

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

711

An Alternative Methodology to Represent B-spline Surface for
Applications in Virtual Reality Environment

Harish Pungotra1, George K. Knopf2 and Roberto Canas3

1Beant College of Engineering and Technology, Gurdaspur, India hpungotr@alumni.uwo.ca
2The University of Western Ontario, London, Ontario, Canada gknopf@eng.uwo.ca

3National Research Council, London, Ontario, Canada roberto.canas@nrc-cnrc.gc.ca

ABSTRACT

B-spline representation is one of the main methods for free-form surface
modeling and has become the standard for CAD systems. However, in Virtual
Reality (VR) environment, when a B-spline surface deforms, the blending
functions need to be continuously computed. The high computational cost of
continuously calculating the blending functions for merging, collision
detection and physics-based deformation system, while the model is
deforming, restricts the use of B-spline representation in a VR environment.
This paper presents an alternative methodology to represent B-spline surface
patches for an interactive VR environment. A uniformly discretized B-spline
surface patch can be represented by a set of control points and two pre-
calculated B-spline blending matrices. The proposed technique exploits the
fact that these B-spline blending matrices are independent of the position of
control points and therefore can be pre-calculated. The blending matrices
enable the algorithm to merge B-spline surface patches, accurately check the
collision, and generate nodes for the mass spring system to determine
deformation using the physics-based model. This technique does away with
the need to calculate computationally intensive blending functions for the B-
spline surfaces, and inverse of large matrices during the run-time.

Keywords: collision detection, deformable objects, physics-based modeling.
DOI: 10.3722/cadaps.2013.711-726

mailto:hpungotr@alumni.uwo.ca
mailto:gknopf@eng.uwo.ca
mailto:roberto.canas@nrc-cnrc.gc.ca

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

712

1 INTRODUCTION

The rapid advancement of virtual reality technology has led to the development of a variety of
applications in computer graphics, gaming and entertainment, engineering analysis, surgical training,
and interactive design. Several studies have suggested [4, 23, 25, 26] that virtual reality promises to be
a very intuitive, creative and cost effective method for concept design. Computer Graphics (CG) and
Computer Aided Design (CAD) prefer parametric surface representations, since these can represent
complex surfaces with simplicity and minimal storage [17]. Another advantage of this type of
representation is that the points on these parametric surfaces can be determined for any given value
of parameter u and v. A tensor product parametric surface with B-spline blending functions is the
most commonly used parametric representation in modern CAD software. Thus it is imperative that
any Virtual Reality (VR) based concept design system should use the B-spline representation for
seamless exchange between CAD and VR systems.

A B-spline surface with r and s number of control points in u and v directions, respectively, is
given by the equation,

S(u,v) B

ik
(u)B

jl
(v)P

ij
j 0

s1

i0

r1

 (1)
where ijP is the control points vector, ()ikB u and ()jlB v are the blending functions of the surface with

order k and l in u and v directions, respectively. The blending functions depend upon the periodicity
of the surface (in u and/or v directions), the knot vector, the degree of the surface in u and v
directions, and the number of control points in u and v directions. The blending functions are
independent of the position of the control points. The B-spline blending function has the property of
recursion which is defined as: , 1 1, 1

,
1 1

() ()
() () ()i k i k

i k i i k
i k i i k i

B u B u
B u u u u u

u u u u

 (2)
where

B
i,1

1, ui u ui1

0, otherwise

The blending function for a periodic B-spline is modified as: , 0,() ((1) mod(1))i k kB u B u i n n (3)
A virtual reality-based interactive product concept design system must support visual object

collision detection, physics-based modeling, the merging of surfaces representing the virtual objects,
and haptic manipulation. The collision detection algorithm provides detailed information about when
and how multiple virtual objects make contact and interact within the VR space. The physics-based
system uses this information to determine the deformation and the reactive forces to be fed back to
the user. At the same time, another essential aspect in B-spline surface modeling is the merging of the
B-spline surfaces to create interesting and complex design ideas. Several tools have been presented in
literature, for collision detection, physics based modeling, and merging of B-spline patches that can be
used in the virtual concept design process.

The collision detection problem has been extensively researched in published literature [12, 14].
Collision detection for a B-spline surface-based deformable model is, in general, computationally
intensive. It involves continuously calculating the blending functions and new equations of the
deforming B-spline surface. This is the main reason why there are not many collision detection
algorithms available in literature for B-spline surface-based deformable objects. Of all the collision
detection algorithms for B-spline models, the majority is confined to the use of a point-based tool [5,

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

713

15]. Gao and Gibson [7] presented an algorithm which can detect collision between a B-spline model
and an implicit surface-based tool. However, this algorithm is limited to implicit surface-based tools
and cannot be used for collision detection between two B-spline surfaces or between a B-spline model
and a point-based tool.

