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ABSTRACT

As a design and manufacturing principle the combination of the actual deformations

in a designed mechanical part due to all of its service loads and the deviations due to

all of its manufacturing and production uncertainties should be equal or less than its

maximum acceptable total geometric and topological deviations that can satisfy its

form, fit, and function requirements. Therefore, precise knowledge of the actual

deformations of mechanical components under the applied loads and boundary

conditions need to be used to allocate suitable tolerances. However, this process is

optimized only if the minimum geometric zone that covers the evaluated deformations

is studied properly. In order to achieve this goal, the concept of minimum deformation

zone is introduced in this paper. Using this concept, a unified methodology is

developed to find the optimum tolerances for the geometric parameters of mechanical

frame structures. Validity of the developed procedure is studied by conducting case

studies and variety of experiments. The developed methodology can be employed

efficiently during detailed design process in a Computer Aided Design environment.
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1 INTRODUCTION

Transfer of accuracy though the different stages of design and manufacturing is a major concern in

the Product Life- Cycle Management (PLM). The required geometric and dimensional accuracies of

various features in the final product are analysed and decided during the design stage. These design

specifications are documented in the form of Geometric Dimensioning and Tolerancing (GD&T)

standards to be issued to the other PLM activities. Allocation of these tolerances should be conducted

based on precise understanding of actual elastic/plastic deformations of parts and components under

to all service loads and also the geometric and dimensional deviations due to all the inherent error
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sources in manufacturing and assembly processes. Therefore, the total acceptable range of geometric

and topologic deviations from the ideal design that still can satisfy functionality, form, and fitting

requirements of the product need to be able to cover the range of manufacturing and production

errors as well as the expected deformations due to working loads and condition. This relationship can

be simply expressed as:

=ܩ∆ Fܩ ⊖ Iܩ Eqn. 1

ൌ�δe ⊕ δdܩ∆ Eqn. 2

where ܩ∆ is the maximum zone calculated by operator ⊖ between two geometries of Fܩ and .Iܩ Fܩ and

Iܩ refer to the functioning final geometry of the part during working condition, and the initial ideal

geometry of the designed part, respectively. d is a combination of all deformation vectors that

represents deformation of the part due to applied loads, and e is a combination of all deviation

vectors due to manufacturing and assembly errors. Operator ⊕ produces addition and interaction of

the two arguments. Considering the small quantities of d and e comparing to the geometry of the part,

interactions between two sets of vectors of d and e can be neglected, and using superposition concept

we can estimate:

≅ܩ∆ δe + δd Eqn. 3

It is highly important for designers to have a good understanding of d and a valid estimation of e

before allocating design tolerances. Showing the set of evaluated deformation vectors due to applied

loads by ௗ෢ߜ and the estimation set of production errors vectors by ௘෢ߜ� , and by applying the

superposition concept the allocated design tolerances, t, can be calculated as:

=ݐ ௘෢ߜ�ߙ� Fܩ)�ߙ�≅ ⊖ Iܩ − ௗ෢ߜ� ) Eqn. 4

where the final geometry of the part during working condition, ,Fܩ and the ideal geometry of the

designed part, ,Iܩ are the specifications that are already defined by the designers, ௗ෢ߜ is the set of

evaluated deformation vectors due to applied loads, and α is a set of safety factors to compensate for

under/overestimations of production errors or simplifications in evaluating deformations. The safety

factors required for evaluation of deformations reflect the existing uncertainties in the modeling,

loading, and analyses of the structure. Proper estimation of safety factors needs accurate knowledge of

simplifications applied to the model and their consequences, worst case working condition of the

mechanical assembly or structure, and established assumptions in the analysis.

Using Equation 4, designers will be able to calculate tolerances for all of the geometric properties of

parts. However, in a concurrent engineering platform, a good designer also needs to consider

manufacturing cost and restrictions. Usually allocating tighter tolerances needs to be satisfied by more

expensive, more accurate, and more time consuming manufacturing processes. Therefore, it is crucial

to properly calculate terms in Equation 4 during tolerance allocation.

A method to optimize design tolerances by more accurate analyze of the terms in Equation 4 is

presented. In this methodology the allocated tolerances are maximized by minimizing the zone that

covers the entire ideal geometry and all the deformation vectors. This method uses a Finite Element

Analysis (FEA) approach to evaluate the deformation vectors. Without losing the generality, this
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tolerance allocation concept is implemented for the structure with beams and frame elements under

static loading and case study of an automotive structure is used for validation of the process.

