
1

A Knowledge-Guided Approach to Line NURBS Curve Intersection

Khairan Rajab, Najran University, Saudi Arabia, khairanr@gmail.com

Les A. Piegl, University of South Florida, USA, les@piegl.com

ABSTRACT

This paper presents a robust algorithm to solve the line-curve intersection problem used frequently
in design, manufacturing, graphics, art, etc. A global solution is proposed, i.e. all the intersections
are found and computed to high accuracy requirements. The emphasis is on robustness, reliability
and to handle geometric as well as numerical anomalies. The main thrusts of the method lie in the
use of a knowledge-guided NURBS system, a tight biarc decomposition and proper pre- and post-
processing of the entities as well as the intersections. All these contribute to achieve a high level
of reliability: the method is immune to such cases as tangential intersections, inflection points, or
line-curve overlaps. The intersection points produce various relationships that are recorded in the
knowledge-guided system so that all the results are reproducible in the receiving system, should the
intersection point be recomputed with a different level of accuracy.

Keywords: intersection, robustness, tolerancing, knowledge-guided systems, NURBS.

1. INTRODUCTION

Intersection algorithms have been the subjects of
intensive research since the early days of modern
CAD/CAM. The majority of intersection methods
published in the literature deals with parametric enti-
ties [1–3,8,11–13,15,17,18,27,28,31], subdivision tech-
niques [5,16,30], algebraic methods [14,29], special
entity types such as natural quadrics [10,19], evo-
lutionary algorithms [7], or computational geometry
techniques [4]. A few honorable attempts at robust-
ness revolve around those of solid modeling [6] or the
use of interval arithmetic [9].

The line segment has played an important role
in engineering design; it is used for two dimen-
sional design, trimming off excess parts of curves
meeting with straight edges, cutting parts of 2D
drawings (potentially meeting with anomalies), per-
forming inside/outside tests using ray shooting, pro-
cessing 2D objects via scan-line methods, etc. Another
important application is in nuclear engineering where
the flying path of a neutron needs to be inter-
sected with curves fast and efficiently (after the
accident in Fukushina, nuclear engineers are looking
at non-standard geometries represented by NURBS).
Although general curve-curve intersection methods
could handle lines, our experience shows that spe-
cial purpose methods are by far more reliable and
accurate.

It is our belief that the issue of robustness requires
a whole lot more than just mathematics. The lack of
robustness comes from many sources:

• Geometric uncertainties: mostly the result of
lack of knowledge about the entities, i.e. we are
not certain what the intersections are due to not
seeing and understanding the type of the curve
and the relationships between the entities.
• Geometric anomalies: cases like cusps, tangent

points, overlapping entities, degenerate cases
can make the numerical code fail.
• Tolerance inconsistencies: during the course

of the algorithm a myriad of tolerances, e.g.
manufacturing, parallel, perpendicular, angular,
algebraic, etc., are used that may have no rela-
tionship to one another, e.g. how to adjust
a tolerance used in an algebraic equation to
ensure the results are accurate to a model space
manufacturing tolerance.
• Numerical/imprecise computation: round-off

errors that propagate through the system and
cause inaccurate results, non-convergence, sin-
gularity, etc., create a chaos in most numerical
code used in CAD/CAM systems.
• Inappropriate mathematics: although math is

nice and well in itself, the implementation
of different techniques or formulae produces

Computer-Aided Design & Applications, 11(1), 2013, 1–9, http://dx.doi.org/10.1080/16864360.2013.829966
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

2

spectacularly different results from the point of
view of accuracy, speed and reliability.
• Inappropriate error bounds/measures: almost

all numerical techniques require some kind of
error estimates or bounds on the error. There
remain a few challenging problems such as para-
metric vs. geometric errors or computing tight
error bounds to avoid data explosion.
• General or special purpose algorithms: gen-

eral purpose methods can be applied to many
problems, they are easy to write, however, main-
tenance can be a nightmare as they tend to fail
frequently and can be quite slow. On the other
hand, special purpose algorithms work only on
specific problems, e.g. cylinder-cylinder inter-
section, they are tedious to write, however, they
are fast, robust and easy to maintain.

