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ABSTRACT 
 

B-spline representation is one of the main methods for free-form surface 
modeling and has become the standard for CAD systems. However, in Virtual 
Reality (VR) environment, when a B-spline surface deforms, the blending 
functions need to be continuously computed. The high computational cost of 
continuously calculating the blending functions for merging, collision 
detection and physics-based deformation system, while the model is 
deforming, restricts the use of B-spline representation in a VR environment. 
This paper presents an alternative methodology to represent B-spline surface 
patches for an interactive VR environment. A uniformly discretized B-spline 
surface patch can be represented by a set of control points and two pre-
calculated B-spline blending matrices. The proposed technique exploits the 
fact that these B-spline blending matrices are independent of the position of 
control points and therefore can be pre-calculated. The blending matrices 
enable the algorithm to merge B-spline surface patches, accurately check the 
collision, and generate nodes for the mass spring system to determine 
deformation using the physics-based model. This technique does away with 
the need to calculate computationally intensive blending functions for the B-
spline surfaces, and inverse of large matrices during the run-time.  
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1 INTRODUCTION 

The rapid advancement of virtual reality technology has led to the development of a variety of 
applications in computer graphics, gaming and entertainment, engineering analysis, surgical training, 
and interactive design. Several studies have suggested [4, 23, 25, 26] that virtual reality promises to be 
a very intuitive, creative and cost effective method for concept design. Computer Graphics (CG) and 
Computer Aided Design (CAD) prefer parametric surface representations, since these can represent 
complex surfaces with simplicity and minimal storage [17]. Another advantage of this type of 
representation is that the points on these parametric surfaces can be determined for any given value 
of parameter u and v. A tensor product parametric surface with B-spline blending functions is the 
most commonly used parametric representation in modern CAD software. Thus it is imperative that 
any Virtual Reality (VR) based concept design system should use the B-spline representation for 
seamless exchange between CAD and VR systems. 

A B-spline surface with r and s number of control points in u and v directions, respectively, is 
given by the equation,  
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where ijP is the control points vector, ( )ikB u and ( )jlB v are the blending functions of the surface with 

order k and l in u and v directions, respectively. The blending functions depend upon the periodicity 
of the surface (in u and/or v directions), the knot vector, the degree of the surface in u and v 
directions, and the number of control points in u and v directions. The blending functions are 
independent of the position of the control points.  The B-spline blending function has the property of 
recursion which is defined as:  , 1 1, 1
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The blending function for a periodic B-spline is modified as:  , 0,( ) (( 1) mod( 1))i k kB u B u i n n      (3) 
A virtual reality-based interactive product concept design system must support visual object 

collision detection, physics-based modeling, the merging of surfaces representing the virtual objects, 
and haptic manipulation. The collision detection algorithm provides detailed information about when 
and how multiple virtual objects make contact and interact within the VR space. The physics-based 
system uses this information to determine the deformation and the reactive forces to be fed back to 
the user. At the same time, another essential aspect in B-spline surface modeling is the merging of the 
B-spline surfaces to create interesting and complex design ideas. Several tools have been presented in 
literature, for collision detection, physics based modeling, and merging of B-spline patches that can be 
used in the virtual concept design process. 

The collision detection problem has been extensively researched in published literature [12, 14]. 
Collision detection for a B-spline surface-based deformable model is, in general, computationally 
intensive. It involves continuously calculating the blending functions and new equations of the 
deforming B-spline surface. This is the main reason why there are not many collision detection 
algorithms available in literature for B-spline surface-based deformable objects. Of all the collision 
detection algorithms for B-spline models, the majority is confined to the use of a point-based tool [5, 
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15]. Gao and Gibson [7] presented an algorithm which can detect collision between a B-spline model 
and an implicit surface-based tool. However, this algorithm is limited to implicit surface-based tools 
and cannot be used for collision detection between two B-spline surfaces or between a B-spline model 
and a point-based tool. 