The deformation of the model can be simulated by a geometric- or physics-based system. There
are many geometric modeling techniques in the published literature to deform a solid model [1, 28].
One major limitation of the geometric models is that these cannot realistically simulate deformation
of the model, particularly if the model consists of multiple materials. A physics-based technique, on
the other hand, can realistically calculate the deformation and force response of the model, based on
virtual material properties [13, 20]. A physics-based deformation model gives the designer more
options to try different types of materials during the concept design phase. This deformation model
can also be used to validate the concept in real-time. There are many techniques available for physics-
based deformation modeling. However, a mass spring system consisting of a set of particles (nodes)
connected through a network of spring and dampers can provide reasonable accuracy and speed for
real-time interaction.

The degree reduction and merging of Bézier/B-spline curves into a single representation has been
addressed in the literature by a variety of different analytical approaches [3, 8, 16, 18, 24, 27]. Du and
Schmitt [6] have described various techniques to establish the conditions of geometric continuity
between two adjacent bi-parametric surface patches. The continuity conditions enable CAD systems
to create shapes by stitching or joining numerous low-order bi-parametric patches. Unfortunately,
many collision detection algorithms used in VR environments [12] do not permit more than a single B-
spline or NURBS surface patch to be considered at any instance in time. Even when a collision
detection algorithm is designed to tackle multiple B-spline surface patches [7, 9, 19], the continuity of
these multiple patches will no longer be valid when the model deforms due to interaction with the
tool. This is because stitching the surface patches does not automatically connect the underlying
dissimilar mass-spring networks. Hence, the stitching techniques cannot be used in a VR environment
when the user intends to deform the surface to obtain the desired shape. There are many analytical
techniques to increase or decrease the degree of a B-spline curve [16, 18], using constrained
optimization. However the constrained optimization techniques are difficult to use for the surfaces.
These analytical methods used for merging of B-spline curves and surfaces cannot be used in a virtual
reality environment during real-time interactions.

When using B-spline surface representation of the model in a virtual reality environment, all the
processes require finding the blending function. At the same time, the inverse of large matrices is
required to be computed which can be computationally intensive and sometimes impossible. The cost
of computations further increases while dealing with a complex model with a high degree of
deformation and having multiple contacts.

In this paper, blending matrices are presented as an alternative methodology which can be used to
establish a uniform mathematical model for all aspects of B-spline surface modeling/manipulation
needed in a virtual concept design process. These blending matrices can provide a general tool for the
conversions between different representations of B-spline surfaces. These matrices can be used for
collision detection between two or more B-spline surfaces, merging B-spline surfaces, and generating
physics based deformation model. Both the model and the tool can have complex shapes, elastic or
plastic properties, and multiple contacts.

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

714

2 CONCEPT OF BLENDING MATRICES

In a virtual reality environment, all aspects of B-spline surface modeling/manipulation are needed to
be done in real time. These include shape control, degree control, merging of multiple B-spline
patches, collision detection, and determining nodes for a mass spring system. In general, blending
functions need to be computed to achieve B-spline surface modeling and manipulation. The process
of calculating the blending functions for B-spline surfaces is computationally expensive and an
alternative method is needed if real time interaction is to be achieved.

Eqn. (1) can be used to compute a point on a B-spline surface at any fixed (u and v) parameter
values. Piegl and Tiller [17] have mentioned five steps that are needed to compute a point on a B-
spline patch. These include finding the knot spans in which parameters u and v lie, computing non-
zero basis functions in the u and v directions within these knot vector spans, and multiplying these
non-zero values of basis function with the corresponding control points. However, this technique
involves many calculations. At the same time, when a large number of points need to be generated on
a B-spline surface patch, the cost of computation would be high. The computational cost can be
reduced by representing the B-spline surfaces as a tensor product surface, TB BP(,) [][][][][]u vS u v u v (4)
where 2 1[] [1]ku u u u and 2 1[] [1]lv v v v .

This type of representation of B-spline requires computation of these matrices for the given
values of parameter u and v at which the points are to be determined. However, finding the control
points which can represent these points would require computing the inverse of the large matrices,
which can be computationally expensive and sometimes impossible. The Eqn. (4) can be further
modified to achieve the conversions in real time. This can be done if we can represent a B-spline
surface as a parametrically uniform grid of points and the underlying blending function in terms of
pre-calculated blending matrices. A B-spline surface can be discretized into a set of parametrically
uniform grid of nodes for various values of u and v. The matrix of discrete points M is given by the
equation, u ij vM A P A (5)
where uA and A

v
 are blending matrices, and their values depend upon the blending functions and u

and v parametric values. The values of these blending matrices do not depend upon the position of
the control points and hence, can be pre-calculated. Thus, there is no need to evaluate the points of
interest on the surface by substituting corresponding values of u and v in the blending functions.
These points can be determined by simply multiplying corresponding rows and columns of blending
matrices with the control point matrix. Fig. 1 shows a typical blending matrix.