The algorithm presented in this paper satisfies the
following robustness requirements:

• Consistent tolerancing: it uses only one type
of tolerance, a model space point coincidence
tolerance. No other tolerances are allowed.
• Global solution: it finds all intersections

regardless of anomalies or geometric complex-
ity.
• Accuracy: the intersections are found to within

engineering tolerances (we use 10−6 throughout
the algorithm).
• Performance: the algorithm is robust and com-

putes all intersections in real time.
• Bounded geometry: curve and line segments are

intersected, i.e. the intersections are properly
clipped or avoided if they fall outside the arc.
• Commercially verified: the algorithm is imple-

mented with KGNurbs, a derivative of a com-
mercial NURBS kernel created by the second
author.
• Data exchange: the intersections can be repro-

duced at the receiving end as KGNurbs builds a
knowledge base that allows design replay.

Our decades of experience in geometric computing
has taught us a lesson: the more we know about the
entities we compute with, the better the robustness of
our algorithms. During the days of engineering draw-
ings where intersections were computed by hand,
everything seemed more reliable: the engineer could
see the entities, knew where they were and what
the intersections must be, and had the experience to
construct the intersection points or the curves. Inter-
section algorithms tend to be blind: they are searching
for something they know nothing about. Our bio-
logically inspired knowledge-guided system [22–25]
relies on a knowledge base (basic knowledge about the
entities combined with a sophisticated relationship
graph) and knowing what the entities are and how
they are related, e.g. seeing their relative positions.

Our experience has demonstrated that special pur-
pose intersection algorithms are far superior to gen-
eral ones enhancing the robustness immensely.

The organization of the paper is as follows.
Section 2 formulates the problem mathematically.
The main part of the paper is presented in Section 3
where the details of the method are given after an
overview of the algorithm. Section 4 covers knowl-
edge management and in Section 5 some examples are
presented. A Conclusion section closes the paper.

2. PROBLEM FORMULATION

To better comprehend the algorithm, some mathe-
matical notations are presented first. The curve is
defined as a NURBS curve degree p as follows [21]:

C(u) =
n∑

i=0

Ni,p(u)Pw
i

where Pw
i are the weighted control points, and Ni,p(u)

are the normalized B-splines defined over the non-
uniform and clamped knot vector

U = {u0 = · · · = up︸ ︷︷ ︸
p+1

, up+1, . . . , un, um−p = · · · = um︸ ︷︷ ︸
p+1

}

The line is represented parametrically:

L(t) = (1− t)Qs + tQe

where Qs and Qe denote the start and end points.
Now, the intersection problem is formulated as fol-
lows: find the geometric as well as the parametric
locations of all intersection points to satisfy the
following condition:

|C(ui)− L(ti)| < tol ui , ti ; i = 0, . . . , k

where ui and ti are the parametric locations of the
intersection points on the curve and on the line,
respectively, and tol is a model space point coinci-
dence tolerance, the only tolerance that is used and
allowed in the method.

3. ALGORITHM OVERVIEW

The algorithm presented herein has the following
major components:

1. Find information about the entity types such
as lines (defined as linear splines) or circles
(one can also consider other types of conic sec-
tions). The line-line case is robust, however, the
line-circle case is non-trivial due mainly to the
need to recover the parameter and that circles
are defined differently in different systems, e.g.
degree 2 versus degree 5, producing different
parametrizations.

Computer-Aided Design & Applications, 11(1), 2013, 1–9, http://dx.doi.org/10.1080/16864360.2013.829966
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

3

2. Decompose the NURBS curve if it has a straight-
line path. Based on the convex hull property,
if degree plus one or more control points are
collinear, the curve has a line path. Note that
the curve is not a line on that path, it is still
a high degree curve exhibiting collinearity on a
segment. Extracting these segments is impor-
tant because of the numerical issues arising
from line-curve overlap.