The deformation of the model can be simulated by a geometric- or physics-based system. There 
are many geometric modeling techniques in the published literature to deform a solid model [1, 28]. 
One major limitation of the geometric models is that these cannot realistically simulate deformation 
of the model, particularly if the model consists of multiple materials. A physics-based technique, on 
the other hand, can realistically calculate the deformation and force response of the model, based on 
virtual material properties [13, 20]. A physics-based deformation model gives the designer more 
options to try different types of materials during the concept design phase. This deformation model 
can also be used to validate the concept in real-time. There are many techniques available for physics-
based deformation modeling. However, a mass spring system consisting of a set of particles (nodes) 
connected through a network of spring and dampers can provide reasonable accuracy and speed for 
real-time interaction.  

The degree reduction and merging of Bézier/B-spline curves into a single representation has been 
addressed in the literature by a variety of different analytical approaches [3, 8, 16, 18, 24, 27]. Du and 
Schmitt [6] have described various techniques to establish the conditions of geometric continuity 
between two adjacent bi-parametric surface patches. The continuity conditions enable CAD systems 
to create shapes by stitching or joining numerous low-order bi-parametric patches. Unfortunately,  
many collision detection algorithms used in VR environments [12] do not permit more than a single B-
spline or NURBS surface patch to be considered at any instance in time. Even when a collision 
detection algorithm is designed to tackle multiple B-spline surface patches [7, 9, 19], the continuity of 
these multiple patches will no longer be valid when the model deforms due to interaction with the 
tool. This is because stitching the surface patches does not automatically connect the underlying 
dissimilar mass-spring networks. Hence, the stitching techniques cannot be used in a VR environment 
when the user intends to deform the surface to obtain the desired shape. There are many analytical 
techniques to increase or decrease the degree of a B-spline curve [16, 18], using constrained 
optimization. However the constrained optimization techniques are difficult to use for the surfaces. 
These analytical methods used for merging of B-spline curves and surfaces cannot be used in a virtual 
reality environment during real-time interactions. 

When using B-spline surface representation of the model in a virtual reality environment, all the 
processes require finding the blending function. At the same time, the inverse of large matrices is 
required to be computed which can be computationally intensive and sometimes impossible. The cost 
of computations further increases while dealing with a complex model with a high degree of 
deformation and having multiple contacts. 

In this paper, blending matrices are presented as an alternative methodology which can be used to 
establish a uniform mathematical model for all aspects of B-spline surface modeling/manipulation 
needed in a virtual concept design process. These blending matrices can provide a general tool for the 
conversions between different representations of B-spline surfaces. These matrices can be used for 
collision detection between two or more B-spline surfaces, merging B-spline surfaces, and generating 
physics based deformation model. Both the model and the tool can have complex shapes, elastic or 
plastic properties, and multiple contacts. 
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2 CONCEPT OF BLENDING MATRICES 

In a virtual reality environment, all aspects of B-spline surface modeling/manipulation are needed to 
be done in real time. These include shape control, degree control, merging of multiple B-spline 
patches, collision detection, and determining nodes for a mass spring system. In general, blending 
functions need to be computed to achieve B-spline surface modeling and manipulation. The process 
of calculating the blending functions for B-spline surfaces is computationally expensive and an 
alternative method is needed if real time interaction is to be achieved. 

Eqn. (1) can be used to compute a point on a B-spline surface at any fixed (u and v) parameter 
values. Piegl and Tiller [17] have mentioned five steps that are needed to compute a point on a B-
spline patch. These include finding the knot spans in which parameters u and v lie, computing non-
zero basis functions in the u and v directions within these knot vector spans, and multiplying these 
non-zero values of basis function with the corresponding control points. However, this technique 
involves many calculations. At the same time, when a large number of points need to be generated on 
a B-spline surface patch, the cost of computation would be high. The computational cost can be 
reduced by representing the B-spline surfaces as a tensor product surface,  TB BP( , ) [ ][ ][ ][ ][ ]u vS u v u v  (4) 
where 2 1[ ] [1 ...... ]ku u u u  and 2 1[ ] [1 ....... ]lv v v v  . 