2 BACKGROUND

Many designers only use the first expression in Equation 4 for the tolerance allocation process.

Tolerance allocation research similar to work reported in [1- 3] is conducted whit this approach, and

analytical, experimental, or numerical approaches are employed to achieve this goal. They basically try

to estimate the manufacturing and production errors, ௘෢ߜ� , and allocate the tolerances, t, accordingly.

However, this approach doesn’t reflect and asses the final desired geometry, ,Fܩ under the loading

condition. Therefore, the approach cannot lead always to a robust design.

Alternatively, the approach presented in this work is to use the second expression in Equation 4 to

achieve the most appropriate tolerance allocation. Basically, this approach allows the designers to

maintain the final desired geometry of the product while concurrently they try to maximize the range

of allocated tolerances. This approach will automatically make the required manufacturing processes

less expensive and more practical.

In order to use this approach, both analytical or numerical solutions can be used during the design

process to evaluate the deformation vectors, ௗ෢ߜ� . Since the analytical solutions are limited to

application of primitives and simple geometries, in order to develop a unified tolerance allocation

approach this research is focused to utilize general purpose numerical FEA solutions. The

methodology is implemented for frame structures with beam 2 nodes elements.

The finite element solver developed for the structural models uses typical beam elements with

linear shape functions and Galerkin’s Method is used for deriving the beam element equations [4]. The

method divides the structure into nodes and beams (elements). Nodes occur wherever elements

intersect and are associated with the degrees of freedom. The nodes for the beam element each have

six degrees of freedom, three in translation along each axis and three for rotation about each axis. The

set of displacement vectors, ௗ෢ߜ� , can be found using:

ௗ෢ߜ� = ܨଵିܭ� Eqn. 5

where matrix K is the overall assembly stiffness matrix of the entire part or the structure under

loading, and F is the vector of all nodal forces and boundary conditions. In the finite element method

for structural design, a stiffness matrix is a symmetric, positive, and semi- definite matrix that

generalizes the stiffness of Hooke's law to a matrix, describing the stiffness of all of the degrees of

freedom so that the vector of applied forces can be calculated by multiplying this matrix to the vector

of displacements. The assembly stiffness matrix is an assembly of the corresponding stiffness matrices

of all elements. Each individual beam element will have a corresponding stiffness matrix that relates

the element forces with the nodal displacements. The beam element’s stiffness matrix employed in this

work for ith element is as follows:
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Eqn. 6

In the above equation A is the cross- sectional area, ly and Iz are moment of inertia corresponding to y

and z directions respectively when the element is aligned with x- direction in its local coordinate

system, J is the polar moment of inertia, E is Young’s modulus, G is the shear modulus of elasticity,

and L is the length of the ith element. Considering our FEA- based approach and Equation 5, Equation 6

can be expressed as:

=ݐ Fܩ)�ߙ ⊖ Iܩ − (ܨଵିܭ Eqn. 7

where Fܩ is the final geometry of the part during working condition, Iܩ is the ideal geometry of the

designed part, K is the overall assembly stiffness matrix of the entire part or the structure under

loading, F is the vector of all nodal forces and boundary conditions, and α is a set of safety factors.

Having all these terms specified, the only challenge to calculate tolerances, t, will be a proper

definition of operator ⊖ in Equation 7. The research attempts in this area, similar to the work

reported in [5], usually neglected that this operator needs to evaluate the maximum or the largest

zone between the two geometries and what can be achieved by simple subtracting the two geometries

is not necessarily the largest zone between them.

Since the geometric representation of the FEA output for deformations is in form of discrete

displacement vectors, the operator ⊖ needs to find the best fit between the ideal geometry, ,Iܩ and a

group of discrete points specified byߜ�ௗ෢ to maximize Fܩ ⊖ Iܩ − .ܨଵିܭ

Fitting of a given geometry to a group of discrete points is a challenging research area and the

computational algorithms developed for this task are subject to many sources of uncertainties. The

application of research in this area has been used widely for coordinate metrology and inspection of

surface of physical objects. The results, which appear in [6], show that the computational uncertainty

for measuring an Auto- body profile can be as high as 300 µm. Comparing this result with the effect of

other sources of uncertainty in coordinate metrology such as equipment, environment, work- piece

and operator [7], it can be seen that computational uncertainty in most cases can be even higher than

the expanded uncertainty of all other sources. Under these conditions, the total expanded uncertainty

of fitting computational algorithms can be unfeasible for the purpose of tolerance allocation.