3. Get a biarc approximation of the curve even if
it is a line segment. Note that our biarc curves
approximate both the geometry as well as the
parametrization, which is necessary to recover
both the geometric as well as the parametric
locations of the intersection points.

4. For each biarc, get the intersection points on
the line segment and the biarc (Bezier circular
arc) and recover the local (Bezier arc) as well as
the global parameters.

5. Use the line-biarc intersection points and their
parameters as start points for a Newton-type
method to home in on the true intersection
points. Note that the biarc approximation tol-
erance can be much larger than the required
intersection tolerance as we are looking for
good start points (in our system we used 10−3

as a biarc tolerance and 10−6 for intersection
tolerance).

6. Purge the intersection points and generate the
output. Using the biarc approach multiple inter-
sections are possible at the locations where the
biarcs meet. However, these can be identified
and purged out.

7. Update the knowledge base with the newly cre-
ated relationships saving all the parameters
necessary to reproduce the results.

The rest of this section provides the critical details of
most of the steps above.

3.1. NURBS Curve Decomposition

In order for the line curve intersection to work prop-
erly, straight segments must be extracted from the
curve. Based on simple B-spline theory, the curve
exhibits what is called the strong convex hull prop-
erty: if the parameter moves within a knot span, i.e.
u ∈ [ui , ui+1), then the curve C(u|[ui , ui+1)) is in the
convex hull of the control points Pi−p , . . . , Pi . From
this follows that if the control points Pk , . . . , Pl are
collinear, then the curve C(u|[uk+p, ul+1)) exhibits a
straight path. The outline of the algorithm is as
follows:

• Step through the control points and find col-
lapsing convex hulls defined by at least p + 1
consecutive control points.
• Record the parameter intervals over which the

curve is straight.

• Decompose the curve into straight as well as
non-straight segments.
• Process each segment independently and collect

all intersection points.

Note that the straight curve segments are not linear
splines so they have to be approximated by biarcs to
get the proper parameters of the intersections. How-
ever, parallel and overlapping cases can be handled,
i.e. if the curve path is straight and the line is parallel
or overlapping with this path, the segment is skipped
and no intersection is recorded.

Figure 1 shows a simple example of a curve with a
straight path defined by five collinear control points
(top). The result of the decomposition is three curve
segments (bottom, the curves are pulled apart for bet-
ter visualization) that are processed independently.

Fig. 1: Curve with a straight path (top) and extracted
segments (bottom).

3.2. Biarc Approximation

The curve segments obtained in the previous step
are handed over to the biarc decomposition prepro-
cessor [22,26]. This unit obtains a piecewise circular
approximation of the curve to within a tolerance that
generates a reasonable number of arcs as well as a
good start point for a numerical method to compute
the true intersections (the number of arcs and the
accuracy of the approximation can be tailored to the
needs of the application). The advantages of biarc
decomposition are many fold:

• The complex NURBS curve is decomposed into
simple and well-known segments.
• The exact number of intersection points with

a circular arc is known and is computed in a
robust manner.
• The biarc approximation provides excellent

start points and accounts for all intersections.
• The biarc decomposition can be done with a

much larger tolerance and it serves as a fast
pre-processor (in all in our tests we used 10−3

for biarc approximation and 10−6 for final accu-
racy).
• Once the biarc functions are well tested, they

require almost no maintenance.

