in the control point array between 
CPi

P and 
1CPi 

P . 

Step 3: Local modification.  
Once the global condition of tolerance was met, fitting algorithm moves in the local modification 

stage, according to which a new preset modifier is being enforced: 

  max
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  (12) 

The maximum distance condition between given points and fitted B-Spline expressed through the 
definition of 

max
  in Eq. (8) is now being checked around the entire contour of the parametric curve. A 

new control point is added to the dataset whenever the condition outlined by Eq. (12) is not verified. 
The new control point to be included for the next iterative representation of the fitted curve represents 
precisely the point located at the maximum distance with respect to the  
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Similar to the global modification phase, the new control points identified in a certain iterative step are 
always inserted in the control point array according to their sequential position, i.e. between CP

i
and 

1
CP

i
which correspond to l and 1l   counters in Eq. (13), respectively. Based on the known local 

modification properties of the B-Spline curves, each iterative step around the closed contour performs 
a gradually decreasing number of control point additions until the local tolerance condition is met.  

 
Fig. 3: Progressive adaptation of the fitted B-Spline curve shape: (a) initial set of segmented CT points,  
(b) approximating curve after one global modification iteration (one Step 2), (c) approximating curve at 
the end of the global modification phase (end of Step2), and (d) final shape of the approximating curve 
(end of Step 3).  

The iterative application of the B-Spline fitting technique based on control polygon deformation 
enables a progressive wrapping of the control polygon around the extracted CT points, as depicted in 
Fig. 3. All decisions made during technique development phase were meant to ensure the efficiency, 
simplicity and precision of the proposed approach, but at the same time one of the major objectives of 
the novel curve fitting method was to reduce the need for subsequent B-Spline fairing/smoothing.  

2.3 Automated Detection of Relevant Features through Local Curvature Analysis 

Once the outer contours of the distal humerus were approximated with planar and closed cubic B-
Splines, the next task comes down to identification of their regions with relevance in FE axis position 
determination. Given the fact that capitellum and trochlea regions (Fig. 2a) are involved in sphere and 
circle fitting respectively, a number of points have to be placed on the parametric curves in 
appropriate locations. In the current approach, determination of the regions of interest of the B-
Splines has been performed through an in-depth analysis of their local curvature pattern. Figure 4 
illustrates the variation of the local curvature along a sample B-Spline whose nonessential lateral 
portion was trimmed off for clarity purposes.  
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Fig. 4: Sample of local curvature pattern along distal humeral B-Splines. 

As it can be observed, all significant points of the analyzed planar B-Spline slices (
1 2 1 2

C ,C ,T ,T ) are in 

fact associated with major changes in the curvature variation. As such, their spatial location can be 
uniquely specified in conjunction with curvature-related conditions.  

According to the fundamentals of differential geometry, the curvature of a parametrically-
expressed planar curve can be determined with: 
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where 
B
( )X u and 

B
( )Y u constitute the components of the general B-Spline curve defined by Eq. (1). 

Since this signed value can be easily calculated for each of the reconstructed B-Splines of the distal 
humerus, the geometric position of the four points with relevance in FE axis determination can be 
established based on the following criteria: 
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For the two points outlining the trochlea region (
1 2

T ,T ) as well as for one of the bounds of the 

capitellum region (
2

C ), numerical searches based on golden section search were used to determine 

their corresponding parameter values (
1 2 2T T C
, ,u u u ) along the analyzed B-Spline. These searches were 

facilitated by the local extremum or zero conditions outlined by Eq. (15), as well as by the particular 
position of these points with respect with cross sectional landmarks defined by Eq. (9), which 
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essentially became the initial guess points of the numerical technique. A special mention has to be 
made about 

2
C , which actually requires a triple pass through zero curvature condition, while the 

trochlea points 
1 2

T ,T were found at the first curvature extremum encountered at the left of 1CP  and at 

the right of 3CP , respectively. Here, the “left” and “right” directions are associated with search 

direction expressed in terms of parameteru , which decreases in both situations. Once 
2

C was found, 

1
C will be always located at the left end of the approximately constant curvature region of the B-

Spline. This represents a direct consequence of the spherical geometry of the capitellum. Once both 

1C
u and 

2C
u are assessed, a number of discrete points are generated on the curve segment between 

them, to be subsequently used in the geometric feature evaluation. Minor adaptations of the search 
directions/boundaries in Eq. (15) are required when switching between left and right hand humeral 
specimens.  