If it is required to generate points only in a particular region, the minimum and maximum values of
the u and v parameters (minu , minv ; maxu , maxv) can be used to determine the rows and columns of the

blending matrices to be used to generate points on the surface. Even the density of these discrete
points generated on the B-spline surface can be varied by using intermittent rows and columns of the
blending matrices, as shown in Fig. 1.

When the virtual model deforms, the discrete points would also change their position. This would
require finding the new position of the control points which can represent the deformed model. Eqn.
(5) can be re-written as, T 1 T T 1[] []T

ij u u u v v v
 P A A A M A A A (6)

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

715

Fig. 1: A typical blending matrix.

Eqn. (6) can be used to find the new position of the control points representing the new matrix of
discrete points. Equations (5-6) will determine the correlation between the control points and the
points generated on the B-spline surface. A blending matrix can be generated depending upon some
parameters of the B-spline surface. These include periodicity of the surface in the u and v directions,
number of control points in the u and v directions, and the maximum number of points to be
generated on the surface. Two blending matrices are required for every B-spline surface patch to
generate discrete points. The size of these matrices will depend upon the number of control points
and the maximum number of points to be generated in u and v directions. The maximum number of
points to be generated is determined by the accuracy required for collision detection and merging of
the surfaces. In general, the size of a blending matrix for generating m points on a B-spline surface
having r control points in u direction will be m × r. Similarly for s number of control points in the v
direction, a blending matrix of size s × m will generate m points. Together, these two blending
matrices can generate a maximum of m2 points on the B-spline surface. Fig. 2 shows a discretized B-
spline surface along with the set of control points ijP [22].

Fig. 2: Discretized B-spline surface.

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

716

In the same manner, the blending matrices for finding tangents at each point generated in the u and v
directions can be pre-computed. This is useful if tangential properties, such as friction, are also to be
considered to realistically model material properties. The surface normal can be calculated, at any
discrete point, by cross multiplication of the tangents in the u and v directions. A surface normal
helps in correctly mapping the forces to the surface by calculating the forces normal to the surface.

When the virtual model deforms, due to haptic interaction, the position of the discrete points will
also change. This would require computation of the new positions of control points that can represent
the deformed surface. Eqn. (6) can be used to calculate the new position of the control points. This will
involve computing the inverse of the blending matrices. Since the blending matrices are pre-computed
and are independent of the position of the control points, their inverses can also be pre-computed.
This reduces the computational cost of rendering the deformation of the B-spline surface. This
inverse can be calculated by the Gaussian Elimination Method using ‘complete pivoting’. The complete
pivot method enhances the robustness of the algorithm. As this is done during pre-processing, the
time required to calculate the inverse of the matrix does not increase the computational cost during
the run-time.

Thus, any B-spline surface can be represented as a set of blending matrices and control point
matrix in a virtual reality environment. The user can model and manipulate the virtual object. Once
the user interactively modifies the model, the information of the virtual model can be exchanged as a
B-spline surface, with the existing commercially available CAD software. This type of representation
allows for the pre-calculation of the underlying blending functions thereby reducing the
computational cost of various interactive modifications carried out to the virtual model.

3 USING BLENDING MATRICES IN VR ENVIRONMENT

Based on the methodology proposed in this paper, the blending matrices, representing virtual objects
are calculated and stored. This methodology can be used for a variety of applications in a VR
environment. Some of these applications are explored in this section. Once a virtual object is
modelled, it would need to be manipulated so as to get the desired shape and other features. To
facilitate this modification, an efficient collision detection algorithm is required which can detect the
collision between the tool and the model. As soon as the model and the tool start interacting, the
physics-based model must find out the resultant deformation and the force feedback to be sent back
to the user. This physics-based system can also be used to validate the concept in terms of
deformation of the system, based on the virtual material properties assigned to the object. At the
same time, the user may like to merge some independent surfaces to create a complex and interesting
shape. For all these applications, the blending matrices can play a significant role in making the whole
process computationally efficient. The following sections explore the applications and the resultant
computational cost to determine the efficacy of the proposed methodology.