Computer-Aided Design & Applications, 11(1), 2013, 1–9, http://dx.doi.org/10.1080/16864360.2013.829966
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

4

The essence of the biarc decomposition is to obtain
a piecewise circular curve that approximates both the
shape of the curve as well as its parametrization. The
outline of the algorithm is presented below.

initialize a stack with the start and end knots
while stack is not empty do

(ul , ur)← pop the stack
extract segment C(u|[ul , ur])
Ps = C(ul); Ts = C′(ul); Pe = C(ur);
Te = C′(ur);
get the biarc B(u) = B(u|〈Ps , Ts , Pe, Te〉)
get the error curve E(u) = C(u|[ul , ur])−
B(u)

um ← compute the maximum error
if the error is not within tolerance

(um, ur)→ push the stack
(ul , um)→ push the stack

else
save B(u)

end
end
stitch biarcs together to form a composite
curve

The critical element of the above algorithm is the com-
putation of the parametric error between the curve
and a biarc segment. The error curve is computed
symbolically [20]:

C(u) = NC(u)

dC(u)
B(u) = NB(u)

dB(u)

⇒ E(u) = NC(u)dB(u)−NB(u)dC(u)

dc(u)dB(u)

To compute the error curve E(u), the following utili-
ties are required:

• Decompose the curve into numerator curve and
denominator function.
• Compute the product of a B-spline curve and a

B-spline function.
• Compute the product of two B-spline functions.
• Compute the sum/difference of two B-spline

curves.
• Assemble a NURBS curve from numerator curve

and denominator function.

These utilities are part of the suit of symbolic opera-
tors that perform algebraic operations on functions,
curves, surfaces and volumes. Since the error curve is
a NURBS curve, the maximum error and its paramet-
ric location can be computed using the well-known
knot refinement utility. Refining the error curve a
few times, the control polygon forms a very good
approximation of the curve giving an excellent error
bound:

εmax =max(|Pi |), i = 0, . . . , n

where Pi , i = 0, . . . , n denote the Euclidean control
points of the error curve. The parameter value at

which the maximum error is recorded is the node tj
that belongs to the longest position vector pj of the
error curve and is computed as follows [21]:

tj =
1
p

p∑
k=1

uj+k

Figure 2 shows an example of biarc decomposition.
A degree four curve is decomposed into three biarcs,
one C-shaped and two S-shaped, resulting in six circu-
lar arc segments that join with tangent vector conti-
nuity. The middle part of the figure shows the error
curve with three loops corresponding to the three
biarcs.

Fig. 2: Biarc decomposition (top) and error curve
(middle).

3.3. Line Segment Bezier Circle Intersection

Once the original curve is decomposed into circle seg-
ments, it is intersected with the input line segment.
It may sound trivial, however, to obtain robustness a
few issues need to be addressed. The first is the triv-
ial rejection. Since we have a large number of circular
arcs, it is important to reject as many arcs as pos-
sible that miss the input line. As Figure 3 illustrate,
the line Bezier triangle test may not be very efficient.
In fact, a large piece of the bounding triangle can be
intersected without touching the circular arc. Other
bounding objects can be thought of, e.g. a tighter
convex hull obtained by knot insertion, however, line
and bounding polygon intersection, although concep-
tually simple, computational can be quite involved
(accounting for vertex intersections and overlaps).
Since the circle is the simplest object in the Universe,
we implemented a circle bounding technique, as illus-
trated in Figure 3. The method is simple: split the
arc in 2, 4, etc., pieces and draw enclosing circles. If
the line segment intersects the circular arc, it must
also intersect the enclosing circles. The line enclosing
circle test is incredibly simple and is robust.

The second issue is the intersection of the line
with a circle. Now, it is a textbook example, however,
all textbooks get this wrong. The method involves
representing the circle as an implicit curve, the line
as a parametric entity and then solving a quadratic
equation for the intersection points. We have at least

Computer-Aided Design & Applications, 11(1), 2013, 1–9, http://dx.doi.org/10.1080/16864360.2013.829966
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

5

Fig. 3: Bounding the circular arc with circles for quick rejection test.

two problems with this: (1) quadratic equation solvers
are not very robust, and (2) they require algebraic
tolerances which we do not allow. So the line-circle
intersection problem has to be solved geometrically
using only the point coincidence tolerance. Fortu-
nately, this is a trivial problem and can be coded in a
very robust manner. Based on the notation in Figure 4,
project the center of the circle to the line and com-
pute the entities as shown in the figure. Then the
intersections are obtained as follows:

Q1 = F − dV U Q2 = F + dV U d =
√

r2 − a2

where V U is the unit direction vector representing the
line. The beauty of this method is that it requires only
distance calculations and that the decision of 0, 1 or 2
intersection(s) is based on the model space tolerance:

0 : a > r + tol 1 : |a− r | ≤ tol 2 : a < r − tol

The next important matter is to decide if a circle inter-
section point is on the Bezier circle or not, and if

Fig. 4: Line circle intersection.

yes, get the corresponding parameter. Based on the
notation of Figure 5, the conditions are as follows:

d(P1, Q1) ≤ d(P1, F) ⇒ Q1 ∈ C(u)

d(P1, Q2) > d(P1, F) ⇒ Q2 /∈ C(u)

Again, only simple distance calculations are required
to make a robust decision. Now, if the point is on
the Bezier circle, the parameter corresponding to the
intersection point needs to be recovered. Based on
some simple observations, the parameter correspond-
ing to Q1 is computed as follows [21]:

uB =
a

1+ a
a =

√
|P0 − F |
|P2 − F |

Fig. 5: Classifying Bezier circle intersections.

Computer-Aided Design & Applications, 11(1), 2013, 1–9, http://dx.doi.org/10.1080/16864360.2013.829966
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

6

That is, the circular arc is a map of the straight line
P0P2 from the middle control point P1. The param-
eter for the intersecting line is recovered by simple
linear interpolation. Returning to the global intersec-
tion problem, the start parameter for the numerical
process is obtained via linear interpolation of the end
knots used to obtain the Bezier segment:

u0 = UL+ uB · (UR− UL)

where UL and UR are the left and right knots used to
extract the Bezier circle from the biarc approximation.

3.4. Intersection Computation

Given the intersection of the line segment with the
piecewise circular arcs approximating the input curve,
it is now time to compute accurate intersections with
the initial curve. That is, given the start parameters
u0 and t0, we are looking for a numerical process that
starts at these parameters and converges to u and t
so that

|C(u)− L(t)| < tol

where tol is the accuracy requirement for the intersec-
tion process. In order to account for special cases like
tangential intersections, we use a distance formula,
see Figure 6.

Fig. 6: Computing the distance between a curve and
a line.

Any point on the line is expressed parametrically as
P = S + tV . Forming the bivariate function

r(u, t) = C(u)− P = C(u)− S − tV

the conditions to be satisfied for distance computa-
tion are

f (u, t) = r(u, t) · C′(u) = 0

g(u, t) = r(u, t) · V = 0

These equations can be solved iteratively as follows.
Let

δi =
[
�u
�t

]
=

[
ui+1 − ui
ti+1 − ti

]

Ji =
[

fu ft
gu gt

]
=

[|C′(ui)|2 + r · C′′(ui) −V · C′(ui)

V · C′(ui) −V · V
]

κi = −
[
f (ui , ti)
g(ui , ti)

]

Then at the i-th iteration the simple system of linear
equations Jiδi = κi need to be solved in order to get a
new set of parameters

ui+1 = �u+ ui

ti+1 = �t + ti

There are two main convergence criteria:

• Point coincidence: |C(ui)− L(ti)| < tol
• Perpendicularity: (C(ui)− L(ti))⊥V ∧ (C(ui)

− L(ti))⊥C′(ui)

Point coincidence is trivial, however, perpendicularity
needs some attention. It is typically checked using a
zero cosine tolerance but since we allow only point
coincidence tolerance, perpendicularity needs to be
measured differently. Since in most engineering appli-
cations lines are finite, e.g. they form edges of objects,
we introduce a condition that is applicable for line
segments. Let the lines be �(Ps , Pe) and �(Qs , Qe). Then
using a simple algorithm to project a point onto a line,
the conditions become

Ps , Pe → �(Qs , Qe)
→ P�
s , P�

e

Qs , Qe → �(Ps , Pe)
→ Q �
s , Q �

e

d(P�
s , P�

e) < tol ∧ d(Q �
s , Q �

e) < tol

To ensure that the algorithm works correctly, a few
other issues need to be addressed such as when the
parameter gets stuck at the end of the curve, or
it jumps to the other side of the parameter inter-
val in case of closed curves. Because the biarc pre-
processor produces very good start points and repro-
duces end points as well as turning points quite well,
the numerical process never encountered issues with
convergence.