The concept of integration of the three basic computation tasks, i.e. Point Measurement Planning

(PMP), Substitute Geometry Estimation (SGE) and Deviation Zone Evaluation (DZE) is discussed in [8].



Computer- Aided Design & Applications, 10(4), 2013, 629- 641

© 2013 CAD Solutions, LLC, http://www.cadanda.com

633

An integrated computational model can significantly solve the problem by providing an online share

of information between the computational tasks. The architecture and general requirements for this

integrated system in form of closed- loops between computational tasks are discussed in [8- 9].

To benefit from potential advantages of integrated computational platform, sophisticated

techniques for on- line generating the uncertainty information are required. Also, at each

computational task, advanced methods are required to efficiently adapt the process based on the

uncertainty information. To improve precision, an estimation of geometric deviations by DZE needs to

be dynamically utilized by PMP to acquire the most useful data set from the measuring surface. Hence,

gradual progress of DZE plays an important role in implementation of the integration concept.

Moreover as the number of measured points increases, estimation of the optimum substitute geometry

by SGE becomes a challenging task due to highly nonlinearity of the resulting optimization problem.

A loop between SGE and PMP is presented in [10]. Using a statistical pattern recognition technique

the distribution of work- piece’s geometric errors is studied and new sample points are captured

accordingly. The results show that implementation of this method can reduce the uncertainty in

inspection of a sculptured surface up to 60%.

DZE task in the traditional system is still in a preliminary stage and cannot provide a reliable

knowledge about the pattern of work- piece’s geometric deviations. It is required to develop methods

that can predict the distribution of geometric deviations.

Evaluating the deviation zone based on the discrete measured points is generally a numerical

evaluation based on a non- differential function. Thus, the problem of understanding the uncertainty

of this evaluation is usually approached by researcher using numerical methods [11- 14]. Two major

sources of uncertainty in the computation tasks are the plug- in nature of the evaluation and the

instability of the computational algorithm. These two issues arise respectively from the improper set

of the measured data and the probability of trapping in the local minima in a highly non- linear

optimization process. Numerous research projects are conducted to enhance the uncertainty inherent

in each one of PMP and SGE tasks. However, the integration of these tasks with DZE and using the

intermediate results to improve PMP and SGE tasks have not been studied properly in past literature.

The stability of the optimization problem in SGE is also has been under attention of researchers. It

is shown in [11] that a closed- loop based operation of DZE and SGE can improve the convergence of

the optimization by providing suitable initial conditions for partial fitting process. It is shown in [15]

how alternative SGE objective functions can be defined based on the ultimate goal of the inspection

process. The results show significant improvement in the fitting accuracy and stability.

Research on integration of mutual tasks has been also very limited. It has been attempted to

develop a more suitable set of sampling points in an iterative fashion. An iterative sampling method is

proposed in [16]. The method uses the available measured points and their normal vectors in an

algorithm to interpolate the surface deviations between the measurement locations by a cubic

polynomial to decide when and where additional sampling is required. Results show a significant

reduction of uncertainty. However, this study doesn’t provide any justification for its proposed

interpolation algorithm.

The discrete points in the current work are generated by a FEA process, which are generated based

on the utilized element’s shape function. Selection of the most suitable group of these points is a

complicated task that needs to be addressed in the future. For the purpose of the current research, the

number and location of the measurements are selected exactly at the elements’ nods.
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3 METHODOLOGY

3.1 Allocation of Tolerance Zone

Considering having a predefined and fixed ,Fܩ in order to maximize t in Equation 7, the zone specified

by Fܩ) ⊖ Iܩ − (ܨଵିܭ needs to be maximized. We introduce a new geometric term, ,௦ܩ called substitute

geometry which has exact geometric and topological properties of the original geometry an original, ,ܩ

but it has been transferred to a different location and orientation using affine transformation maps.

௦ܩ = (ߞ)ܶ × ܩ Eqn. 8

where ௦ܩ is the substitute geometry of the original geometry .ܩ Matrix (ߞ)ܶ is an orthogonal

homogeneous transformation matrix which is a combination of three rotations about the three axes,

following with three translations along the axes of the Cartesian coordinate system. Vector variables ߞ

consist of three rotation and three transformation parameters [15]. The substitute geometry has all the

properties of the original geometry.