 
Fig. 5: Determination of the geometric characteristics of FE axis through least squares fitting. 

 
After all relevant capitellum and trochlea points are identified and then extracted from closed B-

Splines, standard least squares fitting methods based on Gauss Newton searches were employed to 
establish the geometric characteristics of the spherical and circular features associated with 
capitellum and trochear shapes (Fig. 5). The circular profile of the trochlea requires determination of 
its characteristic plane prior to other geometric computations. As mentioned in the introductory 
section, the line connecting capitellum and trochlea centers is generally acknowledged as the FE axis 
of the elbow articulation. In addition to their positional attributes, the fitting technique facilitates 
radius-based dimensional characterization of the two anatomical landmarks of interest. 

3 CONVENTIONAL VOXEL-BASED DETERMINATION OF FE AXIS 

This imaging-oriented method was used to provide a comparison basis for the original B-Spline based 
approach described in Section 2. The conventional technique, originally developed in a clinical study 
[16], was subsequently tested also in a navigated implantation and/or computer simulated context 
[19,20,28]. 

Similar to parametric geometry approach, the procedure relies on an input consisting of CT scans 
of the analyzed humeral specimen. Following image acquisition and thresholding/segmentation, the 
polygonal mesh representation of the distal humerus is generated by means of a custom-written 
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numerical code developed in conjunction with Visualization Toolkit graphic libraries [27]. The core of 
the polygonal mesh generation engine consists of marching cubes algorithm [18]. Once the humeral 
surface has been constructed, the user is required to roughly locate in a graphically interactive manner 
the capitellum and trochlea regions. This operation is performed by selecting manually nine and three 
points on capitellum and trochlea respectively that are capable to delimit the shape of the analyzed 
anatomical features (Fig. 6).  

 
Fig. 6: Graphical localization of the anatomical features of interest through manual delimitation of 
their boundaries for: (a) capitellum, and (b) trochea.  
 

Once their boundaries have been identified, the developed numerical algorithm employs a 
proximity search to determine all polygonal mesh vertices that are placed within the previously 
selected limits of the feature. Once the coordinates of all relevant points of the humerus have been 
found (Fig. 6), least squares method was once more used to establish the posture of the FE axis, along 
with dimensional characteristics of the capitellum and trochea. 

4 RESULTS AND DISCUSSION 

In order to compare the two approaches, fresh-frozen specimens of distal humerus were acquired 
with a 64-slice GE LightSpeed Ultra computer tomograph. The CT scans were acquired from by placing 
the humeral bone in a position of approximate coaxiality between its longitudinal canal “axis” and that 
of the CT scanner. The scanning parameters were set to approximately replicate the clinical settings 
with a field of view of 16x16 cm and a power of 120 kVp at 90 mAs. The stack of raw CT slices 
generated was characterized by a resolution of 512x512 pixels and a voxel size of 
0.3125x0.3125x0.625 mm. Once the images were acquired, the position and orientation of the FE axis 
was determined through parametric and voxel-based techniques detailed in Sections 2 and 3, above. 
The two end tolerances for Steps 2 and 3 of the parametric approach were set at 

 


global
 0.2 and 

 


local
 0.5  respectively. 

A visual comparison of the results for one of the analyzed specimens is presented in Fig. 7. As it 
can be noticed, the size and location of the two relevant features determined through the B-Spline 
approach matches reasonably well both the position of the real anatomical landmarks, as well as the 
set of points used to determine the FE axis through the conventional approach that will be further 
used as a baseline in the following quantitative comparisons.  
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It should be noted here that the term “error” is intentionally avoided from the upcoming 
discussion, as it would somehow imply that a “golden standard” has been used as a baseline - perhaps 
in the form of hard measurements performed directly on physical specimens. While this type of 
investigations is possible, they were simply regarded as out of the scope of the current study since 
they would require a more detailed understanding of the effect of environmental conditions 
(temperature, humidity) on the surface hardness and dimensional characteristics of the distal 
humerus. Because of these considerations, the conventional voxel-based approach will be treated as a 
reliable reference, since it was previously validated in the clinical context.  
 