This type of representation of B-spline requires computation of these matrices for the given 
values of parameter u and v at which the points are to be determined. However, finding the control 
points which can represent these points would require computing the inverse of the large matrices, 
which can be computationally expensive and sometimes impossible. The Eqn. (4) can be further 
modified to achieve the conversions in real time. This can be done if we can represent a B-spline 
surface as a parametrically uniform grid of points and the underlying blending function in terms of 
pre-calculated blending matrices.  A B-spline surface can be discretized into a set of parametrically 
uniform grid of nodes for various values of u and v. The matrix of discrete points M is given by the 
equation,     u ij vM A P A  (5) 
where uA and A

v
 are blending matrices, and their values depend upon the blending functions and u 

and v parametric values. The values of these blending matrices do not depend upon the position of 
the control points and hence, can be pre-calculated. Thus, there is no need to evaluate the points of 
interest on the surface by substituting corresponding values of u and v in the blending functions. 
These points can be determined by simply multiplying corresponding rows and columns of blending 
matrices with the control point matrix. Fig. 1 shows a typical blending matrix. 
 
If it is required to generate points only in a particular region, the minimum and maximum values of 
the u and v parameters ( minu , minv ; maxu , maxv ) can be used to determine the rows and columns of the 

blending matrices to be used to generate points on the surface. Even the density of these discrete 
points generated on the B-spline surface can be varied by using intermittent rows and columns of the 
blending matrices, as shown in Fig. 1. 

When the virtual model deforms, the discrete points would also change their position. This would 
require finding the new position of the control points which can represent the deformed model. Eqn. 
(5) can be re-written as,  T 1 T T 1[ ]  [ ]T

ij u u u v v v
 P A A A M A A A  (6) 
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Fig. 1: A typical blending matrix. 

 
Eqn. (6) can be used to find the new position of the control points representing the new matrix of 
discrete points. Equations (5-6) will determine the correlation between the control points and the 
points generated on the B-spline surface. A blending matrix can be generated depending upon some 
parameters of the B-spline surface. These include periodicity of the surface in the u and v directions, 
number of control points in the u and v directions, and the maximum number of points to be 
generated on the surface. Two blending matrices are required for every B-spline surface patch to 
generate discrete points. The size of these matrices will depend upon the number of control points 
and the maximum number of points to be generated in u and v directions. The maximum number of 
points to be generated is determined by the accuracy required for collision detection and merging of 
the surfaces. In general, the size of a blending matrix for generating m points on a B-spline surface 
having r control points in u direction will be m × r. Similarly for s number of control points in the v 
direction, a blending matrix of size s × m will generate m points. Together, these two blending 
matrices can generate a maximum of m2 points on the B-spline surface. Fig. 2 shows a discretized B-
spline surface along with the set of control points ijP [22]. 

 

 
Fig. 2: Discretized B-spline surface. 
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In the same manner, the blending matrices for finding tangents at each point generated in the u and v 
directions can be pre-computed. This is useful if tangential properties, such as friction, are also to be 
considered to realistically model material properties. The surface normal can be calculated, at any 
discrete point, by cross multiplication of the tangents in the u and v directions. A surface normal 
helps in correctly mapping the forces to the surface by calculating the forces normal to the surface. 

When the virtual model deforms, due to haptic interaction, the position of the discrete points will 
also change. This would require computation of the new positions of control points that can represent 
the deformed surface. Eqn. (6) can be used to calculate the new position of the control points. This will 
involve computing the inverse of the blending matrices. Since the blending matrices are pre-computed 
and are independent of the position of the control points, their inverses can also be pre-computed. 
This reduces the computational cost of rendering the deformation of the B-spline surface. This 
inverse can be calculated by the Gaussian Elimination Method using ‘complete pivoting’. The complete 
pivot method enhances the robustness of the algorithm. As this is done during pre-processing, the 
time required to calculate the inverse of the matrix does not increase the computational cost during 
the run-time.  