3.1 Collision Detection

Blending matrices can be used for collision detection of two or more B-spline surfaces or B-spline
surface(s) and an implicit or point-based tool. This section briefly discusses the algorithm which
efficiently uses the blending matrices for the collision detection of deformable B-spline surfaces [19].
The collision detection process starts with an intersection check of the convex hulls of the B-spline
model(s) and the tool. The property of positivity ensures that a B-spline curve, or surface, always
remains within the convex hull of the control points ijP [2]. When two convex hull surfaces (or edges or

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

717

an edge and a surface) intersect, the vertices (control points) of the surface (edge) are identified. The
corresponding u and v parametric values associated with these vertices (control points) of the
intersecting surfaces are calculated. These minimum and maximum values of u and v (minu , minv ; maxu ,

maxv) set the limits on the surface to be discretized. Intermittent rows and columns of the blending

matrices are used to sparsely generate points within these limits of parametric values of u and v. This
region is initially large. By using lower levels of detail, the region is refined and simultaneously the
intensity of the points is increased to enhance the accuracy of collision detection. There is no need to
evaluate the blending functions. Similarly, by generating denser points, only at the lowest level of
detail, the cost of the intersection check is reduced, as compared to the algorithm proposed by Gao
and Gibson [7]. The collision detection procedure has been discussed in detail in [19]. This collision
detection algorithm can detect the collision between two or more NURBS surfaces and/or between a
NURBS surface and an implicit surface, a tessellated surface or a point.

To check the computational efficiency of the collision detection algorithm, different types of
surfaces were used. A B-spline surface was made to collide with another B-spline surface, a sphere, a
plane and a point. Fig. 3 shows two NURBS surfaces, a plane and a sphere.

Fig. 3: Primitives (plane and sphere) and B-spline surfaces (a donut and a distorted donut) for
calculating time of collision detection.

The computational cost of collision detection depends upon the size of the blending matrices and the
area of contact. The size of the blending matrices depends upon the number of control points and the
maximum number of points that can be generated on the B-spline surface. The collision detection was
carried out for different number of control points and different number of the maximum points to be
generated on the B-spline surface. The collision detection was determined for B-spline surface -
plane, B-spline surface - sphere, B-spline surface - point and B-spline surface - B-spline surface. The
results for the computational cost for different parameters are discussed in the following sub-
sections.

3.1.1 Effect of the number of control points

To determine the effect of number of control points on computational time, the number of points
matrix used to determine collision was kept at 82×82 matrix. This matrix gives very good resolution.
For simulation study the numbers of control points were selected in the range of 4×4 to 20×20. Most
of the examples used in literature do not use more than a matrix of 12×12 for control points. Dachille
[5] used a maximum of 12×12 control net with only 25×25 mesh of points for collision detection
compared to an 82×82 matrix of nodes used in this study. The time taken for simulation for a B-
spline surface represented by a 12×12 control point net with 25×25 mesh was 780 ms with implicit
solver [5]. It used only a point to interact with the B-spline model. Gao and Gibson [7] used a
resolution of 40×40 and used implicit surface rigid tools. It must be emphasized at this point that the
computational time recorded in the simulation may not be the best time that the collision detection

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

718

algorithm is capable of. The simulation time may be larger because of inherent inefficiencies in
programming skills. A professional programming technique may be able to better utilize the resources
of modern multi-core computers. Tab. 1 shows the computation times for collision detection of B-
spline surface having different number of control points. The code was written in C++ and
implemented with Microsoft Visual Studio 2008 on desktop computer having 6 GB RAM with Intel(R)
Core(TM) i7 CPU @ 3.06 GHz running on Windows 7 Professional.

Control points net
Computational time (ms)

Point based tool Sphere based tool Plane based tool

4×4 <1 <1 2
6×6 <1 2 3
8×8 <1 3 4
10×10 2 4 8
12×12 4 5 10
14×14 5 8 15
16×16 6 12 22
18×18 8 13 26
20×20 10 17 31

Tab. 1: Computational time for collision detection of B-spline surface having different number of
control points with a point, a sphere, and a plane.

As expected, the computational cost increased with increase in the number of control points used to
represent the B-spline surface. As the number of control points increase, the computational cost of
generating more points and subsequent generation of spheres increases. Overall, the computational
time for collision detection is small. Particularly for B-spline surfaces having 12×12 control points, it
takes 5 ms or less for the collision detection algorithm to check intersection with a point or sphere.
 The collision detection was also carried out between two B-spline surfaces. The control points of the
two B-spline surfaces were increased independently and the computational cost was determined. Fig.
4 shows the computational cost of collision detection between two B-spline surfaces. Again, the
results are the average of the time taken by the algorithm to detect collision for different types of B-
spline surfaces when these surfaces just start colliding. The computational cost increases with
increase in the number of control points used to represent the B-spline surface. The resolution of the
model was same for all the cases and was kept at 82×82. Time required for detecting collision
between two B-spline surfaces represented by 8×8 control points net was 15 ms. For higher number
of control points, the computational time increases, reaching to about 91 ms for B-spline surfaces
when both the surfaces have 20×20 control points mesh. For smaller control points mesh, the
computational time is very small and reduces to 6 ms when both the surfaces have 4×4 control points
net. Thus, the collision detection algorithm can be used for real time interaction with virtual models.