If one finds a specific substitute geometry of the final functioning geometry, ,Fܩ that maximizes the

expression in Equation 7, then the operator ⊖ can be also substituted by subtraction. labelling this

optimum substitute geometry by ிܩ
௦∗, then Equation 7 can be rewritten as:

=ݐ ிܩ)�ߙ
௦∗ − Iܩ − (ܨଵିܭ Eqn. 9

Therefore, the objective to find this optimum substitute geometry will be:

ܱܾ݆ ݁ܿ ݒ݁ݐ݅ ݊ݑܨ� ݊݋ݐܿ݅ = ถݔܽܯ
఍

ܯ] ݅݊ ிܩ‖
௦− Iܩ) + [‖(ܨଵିܭ Eqn. 10

where the statement inside the norm sign indicates the Euclidian distance of any point of Iܩ + ,ܨଵିܭ

from the temporary substitute geometry, ிܩ
௦. If the optimization process successfully find the best set

of Vector variables, ,∗ߞ then the optimum substitute for the final functioning geometry can be

calculated using Equation 8.

If the tolerance zone is specified by uniform offsets from a nominal geometry, similar to the

common practice and the way that it is defined in the variety of GD&T standards, then maximizing the

minimum of Euclidian distance from ிܩ
௦ can be equivalent to minimizing the maximum distance of

Euclidian distance from the substitute of the ideal initial geometry, ூܩ
௦. Therefore the objective function

in Equation 10 also can be achieved using:

ܱܾ݆ ݁ܿ ݒ݁ݐ݅ ݊ݑܨ� ݊݋ݐܿ݅ = ܯ ݅݊ถ
఍

ூܩ‖ݔܽܯ]
௦− Iܩ) + [‖(ܨଵିܭ Eqn. 11

This is the ஶܮ -norm equation for minimum deviation zone fitting [15]. By utilizing a proper

optimization process, the optimum vector variable ∗ߞ can be found in a way that the ஶܮ -norm equation

is minimized. In this case the optimum substitute for the ideal initial geometry is calculated using the

following Equation:

ூܩ
௦∗ = (∗ߞ)ܶ × Iܩ Eqn. 12
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The nearest point of the optimum substitute geometry, ௜݌
∗, to the measured point, ,௜݌ is called the

corresponding point. The deviation of the measured points from the optimum substitute geometry, ௜݁,

is the dot product of the vector from the corresponding point to the measured point, and the normal

vector of the substitute geometry at the corresponding point, ௜݊
∗.

௜݁=
(௣೔

∗ି௣೔)∙�௡೔
∗

ห௡೔
∗ห

௜݌�����������������
∗ ∈ ூܩ

௦∗ Eqn. 13

Evaluated geometric deviations, e
i
, are labelled data captured from a continuous random variable, e

with a probability density function, f(e). This function is a result of all the geometric deformation of

the ideal geometry due to applied loads.

3.2 The Best Substitute for Multi-Feature Geometries

Assume two actual geometric features, ଵܩ
ᇱand ଶܩ

ᇱ, are deformed geometric features due to combination

of all loads and boundary conditions which are designed based on the specifications of two desired

(ideal) geometric features, 1ܩ and ,2ܩ respectively. Figure 1- a shows the two geometric features. The

desired geometric relationship between the two geometric features is shown in Figure 1- b.

Fig. 1: Inspection of deformations in a multi- feature geometry.

Figure 1- c shows two sets of the measured points, 1ܲ1
and 2ܲ, which are assumed to be the sets of

the best representative measured points from, ଵܩ
ᇱand ଶܩ

ᇱ, respectively. Let’s use operator ⋃ for the

desired geometric relationship between two geometric features (Figure 1- b). Therefore the geometric

tolerance between 1ܩ and ,2ܩ is specified by the acceptable variations of 2ܩ⋃1ܩ and the optimum

substitute geometry is defined as:

∗ܩ = ∗(ଶܩ⋃ଵܩ) Eqn. 14

4 IMPLEMENTATION

The beam- frame model is used for an implementation of the presented methodology. Finite Element

Analysis determines nodal deflection of the design structure due to applied loading conditions using

Equation 5. Once the deflections have been found, Equations 11 to 12 are used to allocate the
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optimum tolerances for the structural components. As a case- study the three dimensional frame

structure of a vehicle is analyzed (Figure 2).