Thus, any B-spline surface can be represented as a set of blending matrices and control point 
matrix in a virtual reality environment. The user can model and manipulate the virtual object. Once 
the user interactively modifies the model, the information of the virtual model can be exchanged as a 
B-spline surface, with the existing commercially available CAD software. This type of representation 
allows for the pre-calculation of the underlying blending functions thereby reducing the 
computational cost of various interactive modifications carried out to the virtual model. 

3 USING BLENDING MATRICES IN VR ENVIRONMENT 

Based on the methodology proposed in this paper, the blending matrices, representing virtual objects 
are calculated and stored. This methodology can be used for a variety of applications in a VR 
environment. Some of these applications are explored in this section. Once a virtual object is 
modelled, it would need to be manipulated so as to get the desired shape and other features. To 
facilitate this modification, an efficient collision detection algorithm is required which can detect the 
collision between the tool and the model. As soon as the model and the tool start interacting, the 
physics-based model must find out the resultant deformation and the force feedback to be sent back 
to the user. This physics-based system can also be used to validate the concept in terms of 
deformation of the system, based on the virtual material properties assigned to the object. At the 
same time, the user may like to merge some independent surfaces to create a complex and interesting 
shape. For all these applications, the blending matrices can play a significant role in making the whole 
process computationally efficient. The following sections explore the applications and the resultant 
computational cost to determine the efficacy of the proposed methodology.  

3.1 Collision Detection 

Blending matrices can be used for collision detection of two or more B-spline surfaces or B-spline 
surface(s) and an implicit or point-based tool. This section briefly discusses the algorithm which 
efficiently uses the blending matrices for the collision detection of deformable B-spline surfaces [19]. 
The collision detection process starts with an intersection check of the convex hulls of the B-spline 
model(s) and the tool. The property of positivity ensures that a B-spline curve, or surface, always 
remains within the convex hull of the control points ijP [2]. When two convex hull surfaces (or edges or 
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an edge and a surface) intersect, the vertices (control points) of the surface (edge) are identified. The 
corresponding u and v parametric values associated with these vertices (control points) of the 
intersecting surfaces are calculated. These minimum and maximum values of u and v ( minu , minv ; maxu , 

maxv ) set the limits on the surface to be discretized. Intermittent rows and columns of the blending 

matrices are used to sparsely generate points within these limits of parametric values of u and v. This 
region is initially large. By using lower levels of detail, the region is refined and simultaneously the 
intensity of the points is increased to enhance the accuracy of collision detection. There is no need to 
evaluate the blending functions. Similarly, by generating denser points, only at the lowest level of 
detail, the cost of the intersection check is reduced, as compared to the algorithm proposed by Gao 
and Gibson [7]. The collision detection procedure has been discussed in detail in [19]. This collision 
detection algorithm can detect the collision between two or more NURBS surfaces and/or between a 
NURBS surface and an implicit surface, a tessellated surface or a point.  

To check the computational efficiency of the collision detection algorithm, different types of 
surfaces were used. A B-spline surface was made to collide with another B-spline surface, a sphere, a 
plane and a point. Fig. 3 shows two NURBS surfaces, a plane and a sphere. 
 

 
 
Fig. 3: Primitives (plane and sphere) and B-spline surfaces (a donut and a distorted donut) for 
calculating time of collision detection.  

 
The computational cost of collision detection depends upon the size of the blending matrices and the 
area of contact. The size of the blending matrices depends upon the number of control points and the 
maximum number of points that can be generated on the B-spline surface. The collision detection was 
carried out for different number of control points and different number of the maximum points to be 
generated on the B-spline surface. The collision detection was determined for B-spline surface - 
plane, B-spline surface - sphere, B-spline surface - point and B-spline surface - B-spline surface. The 
results for the computational cost for different parameters are discussed in the following sub-
sections.  