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

719

Fig. 4: Variation of the computational time (ms) of collision detection for a B-spline surface with
another deformable B-spline surface for different number of control points.

3.1.2 Effect of the maximum number of points that can be generated

The number of points generated on the B-spline surface defines the resolution and accuracy of the
collision detection. This also determines the maximum number of nodes that can be generated for the
mass spring mesh. A larger number increases the size of the blending matrices, uA and A

v
, used to

generate these points using Eqn. (5). As a consequence of the large size of the blending matrices, the
size of inverse of these blending matrices will also be large.

To clearly determine the effect of the maximum number of points that can be generated at the
lowest level of detail, a tear shaped deformable model with 8×8 number of control point net was
checked for intersection with a point, a sphere, and a plane. Error! Reference source not found. 5(a)
shows a sphere colliding with a tear drop shape and Error! Reference source not found. 5(b) shows a
sphere colliding with the deformed tear drop represented as B-spline surface having 8×8 control
point mesh.

(a) At point of contact (b) After contact

Fig. 5: A sphere colliding with (a) A tear shaped B-spline surface (b) A deformed tear shaped B-spline
surface.

The time taken for collision detection was computed for different shapes of B-spline surfaces. Tab. 2
shows the cost of computation for different number of the maximum points that can be generated on
the B-spline surface.

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

720

Maximum points at
lowest level of detail

Computational time (ms)

Point based tool Sphere based tool Plane based tool

28×28 (784 points) <1 ~1 1
28×82 (2296 points) <1 2 2
82×82 (6724 points) ~1 3 4
82×244 (20008 points) 2 4 7
244×244 (59536 points) 3 6 15

Tab 2: Computational time for collision detection of B-spline surface having different number of the
maximum points generated at lowest level of detail with a point, sphere, and plane.

When a large number of points are used, the accuracy of the collision detection is higher. The time
shown in the table is average of the times noted for different B-spline surfaces. The computational
cost for collision detection increases when the maximum number of points to be generated on the B-
spline surface, at the lowest level of detail, is increased. When 82×82 mesh is used, the computational
time is 1 ms for a point, 3 ms for a sphere and 4 ms for a plane. A mesh of size 82×82 means that a
total of 6724 points can be generated on the B-spline surface. This gives high resolution for collision
detection. For comparison, only 625 points (25×25 mesh of points) were used by Dachille et al. [5] and
Gao and Gibbson [7] used 1600 points (40×40 mesh of points). This shows that the collision detection
algorithm can efficiently detect collision even when a large number of points are generated to achieve
higher resolution. The computational advantage is achieved due to the pre-calculated blending
matrices and their inverses, as proposed in the methodology presented in this paper.

The variation of the computational cost of collision detection will be more pronounced if the
resolution of two or more B-spline surfaces is changed simultaneously. During the simulation of
collision detection for two B-spline surfaces the maximum number of points that can be generated
was changed for both the surfaces and its effect on the computational time was recorded. The number
of control points for both the surfaces were kept unchanged at 8×8. The graph representing the trend
of the computation cost is shown in Fig. 6.

Fig. 6: Variation of the computational time (ms) of collision detection for a B-spline surface with
another deformable B-spline surface with respect to the maximum number of points generated.

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

721

The computational cost for collision detection increases when the maximum number of points that
can be generated at the lowest level of detail is increased. When 82×82 mesh is used, the
computational time is 15 ms. A mesh of size 82×82 means that a total of 6724 points can be
generated on both the B-spline surfaces. When the number of points is decreased to a mesh of 28×28,
the computational time decreases to 4 ms. The simulation studies show that the collision detection
can be carried out in real time while using the pre-computed blending matrices.

3.2 Merging Surfaces

The user may need to merge surfaces having a different degree or number of control points. The
surfaces may not be symmetric and hence, the two surfaces may not attach to each other at a common
edge. In some instances, the surfaces may be intersecting at one or more regions. These situations
make it difficult and sometimes impossible to merge the surfaces even when using commercially
available CAD software. The proposed methodology of blending matrices can be used to efficiently
merge different B-spline surfaces.

The process of merging surfaces starts when two surfaces that need to be merged are moved
closer together. The blending matrices representing the underlying surfaces are used to discretize
these B-spline surface patches. These discrete points are stored as matrices M1 and M2. When the
merging process starts, a combined matrix ‘M’ is generated by the combination of these two matrices.
The number of rows and columns of matrix M are calculated.