 
Fig. 7: Qualitative comparisons between the resulting point datasets obtained through B-Spline (green) 
and conventional (blue) approaches achieved through: (a)-(d) combined fitted features and bone 
overlay, (e)-(h) direct result overlay. 
 

To better quantify the differences in output between the two techniques, three different 
specimens were processed in parallel through both methods and Tab. 1 summarizes the main 
geometric discrepancies between them.  

 

Feature Name 
Conventionally 

Determined Feature Size 
Difference 

between Methods  
Difference between 

Methods [%] 
Capitellum radius 9.02 – 11.24 mm 0.39 – 1.78 mm 4.31 – 15.83 
Trochlea radius 6.95 - 8.98 mm 0.48 - 0.76 mm 6.94 – 8.51 
FE axis length 17.67 – 22.03 mm 0.34 – 0.77 mm 1.52 - 4.34 

Capitellum center location - 1.23 – 3.16 mm - 
Trochlea center location - 1.35 – 1.67 mm - 
FE axes misorientation - 4.11 – 7.71º - 

Troch planes - 4.53 - 7.31º - 

 
Tab. 1: Quantitative comparisons between B-Spline and voxel-based methods 

 
As it can be observed, while the two techniques will yield comparable results, their output does not 

overlap perfectly. The numbers presented in Tab. 1 seem to imply that while a better match and 
consistency exists for trochlea geometry, larger variations are generally present in conjunction with 
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capitellar geometry. Given the inherent complexity of the two procedures presented for FE axis 
determination, the differences between them are somewhat expectable, especially since their only 
commonalities are related to the initial stack of raw CT slices and least squares fitting procedure, 
among which the latter one is prone to yield different results when initialized with different guess 
values.  Among the other factors that can be deemed responsible for result variability, the differences 
in segmentation and outer bone surface generation techniques would most likely play a major role. The 
difference in thresholding parameters would explain well the consistently smaller size of the features 
obtained through the parametric approach. Furthermore, some supplementary inconsistencies were 
probably also introduced via the manual input required from the user in the conventional approach in 
order to delimit the two relevant anatomical features.  

On the other hand, given the stability of the anatomical conformation of the distal humerus, the 
automated feature recognition method described in Section 2.3 can be automatically applied to 
different humeral specimens, since it requires a minimal input from the user. However, this pattern-
oriented method assumes that: 1) the analyzed planar slices are characterized by a certain 
morphological consistency, and 2) the CT data was acquired in a certain orientation of the humeral 
specimen. While assumption 2 can be easily corrected through successive coordinate transformations, 
assumption 1 prevents the application of this technique in regions of the distal humerus where cross 
sectional slices are truncated/incomplete with respect of the standard shape shown in Fig 3. As such, 
the extreme top and bottom slices through capitellum and trochlea regions cannot be included in the 
developed parametric-based determinations of FE axis and this will cause additional result deviations. 
This limitation of the developed method becomes obvious in Fig. 7e and 7h, but – taken alone – it 
should not represent a major source of result mismatch, provided that the capitellum shape is indeed 
spherical, as assumed. 

5 CONCLUSIONS 

The present study presents a novel method capable to automatically determine the posture of elbow 
flexion-extension axis by starting off with a minimal input consisting of a stack of raw of CT slices of 
the distal humerus. A three-specimen validation of the proposed approach against a conventional 
voxel-based determination revealed that while their outcomes are reasonably comparable, a number of 
factors might cause deviations between results that could add up to 15%. However, while from a pure 
engineering perspective the magnitude of the discrepancies might be regarded as borderline 
satisfactory, the current medical practices will likely treat them as acceptable, since surgeons generally 
lack the adequate means to accurately position the two relevant centers during surgery. Future 
extensions of this work will aim the validation of the proposed methodology via physical 
measurements, in an attempt to improve further its inherent reliability and precision. 
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