3.1.1 Effect of the number of control points 

To determine the effect of number of control points on computational time, the number of points 
matrix used to determine collision was kept at 82×82 matrix. This matrix gives very good resolution. 
For simulation study the numbers of control points were selected in the range of 4×4 to 20×20. Most 
of the examples used in literature do not use more than a matrix of 12×12 for control points. Dachille 
[5] used a maximum of 12×12 control net with only 25×25 mesh of points for collision detection 
compared to an 82×82 matrix of nodes used in this study. The time taken for simulation for a B-
spline surface represented by a 12×12 control point net with 25×25 mesh was 780 ms with implicit 
solver [5]. It used only a point to interact with the B-spline model. Gao and Gibson [7] used a 
resolution of 40×40 and used implicit surface rigid tools. It must be emphasized at this point that the 
computational time recorded in the simulation may not be the best time that the collision detection 
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algorithm is capable of. The simulation time may be larger because of inherent inefficiencies in 
programming skills. A professional programming technique may be able to better utilize the resources 
of modern multi-core computers. Tab. 1 shows the computation times for collision detection of B-
spline surface having different number of control points. The code was written in C++ and 
implemented with Microsoft Visual Studio 2008 on desktop computer having 6 GB RAM with Intel(R) 
Core(TM) i7 CPU @ 3.06 GHz running on Windows 7 Professional. 
 

Control points net 
Computational time (ms) 

Point based tool Sphere based tool Plane based tool 

4×4 <1 <1 2 
6×6 <1 2 3 
8×8 <1 3 4 
10×10 2 4 8 
12×12 4 5 10 
14×14 5 8 15 
16×16 6 12 22 
18×18 8 13 26 
20×20 10 17 31 

 
Tab. 1: Computational time for collision detection of B-spline surface having different number of 
control points with a point, a sphere, and a plane. 

 
As expected, the computational cost increased with increase in the number of control points used to 
represent the B-spline surface. As the number of control points increase, the computational cost of 
generating more points and subsequent generation of spheres increases. Overall, the computational 
time for collision detection is small. Particularly for B-spline surfaces having 12×12 control points, it 
takes 5 ms or less for the collision detection algorithm to check intersection with a point or sphere. 
 The collision detection was also carried out between two B-spline surfaces. The control points of the 
two B-spline surfaces were increased independently and the computational cost was determined. Fig. 
4 shows the computational cost of collision detection between two B-spline surfaces. Again, the 
results are the average of the time taken by the algorithm to detect collision for different types of B-
spline surfaces when these surfaces just start colliding. The computational cost increases with 
increase in the number of control points used to represent the B-spline surface. The resolution of the 
model was same for all the cases and was kept at 82×82. Time required for detecting collision 
between two B-spline surfaces represented by 8×8 control points net was 15 ms. For higher number 
of control points, the computational time increases, reaching to about 91 ms for B-spline surfaces 
when both the surfaces have 20×20 control points mesh. For smaller control points mesh, the 
computational time is very small and reduces to 6 ms when both the surfaces have 4×4 control points 
net. Thus, the collision detection algorithm can be used for real time interaction with virtual models. 
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Fig. 4: Variation of the computational time (ms) of collision detection for a B-spline surface with 
another deformable B-spline surface for different number of control points. 

 

3.1.2 Effect of the maximum number of points that can be generated 

The number of points generated on the B-spline surface defines the resolution and accuracy of the 
collision detection. This also determines the maximum number of nodes that can be generated for the 
mass spring mesh. A larger number increases the size of the blending matrices, uA and A

v
, used to 

generate these points using Eqn. (5). As a consequence of the large size of the blending matrices, the 
size of inverse of these blending matrices will also be large. 

To clearly determine the effect of the maximum number of points that can be generated at the 
lowest level of detail, a tear shaped deformable model with 8×8 number of control point net was 
checked for intersection with a point, a sphere, and a plane. Error! Reference source not found. 5(a) 
shows a sphere colliding with a tear drop shape and Error! Reference source not found. 5(b) shows a 
sphere colliding with the deformed tear drop represented as B-spline surface having 8×8 control 
point mesh. 