Fig. 2: Beam element model.

Figure 3- a shows 34 labeled beam elements exist in this structure. All of these elements have

solid circular cross- sections. Figure 3- b shows the 20 nodes that connect these 34 beam elements.

Table 1 presents elements information including their corresponding nodes and their radiuses and

Table 2 presents the ideal coordinates of the 20 nodes.

Element # Node 1 Node 2 Radius (mm) Element # Node 1 Node 2 Radius (mm)

1 1 2 60 18 9 10 60

2 1 3 60 19 10 12 60

3 1 5 60 20 11 12 60

4 2 4 60 21 11 13 60

5 2 6 60 22 12 14 60

6 3 4 60 23 13 15 60

7 3 7 60 24 13 19 60

8 4 8 60 25 13 14 60

9 5 6 60 26 14 16 60

10 5 7 60 27 14 20 60

11 5 15 60 27 15 16 60

12 6 8 60 29 15 17 60

13 6 16 60 30 16 18 60

14 7 8 60 31 17 18 60

15 7 9 60 32 17 19 60

16 8 10 60 33 18 20 60

17 9 11 60 34 19 20 60

Tab. 2: 34 labeled beam elements exist in the structure.
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(a) (b)

Fig.3: Beam Element Geometry with Constraints and Loads: (a) elements’ numbers (b) nodes’ numbers.

Node # X (m) Y (m) Z(m) Node # X (m) Y (m) Z(m)

1 0 0 0 11 3.3 0 1.35

2 0 1.5 0 12 3.3 1.5 1.35

3 0 0 0.8 13 3.85 0 0.9

4 0 1.5 0.8 14 3.85 1.5 0.9

5 1.35 0 0 15 3.85 0 0

6 1.35 1.5 0 16 3.85 1.5 0

7 1.35 0 0.8 17 4.4 0 0

8 1.35 1.5 0.8 18 4.4 1.5 0

9 2.05 0 1.35 19 4.4 0 0.9

10 3.05 1.5 1.35 20 4.4 1.5 0.9

Tab. 1: 20 labeled nodal ideal coordinates of the structure.

For this case study, without any loss of generality the bending deformation of the structure is

analyzed. Figure 3 also shows the static loading and support condition of the structure causing a

bending event. Vertical loads of 8696 N are applied at nodes 1 and 2 when a fixed boundary condition

is applied at the rear of the structure (nodes 15 and 16). The amount of bending loads are calculated

based on assumed weights for the vehicle components such as the drivetrain and passengers as well

as the weight of the structure itself (Table 3).

Component Weight (N) Centre of Gravity Position (m)

Front Bumper 200 0

Powertrain 3000 0.65

Front Passengers & Seats 2000 2.2

Rear Passengers & Seats 2500 3

Fuel Tank 500 2.95

Luggage 950 4

Rear Bumper 300 4.4

Exhaust 350 2.5

Structure 7592 2.043

Tab. 3: Component weights for initial analysis.
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After calculating the nodal deformation using Equations 5 and 6, and by assuming total of

± 2mm for all elements as the total acceptable range of deviations, ,ܩ∆ the available tolerances for

each element are calculated. The tolerance lower limit (Min. Tol.), upper limit (Max. Tol.), and total

range for each element are listed in Table 4 as the original tolerances.

Element
#

Min. Tol.

Original

(mm)

Max. Tol.

Original

(mm)

Tol. range

Original

(mm)

Min. Tol.

Optimized

(mm)

Max. Tol.

Optimized

(mm)

Tol. range

Optimized

(mm)

Increase

of range

of Tol.