3.5. Purging Intersection Points

Once the numerical method completed processing all
intersection candidates, it is time to check for dupli-
cate points. Duplicate intersections typically happen
when the line hits the biarc right at the junction, or
very near to it and the numerical method converges
to the same point. These duplicate points are eas-
ily purged out as they are either identical (to within
round off error) or they are less than tolerance apart.

Computer-Aided Design & Applications, 11(1), 2013, 1–9, http://dx.doi.org/10.1080/16864360.2013.829966
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

7

3.6. Knowledge Management

There are two types of knowledge information that
our system produces: (1) knowledge that is recorded
when the objects are created, and (2) knowledge that
is acquired after the entities take part in various oper-
ations such as intersections. For the first part, we
group the information as follows:

• Identity: the name of the object, the date of its
creation and whether it is rational or not.
• Classification: the type of the object, its origin

and destination.
• Representation: anomalies such as parametriza-

tion factor, continuity as well as irregularities
are recorded.
• Definition: this contains the typical numerical

data of control points and knots.
• Geometry: important numerical quantities such

as arc length and curvature extremes are stored.

The knowledge data above is typically mined at the
beginning of operations to gather information such
as curve type, parametrization or irregularities, so
that the function can make intelligent decisions on
how to best process the entity. Once the processing
is complete, e.g. the intersections have been com-
puted, important relationships are recorded in the
second part of the knowledge base which is a relation-
ship graph. For our intersection process the following
knowledge base update is made:

• The curve-line graph is updated by adding the
intersection relationship. The information stored
are the IDs, the intersection points, the parame-
ters, the tolerance and the name of the function
that produced the intersection points.
• The curve-point graph is updated by the inci-

dence relationship storing the IDs, the tolerance
and the function that tests the incidence.

• The line-point graph is updated by adding the
incidence relationship with data such as IDs,
tolerance and function name.

In a typical design scenario the user may click on a
point of intersection and wonder where it came from.
The system queries the knowledge base and finds that
this point is in incidence relationship with the curve
and the line. Further inquiries reveal that the line
and the curve are in an intersection relationship and
that everything is available to reproduce this point.
So if the accuracy is not sufficient in the receiving
system, the intersection can be recomputed to any
desired tolerance. The key philosophy of KGNurbs is
design replay, i.e. the entire design or any part thereof
can be reproduced because no valuable information
(design intent) ever gets lost. Now, because building
the knowledge base is an overhead, the system gives
the designer the option to ignore the knowledge build-
ing and focus entirely on numerical data. This may
be important during preliminary design or rapid pro-
totyping where the prototype may get trashed at the
end of the project.

4. EXAMPLES

A few examples are presented in this section. Since
the method was developed for engineering applica-
tions, not for mathematics, the examples are realistic
rather than tricky with all sorts of loops, although
that would not make any difference. The first exam-
ple is shown in Figure 7. The curve is a difficult one
exhibiting lots of inflection points along a path that
is nearly collinear. All inflection points as well as
difficult touch point are handled quite well.

The second set of examples is from bio-
engineering, Figure 8. The contour curves represent
a cross section of a bone (left) and a one of the lung
(right). What is difficult about these examples is that
the curves exhibit wild local curvature changes which
is challenging to handle numerically.

Fig. 7: Intersection example with inflection, touch and turning points.