 

  
(a) At point of contact (b) After contact 

 
Fig. 5: A sphere colliding with (a) A tear shaped B-spline surface (b) A deformed tear shaped B-spline 
surface. 
 
The time taken for collision detection was computed for different shapes of B-spline surfaces. Tab. 2 
shows the cost of computation for different number of the maximum points that can be generated on 
the B-spline surface.  
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Maximum points at 
lowest level of detail 

Computational time (ms) 

Point based tool Sphere based tool Plane based tool 

28×28 (784 points) <1 ~1 1 
28×82 (2296 points) <1 2 2 
82×82 (6724 points) ~1 3 4 
82×244 (20008 points) 2 4 7 
244×244 (59536 points) 3 6 15 

 
Tab 2: Computational time for collision detection of B-spline surface having different number of the 
maximum points generated at lowest level of detail with a point, sphere, and plane. 

 
When a large number of points are used, the accuracy of the collision detection is higher. The time 
shown in the table is average of the times noted for different B-spline surfaces. The computational 
cost for collision detection increases when the maximum number of points to be generated on the B-
spline surface, at the lowest level of detail, is increased. When 82×82 mesh is used, the computational 
time is 1 ms for a point, 3 ms for a sphere and 4 ms for a plane. A mesh of size 82×82 means that a 
total of 6724 points can be generated on the B-spline surface. This gives high resolution for collision 
detection. For comparison, only 625 points (25×25 mesh of points) were used by Dachille et al. [5] and 
Gao and Gibbson [7] used 1600 points (40×40 mesh of points). This shows that the collision detection 
algorithm can efficiently detect collision even when a large number of points are generated to achieve 
higher resolution. The computational advantage is achieved due to the pre-calculated blending 
matrices and their inverses, as proposed in the methodology presented in this paper. 

The variation of the computational cost of collision detection will be more pronounced if the 
resolution of two or more B-spline surfaces is changed simultaneously. During the simulation of 
collision detection for two B-spline surfaces the maximum number of points that can be generated 
was changed for both the surfaces and its effect on the computational time was recorded. The number 
of control points for both the surfaces were kept unchanged at 8×8. The graph representing the trend 
of the computation cost is shown in Fig. 6. 

 

 
Fig. 6: Variation of the computational time (ms) of collision detection for a B-spline surface with 
another deformable B-spline surface with respect to the maximum number of points generated. 
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The computational cost for collision detection increases when the maximum number of points that 
can be generated at the lowest level of detail is increased. When 82×82 mesh is used, the 
computational time is 15 ms. A mesh of size 82×82 means that a total of 6724 points can be 
generated on both the B-spline surfaces. When the number of points is decreased to a mesh of 28×28, 
the computational time decreases to 4 ms. The simulation studies show that the collision detection 
can be carried out in real time while using the pre-computed blending matrices. 

3.2 Merging Surfaces 

The user may need to merge surfaces having a different degree or number of control points. The 
surfaces may not be symmetric and hence, the two surfaces may not attach to each other at a common 
edge. In some instances, the surfaces may be intersecting at one or more regions. These situations 
make it difficult and sometimes impossible to merge the surfaces even when using commercially 
available CAD software. The proposed methodology of blending matrices can be used to efficiently 
merge different B-spline surfaces. 

The process of merging surfaces starts when two surfaces that need to be merged are moved 
closer together. The blending matrices representing the underlying surfaces are used to discretize 
these B-spline surface patches. These discrete points are stored as matrices M1 and M2. When the 
merging process starts, a combined matrix ‘M’ is generated by the combination of these two matrices. 
The number of rows and columns of matrix M are calculated.  