1 - 0.82 0.82 1.64 - 5.40 5.68 11.08 574.25%

2 - 6.00 5.17 11.17 - 6.00 5.77 11.77 5.37%

3 - 0.82 2.60 3.42 - 5.30 5.43 10.73 213.78%

4 - 6.00 5.17 11.17 - 6.00 5.80 11.80 5.64%

5 - 0.82 2.60 3.42 - 5.57 5.70 11.27 229.57%

6 - 0.76 0.76 1.51 - 5.43 5.72 11.15 637.22%

7 - 0.82 2.60 3.42 - 5.32 6.00 11.32 231.02%

8 - 6.00 0.82 6.82 - 5.60 6.00 11.60 70.03%

9 - 2.60 2.60 5.19 - 5.29 5.57 10.86 108.97%

10 - 6.00 5.17 11.17 - 6.00 5.75 11.75 5.15%

11 - 2.60 6.00 8.60 - 4.96 5.30 10.26 19.38%

12 - 6.00 5.17 11.17 - 6.00 5.78 11.78 5.41%

13 - 2.60 6.00 8.60 - 5.23 5.57 10.81 25.70%

14 - 2.50 2.50 4.99 - 5.32 5.60 10.92 118.57%

15 - 3.84 6.00 9.84 - 6.00 5.43 11.43 16.18%

16 - 6.00 3.02 9.02 - 6.00 4.97 10.97 21.62%

17 - 5.17 3.25 8.41 - 5.52 5.14 10.66 26.76%

18 - 3.03 3.03 6.06 - 4.96 5.53 10.49 72.98%

19 - 6.00 3.25 9.25 - 4.96 5.42 10.38 12.30%

20 - 4.43 4.43 8.86 - 5.41 5.14 10.54 19.05%

21 - 5.58 4.51 10.09 - 5.07 6.00 11.07 9.62%

22 - 6.00 4.51 10.51 - 5.26 6.00 11.26 7.12%

23 - 6.00 5.35 11.35 - 5.76 5.70 11.46 0.94%

24 - 5.68 5.99 11.67 - 5.33 4.99 10.32 - 11.57%

25 - 5.35 5.35 10.70 - 5.22 4.96 10.18 - 4.83%

26 - 6.00 5.35 11.35 - 5.72 5.72 11.44 0.83%

27 - 6.00 5.68 11.68 - 5.61 5.27 10.88 - 6.82%

27 - 6.00 6.00 12.00 - 4.96 5.24 10.20 - 14.96%

29 - 5.68 6.00 11.68 - 5.30 4.96 10.26 - 12.14%

30 - 6.00 5.68 11.68 - 5.56 5.23 10.79 - 7.60%

31 - 5.68 5.68 11.36 - 5.31 5.58 10.89 - 4.19%

32 - 6.00 5.35 11.35 - 5.75 5.69 11.44 0.82%

33 - 6.00 5.35 11.35 - 5.72 5.71 11.43 0.71%

34 - 5.27 5.27 10.55 - 5.53 5.29 10.82 2.60%

Tab. 4: Allocate tolerances for 34 labeled beam elements after and before optimization.
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Using the optimization process presented by Equations 11 the optimum vector of the

transformation variables, ,∗ߞ is calculated as follows:

Rotation

about X- axis

Rotation

about Y- axis

Rotation

about Z- axis

Translation

along X- axis

Translation

along Y- axis

Translation

along Z- axis

- 0.0002 rad - 0.0012 rad - 0.00002 rad - 0.0210 mm - 0.0117 mm 5.7101 mm

Tab. 5: Optimum vector of the transformation variables.

By employing this optimum transformation vector the optimized allocated tolerances are

calculated. Table 4 presents lower limit (Min. Tol.), upper limit (Max. Tol.), and the total range of

optimized tolerance for each element. The last column of Table 4 lists the percentage of increase of

tolerance range for each element after optimization comparing to the original tolerances. It can be

seen that in average the total tolerance range of element is increased for 69.98%.

Figures 4- a and 4- b demonstrate distribution of the tolerance upper and lower limits for

elements before and after optimization, respectively. Comparing the two figures shows that the

allocated tolerance zones for the elements are maximized after applying the presented optimization

process.

(b)

(a)

Fig. 4: Distribution of the tolerance upper and lower limits for elements (a) original allocated tolerances

(b) tolerances after proposed optimization processes.
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5 CONCLUSION

A new approach to allocate proper design tolerances considering the actual deformations of the

mechanical parts and components due to their loading condition is presented. Methodology and a

practical procedure are detailed and it is shown that implementation of the developed methodology

allocates maximized tolerance zones for the components without losing the desired accuracy and

functionality of the final product.

Allocating unnecessary tight tolerances to design usually increases manufacturing cost and time.

Utilizing the concept and methodology presented in this paper eliminates this waste. The presented

case- study demonstrates that by employing the proposed procedure for a typical structural design

under a typical loading condition, the increase of tolerance zone can be as significant as 69%.
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