Computer-Aided Design & Applications, 11(1), 2013, 1–9, http://dx.doi.org/10.1080/16864360.2013.829966
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

8

Fig. 8: Bone and lung contour curve intersections.

Fig. 9: Handling intersections with straight paths.

The final set of examples is shown in Figure 9.
It shows a typical case scenario when engineering
drawings contains lots of straight paths and the line
happens to hit right along one of the straight pieces.
While the line overlap with the straight curve is han-
dled properly, the benefit of extracting all curve seg-
ments from the input curve is evident: the overlap is
omitted but the non-straight pieces are properly inter-
sected, i.e. the ends or the beginnings of the curve
segments where it begins or ends the straight path
are true intersections.

5. CONCLUSIONS

A robust algorithm to compute all the intersections
between a line and a NURBS curve is presented.
Instead of making the problem as part of a gen-
eral purpose curve-curve intersection problem, we
argue that general purpose intersection algorithms
are inferior to special ones when the emphasis is on
robustness, accuracy, speed and reliability. We believe
that robustness can be achieved in CAD systems with-
out changing the arithmetic. It requires knowledge,
careful algorithm design and consistent tolerancing.

Since intersection algorithms require a lot of
code and an entire numerical system (that may take
at least 6 months to build), a comparison with
other methods would be prohibitively time consum-
ing. An objective comparison is left to independent
developers who have both the resources as well as
the need to implement a dozen or so intersection

methods and compare their performance given a set
of applications.

ACKNOWLEDGEMENTS

This research was supported by Najran University,
Saudi Arabia, under grant No. ESCI/13/35. All opin-
ions, findings, conclusions and recommendations
expressed in this paper are those of the authors and
do not necessarily reflect Najran University.

REFERENCES

[1] Asteasu, C.; Orbegozo, A.; Parametric piecewise
surface intersection, Computers & Graphics,
15(1), 1991, 9–13.

[2] Aziz, N. M.; Bata, R. R.: Bezier surface/surface
intersection, IEEE Computer Graphics and
Applications, 10, 1990, 50–58.

[3] Boender, E.: A survey of intersection algorithms
for curved surfaces, Computers & Graphics,
15(1), 1991, 109–115.

[4] Boissonnat, J.-D.; Snoeyink, J.: Efficient algo-
rithms for line and curve segment intersec-
tion using restricted predicates, Computational
Geometry, 16(1), 2000, 35–52.

[5] Dokken, T.: Finding intersections of B-spline
represented geometries using recursive subdi-
vision techniques, Computer Aided Geometric
Design, 2(1–3), 1985, 189–195.

Computer-Aided Design & Applications, 11(1), 2013, 1–9, http://dx.doi.org/10.1080/16864360.2013.829966
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

9

[6] Fang, S.; Bruderlin, B.; Zhu, X.: Robustness in
solid modeling: a tolerance-based intuitionis-
tic approach, Computer-Aided Design, 25(9),
1993, 567–576.

[7] Hawat, R.; Piegl, L. A.: Curve-curve intersection
via genetic algorithms, Mathematical Engineer-
ing in Industry, 7(2), 1998, 269–282.

[8] Hedrick, R. W.; Bedi, S.: Method for intersec-
tion of parametric surfaces, Transaction CSMI,
14(3), 1990, 79–84.

[9] Hu, C.-Y.; Maekawa, T.; Sherbrooke, E. C.;
Patrikalakis, N. M.: Robust interval algorithm
for curve intersections, Computer-Aided Design,
28(6–7), 1996, 495–506.

[10] Johnstone, J. K.; Shene, C. K.: Computing the
intersection of plane and natural quadric, Com-
puters & Graphics, 16, 1992, 179–186.

[11] Kim, D.-S.; Lee, S.-W.; Shin, H.: A cocktail
algorithm for planar Bezier curve intersec-
tions, Computer-Aided Design, 30(13), 1998,
1047–1051.