As the two surface patches are combined, the number of control points of the merged B-spline 
surface in u and/or v directions and its knot vector will change. Consider a case where two surfaces 
are being joined along the u direction, having 1r and 2r number of control points in u direction for the 

first and the second surface respectively. The number of control points for the merged surface in the u 
direction will be given by 1 2 1r r r   . If the surfaces have a different number of control points in v 

direction, then the larger number is assumed as the new number of control points for the merged 
surface. If both the surfaces have the same number of control points in the v direction, then 

1 2s s s  . Similarly, if the two surfaces are joined in the v direction, the number of control points in v 

direction will be given by 1 2s 1s s   . 

A knot vector determines the area of influence of each control point on the B-spline surface. If the 
degree of the initial surfaces is not being changed, the knot vector of the two merging surfaces can be 
added to get the knot vector of the merged surface. The multiple knots at the common edge are 
reduced depending upon the type of connectivity needed at the edge. For providing only C0 
connectivity, a total of k-1 multiple knots are retained, where k is the order of the merged surface in 
the direction of merging. For C1 connectivity, the number of multiple knots would be k-2 and so on. 
For the maximum connectivity (C2 for a degree 3 surface) only one knot is retained at the common 
edge. In the second direction the knot is generally made uniform. The detailed merging process is 
explained in [21]. 

Fig. 7(a) shows two B-spline patches. Fig. 7(b) shows the discrete points generated on both the B-
spline surfaces and Fig. 7(c) shows the surface generated by combining different surfaces 
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(a)  (b)  (c)  

 
Fig. 7 (a) Bowl and handle of spoon (b) Point cloud of the bowl and handle of the spoon (c) Merged B-
spline model of spoon. 

 
The same procedure can be used to reduce or increase the degree of a surface. Similarly, if the two 
surfaces have different degrees, these can be merged with a common degree. In a similar fashion, the 

inverse of these blending matrices (
   
Au

TAu





1

,
   
AvAv

T




1

) is also computed and stored. These newly 

calculated blending matrices replace the earlier blending matrices for the two B-spline surfaces. These 
new blending matrices are used to determine the position of the control points which can generate the 
matrix of discrete points (M). The position of the control points for the merged surface is calculated 
using Eqn. (6).  

The computational time for merging of these surfaces depends upon the number of control points 
of the B-spline surfaces and the number of points generated to merge these two surfaces. It also 
depends upon the other parameters of the surfaces such as knot vector, degree of the surfaces and 
whether the surfaces are intersecting each other before merging. The computation cost of merging the 
surfaces is less than 4ms in most of the cases. In the example shown in Fig. 7, it took less than 2 milli-
seconds to merge the spoon bowl and handle. 

3.3 Physics Modeling System 

A physics modeling system takes the information from the collision detection system regarding the 
penetration of the tool into the virtual model. Based on this information, the system needs to find the 
deformation of the model and resultant forces to be fed back to the user. A mass spring system gives 
reasonable accuracy and computational efficiency. 

The blending matrices can efficiently determine the nodes for the mass spring system on the B-
spline surface. Intermittent rows and columns can be used to generate an adequate number of nodes. 
Fig. 8 shows the generation of nodes and the mass spring system generated by using these nodes.  
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Fig. 8: Generation of mass spring system. 

 
Once the surface nodes are determined, the internal nodes can be generated through a volumetric self 
organizing feature map [11] and the material properties assigned to the virtual model. 

In the sculpting of virtual objects within a VR environment, the realistic haptic system that can 
accurately respond to the user’s intentions is required. The external and internal forces directed at the 
geometric model of the three dimensional object are calculated from the haptic feedback and a 
collision detection algorithm. The system must be able to compute the estimated position of the 
dynamic model at the next time step from the current forces being applied through the haptic tool. 
While the object experiences external forces from the haptic device, numerical simulation of the 
deformation process can be achieved using the discrete Lagrange equations of motion for a dynamic 
node-spring system [13].  The system of equations is given by the second-order differential equation,  