As the two surface patches are combined, the number of control points of the merged B-spline
surface in u and/or v directions and its knot vector will change. Consider a case where two surfaces
are being joined along the u direction, having 1r and 2r number of control points in u direction for the

first and the second surface respectively. The number of control points for the merged surface in the u
direction will be given by 1 2 1r r r . If the surfaces have a different number of control points in v

direction, then the larger number is assumed as the new number of control points for the merged
surface. If both the surfaces have the same number of control points in the v direction, then

1 2s s s . Similarly, if the two surfaces are joined in the v direction, the number of control points in v

direction will be given by 1 2s 1s s .

A knot vector determines the area of influence of each control point on the B-spline surface. If the
degree of the initial surfaces is not being changed, the knot vector of the two merging surfaces can be
added to get the knot vector of the merged surface. The multiple knots at the common edge are
reduced depending upon the type of connectivity needed at the edge. For providing only C0
connectivity, a total of k-1 multiple knots are retained, where k is the order of the merged surface in
the direction of merging. For C1 connectivity, the number of multiple knots would be k-2 and so on.
For the maximum connectivity (C2 for a degree 3 surface) only one knot is retained at the common
edge. In the second direction the knot is generally made uniform. The detailed merging process is
explained in [21].

Fig. 7(a) shows two B-spline patches. Fig. 7(b) shows the discrete points generated on both the B-
spline surfaces and Fig. 7(c) shows the surface generated by combining different surfaces

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

722

(a) (b) (c)

Fig. 7 (a) Bowl and handle of spoon (b) Point cloud of the bowl and handle of the spoon (c) Merged B-
spline model of spoon.

The same procedure can be used to reduce or increase the degree of a surface. Similarly, if the two
surfaces have different degrees, these can be merged with a common degree. In a similar fashion, the

inverse of these blending matrices (

Au

TAu

1

,

AvAv

T

1

) is also computed and stored. These newly

calculated blending matrices replace the earlier blending matrices for the two B-spline surfaces. These
new blending matrices are used to determine the position of the control points which can generate the
matrix of discrete points (M). The position of the control points for the merged surface is calculated
using Eqn. (6).

The computational time for merging of these surfaces depends upon the number of control points
of the B-spline surfaces and the number of points generated to merge these two surfaces. It also
depends upon the other parameters of the surfaces such as knot vector, degree of the surfaces and
whether the surfaces are intersecting each other before merging. The computation cost of merging the
surfaces is less than 4ms in most of the cases. In the example shown in Fig. 7, it took less than 2 milli-
seconds to merge the spoon bowl and handle.

3.3 Physics Modeling System

A physics modeling system takes the information from the collision detection system regarding the
penetration of the tool into the virtual model. Based on this information, the system needs to find the
deformation of the model and resultant forces to be fed back to the user. A mass spring system gives
reasonable accuracy and computational efficiency.

The blending matrices can efficiently determine the nodes for the mass spring system on the B-
spline surface. Intermittent rows and columns can be used to generate an adequate number of nodes.
Fig. 8 shows the generation of nodes and the mass spring system generated by using these nodes.

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

723

Fig. 8: Generation of mass spring system.

Once the surface nodes are determined, the internal nodes can be generated through a volumetric self
organizing feature map [11] and the material properties assigned to the virtual model.

In the sculpting of virtual objects within a VR environment, the realistic haptic system that can
accurately respond to the user’s intentions is required. The external and internal forces directed at the
geometric model of the three dimensional object are calculated from the haptic feedback and a
collision detection algorithm. The system must be able to compute the estimated position of the
dynamic model at the next time step from the current forces being applied through the haptic tool.
While the object experiences external forces from the haptic device, numerical simulation of the
deformation process can be achieved using the discrete Lagrange equations of motion for a dynamic
node-spring system [13]. The system of equations is given by the second-order differential equation,

i
&&x
i
(t)

i
 &x

i
(t)g

i
(t) f

i
(t) (7)

where

i
 is the velocity-dependent damping coefficient which dissipates kinetic energy in the lattice

through friction;

i

 is the point mass of node i, ()g t
i

 is the total internal spring forces, and ()f t
i

is the

external force vector applied to node i. At each time step Δt it is necessary to evaluate the current
nodal forces and accelerations, the new velocities, and the new node positions using the explicit Euler
time-integration procedure. It is possible to compute acceleration from Eqn. (7) at node i as,

&&xi(t) (fi(t) i &xi(t) gi(t))/ i (8)

and the new velocity is given by,

&x(t t) &x(t) t &&x

i
(t) (9)

The new position of node ‘i’ is then calculated using,

x
i
(t t) x

i
(t) t &x

i
(t t) (10)

As the user applies force on the model through the haptic tool, Eqn. (7-10) determine the
deformation of the model.