[12] Limaiem, A.; Truchu, F.: Geometric algorithms
for the intersection of curves and surfaces,
Computers & Graphics, 19(3), 1995, 391–403.

[13] Manocha, D.; Demmel, J.: Algorithms for inter-
secting parametric and algebraic curves II: mul-
tiple intersections, Graphical Models and Image
Processing, 57(2), 1995, 81–100.

[14] Manocha, D.; Krishnan, S.: Algebraic pruning:
a fast technique for curve and surface inter-
section, Computer-Aided Design, 14(9), 1997,
823–845.

[15] Markot, R. P.; Magedson, R. L.: Solutions of
tangential surface and curve intersections,
Computer-Aided Design, 21(7), 1989, 421–427.

[16] Morken, K.; Reimers, M.; Schulz, C.: Computing
intersections of planar spline curves using knot
insertion, Computer Aided Geometric Design,
26(3), 2009, 351–356.

[17] Mullenheim, G.: On determining start point
for surface/surface intersection algorithm,
Computer Aided Geometric Design, 8, 1991,
401–408.

[18] Patrikalakis, N. M.; Maekawa, T.: Intersection
problems, in Shape Interrogation for Computer

Aided Design and Manufacturing, 2010, 109–
160, Springer-Verlag, NY.

[19] Piegl, L.: Geometric method of intersecting nat-
ural quadrics represented in trimmed surface
form, Computer-Aided Design, 21(4), 1989,
201–212.

[20] Piegl, L.; Tiller, W.: Symbolic operators for
NURBS, Computer-Aided Design, 29(5), 1997,
361–368.

[21] Piegl, L.; Tiller, W.: The NURBS Book, Springer-
Verlag, New York, 1997.

[22] Piegl, L. A.; Tiller, W.: Biarc approximation
of NURBS curves, Computer-Aided Design, 34,
2002, 807–814.

[23] Piegl, L. A.: Knowledge-Guided Computation
for Robust CAD, Computer-Aided Design and
Applications, 2(5), 2005, 685–695.

[24] Piegl, L. A.: Knowledge-Guided NURBS: Princi-
ples and Architecture, Computer-Aided Design
and Applications, 3(6), 2006, 719–729.

[25] Piegl, L. A.; Rajab, K.; Smarodzinava, V.;
Valavanis, K. P.: Fault-tolerant computing
in a knowledge-guided NURBS environment,
Computer-Aided Design and Applications, 6(6),
2009, 809–823.

[26] Piegl, L. A.; Rajab, K.; Smarodzinava, V.;
Valavanis, K. P.; Using a biarc filter to compute
curvature extremes of NURBS curves, Engineer-
ing with Computers, 25(4), 2009, 379–387.

[27] Pratt, M. J.; Geisow, A. D.: Surface/surface inter-
section problems, in J. A. Gregory (Ed.) The
Mathematics of Surfaces, Oxford, 1986.

[28] Rohmfeld, R. F.: Classification of curve-
curve intersections from the CAD/CAM view-
point, Computer Graphics International, 1996,
230–239.

[29] Sederberg, T. W.; Parry, S.: Comparison of three
curve intersection algorithms, Computer-Aided
Design, 18(1), 1986, 58–63.

[30] Sederberg, T. W.; Nishita, T.: Curve intersection
using Bezier clipping, Computer-Aided Design,
22(9), 1990, 538–549.

[31] Yang, P.; Qian, X.: Direct Boolean intersec-
tion between acquired and designed geometry,
Computer-Aided Design, 41(2), 2009, 81–94.

Computer-Aided Design & Applications, 11(1), 2013, 1–9, http://dx.doi.org/10.1080/16864360.2013.829966
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

	Introduction
	Problem Formulation
	Algorithm overview
	NURBS Curve Decomposition
	Biarc Approximation
	Line Segment Bezier Circle Intersection
	Intersection Computation
	Purging Intersection Points
	Knowledge Management

	Examples
	Conclusions
	Acknowledgements
	References