     


i
&&x
i
(t) 

i
 &x

i
(t)g

i
(t)  f

i
(t)  (7) 

where 
 

i
 is the velocity-dependent damping coefficient which dissipates kinetic energy in the lattice 

through friction; 
 

i

 is the point mass of node i, ( )g t
i

 is the total internal spring forces, and ( )f t
i

is the 

external force vector applied to node i. At each time step Δt it is necessary to evaluate the current 
nodal forces and accelerations, the new velocities, and the new node positions using the explicit Euler 
time-integration procedure. It is possible to compute acceleration from Eqn. (7) at node i as,  

     
&&xi(t) ( fi(t) i &xi(t) gi(t))/ i  (8) 

and the new velocity is given by,  
    
&x(t  t)  &x(t) t &&x

i
(t)  (9) 

The new position of node ‘i’ is then calculated using,  
    
x
i
(t  t)  x

i
(t) t &x

i
(t  t)  (10) 

As the user applies force on the model through the haptic tool, Eqn. (7-10) determine the 
deformation of the model.  

This mass spring mesh is created during the pre-processing stage using VSOFM [10] in order to 
provide more realistic virtual experience. A denser mesh of mass spring nodes increases the accuracy 
of the deformation behavior for the virtual model. Unfortunately, a denser mesh will also increase the 
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computational cost for calculating the shape change and resultant forces that must be fed back to the 
user. To simulate realistic material behavior, the mass spring damper system requires small time-step 
to simulate physics based deformation of model characterized by a material from low to high 
stiffness. The running time depends upon the size of the node mesh for the mass spring system and 
the number of training cycles. The mass spring damper system can be used for local deformation and 
global deformation.  

The computation time to generate nodes for mass spring system depends upon the size of the 
mass spring mesh and the number of learning cycles used to generate VSOFM mesh. More cycles (up to 
1000) are needed when the VSOFM models is required to generate the mass spring mesh from a very 
large cloud point set. However, using intermittent rows and columns of the blending matrices, very 
small number of nodes is used for generation of mass spring nodes. Thus, fewer learning cycles (100) 
give very good results. In the simulation study, presented in this paper, 300 learning cycles were used 
which yielded very good result. For a 12×12×12 mass spring mesh, it takes 3.471 seconds to generate 
the mass spring damper model. Tab. 3 shows the computational time for generation of mass spring 
mesh of different sizes. Even for 20×20×20 mass spring mesh the pre-processing time is less than 
half minute, which is very reasonable.  

 
Number of nodes Pre-Processing Time (seconds) 

10×10×10 2.44 
15×15×15 7.88 
20×20×20 28.48 
25×25×25 76.90 
30×30×30 213.02 
35×35×35 353.19 
40×40×40 958.10 

 
Tab. 3: Pre-processing time for generation of mass spring system for different node sizes. 

 
The computation time increase with increased size nodes for the mass spring system. Fig. 9 shows the 
correlation between the size of the mass spring mesh being generated and the pre-processing time for 
calculating the mesh by using volumetric self organizing feature map. 

 

Fig. 9: Pre-processing time for calculating the mass spring mesh of different sizes. 
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4 CONCLUSION 

Product concept generation within a virtual reality environment requires a large variety of tools that 
enable the user to enhance his or her creativity. However, to achieve real-time interaction, the 
algorithm needs to be computationally efficient. The methodology proposed in this paper to represent 
virtual objects, by using the B-spline blending matrices, reduces the computational cost of interacting 
with B-spline based virtual models in a VR environment. Once calculated, the blending matrices can be 
used for a variety of applications. Two or more B-spline patches can be merged in a VR environment. 
The same blending matrices can be used for efficient collision detection as well as generating nodes 
for the mass spring system. In this manner, all the aspects of B-spline manipulation work in tandem 
and reduce the computational cost without affecting the accuracy of various interactions. The 
efficiency achieved by using blending matrices would allow the use of B-spline representations of a 
virtual model and tool in a virtual reality environment. 
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