This mass spring mesh is created during the pre-processing stage using VSOFM [10] in order to
provide more realistic virtual experience. A denser mesh of mass spring nodes increases the accuracy
of the deformation behavior for the virtual model. Unfortunately, a denser mesh will also increase the

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

724

computational cost for calculating the shape change and resultant forces that must be fed back to the
user. To simulate realistic material behavior, the mass spring damper system requires small time-step
to simulate physics based deformation of model characterized by a material from low to high
stiffness. The running time depends upon the size of the node mesh for the mass spring system and
the number of training cycles. The mass spring damper system can be used for local deformation and
global deformation.

The computation time to generate nodes for mass spring system depends upon the size of the
mass spring mesh and the number of learning cycles used to generate VSOFM mesh. More cycles (up to
1000) are needed when the VSOFM models is required to generate the mass spring mesh from a very
large cloud point set. However, using intermittent rows and columns of the blending matrices, very
small number of nodes is used for generation of mass spring nodes. Thus, fewer learning cycles (100)
give very good results. In the simulation study, presented in this paper, 300 learning cycles were used
which yielded very good result. For a 12×12×12 mass spring mesh, it takes 3.471 seconds to generate
the mass spring damper model. Tab. 3 shows the computational time for generation of mass spring
mesh of different sizes. Even for 20×20×20 mass spring mesh the pre-processing time is less than
half minute, which is very reasonable.

Number of nodes Pre-Processing Time (seconds)

10×10×10 2.44
15×15×15 7.88
20×20×20 28.48
25×25×25 76.90
30×30×30 213.02
35×35×35 353.19
40×40×40 958.10

Tab. 3: Pre-processing time for generation of mass spring system for different node sizes.

The computation time increase with increased size nodes for the mass spring system. Fig. 9 shows the
correlation between the size of the mass spring mesh being generated and the pre-processing time for
calculating the mesh by using volumetric self organizing feature map.

Fig. 9: Pre-processing time for calculating the mass spring mesh of different sizes.

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

725

4 CONCLUSION

Product concept generation within a virtual reality environment requires a large variety of tools that
enable the user to enhance his or her creativity. However, to achieve real-time interaction, the
algorithm needs to be computationally efficient. The methodology proposed in this paper to represent
virtual objects, by using the B-spline blending matrices, reduces the computational cost of interacting
with B-spline based virtual models in a VR environment. Once calculated, the blending matrices can be
used for a variety of applications. Two or more B-spline patches can be merged in a VR environment.
The same blending matrices can be used for efficient collision detection as well as generating nodes
for the mass spring system. In this manner, all the aspects of B-spline manipulation work in tandem
and reduce the computational cost without affecting the accuracy of various interactions. The
efficiency achieved by using blending matrices would allow the use of B-spline representations of a
virtual model and tool in a virtual reality environment.

ACKNOWLEDGEMENTS

This work has been supported, in part, by All India Council for Technical Education New Delhi, India,
through research promotion scheme; vide Ref. No. 8023/RID/RPS-12/2011-12 and Natural Sciences
and Engineering Research Council of Canada. The authors also acknowledge the support from the
National Research Council of Canada in London, Ontario, Canada.

REFERENCES

[1] Basdogan, C.; Suvranue, D.; Jung, K.; Muniyandi, M.; Kim, H.; Srinivasan, M.: Haptics in minimally
invasive surgical simulation and training, IEEE Trans. on Computer Graphics and Applications,
24(2), 2004, 56-64.

[2] Bloomenthal, J.; Bajaj, C.; Blin, J.; Gascuel, M.; Rockwood, A.; Wyvill, B.; Wyvill, G., Introduction to
implicit surfaces, Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, 1997.

[3] Cheng, M.; Wang, G.: Approximate merging of multiple Bezier segments, Progress in Natural
Science, 18(6), 2008, 757-762.

[4] Cheshire, D.; Evans, M.; Dean, C.: Haptic modeling an alternative industrial design methodology?
In: Proceedings of EuroHaptics 2001, Birmingham, UK, 2001, 124-129.

[5] Dachille, F.; Kaufman, A.; Qin, H.: A novel haptics based interface and sculpting system for
physics-based geometric design, Computer Aided Design, 33(5), 2001, 403-420.

[6] Du, W.-H.; Schmitt, F. J. M.: On the G1 continuity of piecewise Bézier surfaces: a review with new
results, Computer- Aided Design, 22(9), 1990, 556-573.

[7] Gao, Z.; Gibson, I.: Haptic sculpting of multi-resolution B-spline surfaces with shaped tools,
Computer Aided Design, 38(6), 2006, 661-676.

[8] Hu, S.-M.; Tong, R.-F.; Ju, T.; Sun, J.-G.: Approximate merging of a pair of Bézier curves,
Computer-Aided Design, 33(2), 2001, 125-136.

[9] Hughes, M.; DiMattia, C.; Lin, M.; Manocha, D.: Efficient and accurate interference detection for
polynomial deformation. In: Proceedings of the IEEE Computer Animation Conference,
Washington DC, USA, 1996, 155-166.

[10] Igwe, P. C., Deformable volumetric self-organising feature maps and physics-based modeling for
concept design, Ph.D. Thesis, Department of Mechanical and Material Engineering, The University
of Western Ontario, London, 2008

[11] Igwe, P. C.; Knopf, G. K.; Canas, R.: Developing alternative design concepts in VR environments
using volumetric self organizing feature maps, Intelligent Manufacturing, 19(6), 2008, 661-675.

Computer-Aided Design & Applications, 10(4), 2013, 711-726
© 2013 CAD Solutions, LLC, http://www.cadanda.com

726

[12] Jimenez, P.; Thomas, F.; Torras, C.: 3D collision detection: a survey, Computer and Graphics,
25(2), 2001, 269-285.

[13] Knopf, G. K.; Igwe, P. C.: Deformable mesh for virtual shape sculpting, Robotics and Computer
Integrated Manufacturing, 21(4), 2005, 302-311.

[14] Lin, M. C.; Manocha, D., Collision and proximity Queries, in Goodman, J. E.; O'Rourke, J., eds.,
Handbook of Discrete and Computational Geometry, Chapman & Hall, Boca Raton, Florida, USA,
2004.

[15] Patoglu, V.; Gillespie, R. B.: A closest point algorithm for parametric surfaces with global uniform
asymptotic stability. In: Proceedings of 1st Joint Eurohaptic Conference and Symposium on Haptic
Interfaces for Virtual Environment and Teleporter System (WHC’05), Pisa Italy, 2005, 348-355.

[16] Piegl, L.; Tiller, W.: Algorithm for degree reduction of B-spline curves, Computer Aided Design,
27(2), 1995, 101-110.

[17] Piegl, L.; Tiller, W., The NURBS book, Monographs in visual communications, Springer, New York,
1997.

[18] Piegl, L.; Tiller, W.: Software engineering approach to degree elevation of B-spline curves,
Computer Aided Design, 26(1), 1994, 17-28.

[19] Pungotra, H.; Knopf, G. K.; Canas, R.: Efficient algorithm to detect collision between deformable
B-spline surface for virtual sculpting, Computer-Aided Design, 40(10-11), 2008, 1055-1066.

[20] Pungotra, H.; Knopf, G. K.; Canas, R.: Framework for modeling and validating concept designs in
virtual reality environments. In: Proceedings of the IEEE Virtual Reality 2009 Conference
(Symposium on Human Factors and Ergonomics), Toronto, Canada, 2009, 393-398.

[21] Pungotra, H.; Knopf, G. K.; Canas, R.: Merging multiple B-spline surface patches in a virtual
reality environment, Computer Aided Design, 42(10), 2010, 847 - 859.

[22] Pungotra, H.; Knopf, G. K.; Canas, R.: Novel collision detection algorithm for physics-based
simulation of deformable B-spline shapes, Computer Aided Design & Applications, 6(1), 2009,
43-54.

[23] Sener, B.; Wormald, P.; Campbell, R.: Evaluating a haptic modeling system with industrial
designers. In: Proceedings of EuroHaptics International Conference, Edinburgh, Scotland, 2002,
165 -169.

[24] Taia, C. L.; Hub, S. M.; Huangb, Q. X.: Approximate merging of B-spline curves via knot
adjustment and constrained optimization, Computer-Aided Design, 35(10), 2003, 893-899.

[25] Ye, J.; Campbell, R.: Supporting conceptual design with multiple VR based interfaces, Virtual and
Physical Prototyping, 1(3), 2006, 171-181.

[26] Ye, J.; Campbell, R.; Page, T.; Badni, K.: An investigation into the implementation of virtual reality
technologies in support of conceptual design, Design Studies, 27(1), 2006, 77-97.

[27] Yong, J.-H.; Hu, S.-M.; Sun, J.-G.; Tan, X.-Y.: Degree reduction of B-spline curves, Computer
Aided Geometric Design, 18(2), 2001, 117-127.

[28] Zheng, J. M.; Chan, K. W.; Gibson, I.: Constrained deformation of freeform surfaces using surface
features for interactive design, Advanced Manufacturing Technology, 22(2), 2003, 54-67.

