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ABSTRACT

We present a catalog of type-specific, direct quadric fitting methods: Given a selection of a point cloud
or triangle mesh, and a desired quadric type (e.g. cone, ellipsoid, paraboloid, etc), our methods recover
a best-fit surface of the given type to the given data. Type-specific quadric fitting methods are scat-
tered throughout the literature; here we present a thorough, practical collection in one place. We add
new methods to handle neglected quadric types, such as non-circular cones and general rotationally
symmetric quadrics. We improve upon existing methods for ellipsoid- and hyperboloid-specific fitting.
Our catalog handles a wide range of quadric types with just two high-level fitting strategies, making it
simpler to understand and implement.
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1. INTRODUCTION

Efficient fitting of quadric surfaces to unstructured
point clouds or triangle meshes is an important com-
ponent of many reverse engineering systems [17,24].
Users may want a given surface to be fit by a specific
quadric type: For example, they may want the quadric
to be a cone, ellipsoid, or a rotationally-symmetric
subtype (spheroid, circular cone, etc). Without con-
straints on the quadric type, even small amounts
of noise can cause the result to have an undesired
quadric type – for example, a small portion of an ellip-
soid sampled with some noise can often be best fit by
a hyperboloid of two sheets (Fig. 1). Likewise, general
quadric fitting tends to always return the most gen-
eral quadric types – ellipsoids and hyperboloids – and
almost never returns cylinders, cones, or rotationally
symmetric shapes.

Methods for type-specific quadric fitting are scat-
tered throughout the literature: Some papers han-
dle spheres, circular cones and cylinders [15]; a
few others handle ellipsoids [14] or hyperboloids
[1]. Non-circular cones and general rotationally sym-
metric quadrics are not typically discussed. In this
paper, we present a thorough catalog of type-specific
quadric fitting methods, including new methods that
handle neglected quadric types, and improvements
to previously proposed methods for ellipsoid- and
hyperboloid-specific fitting methods.

Reverse engineering with quadric surfaces
includes several problems: first segmentation, to find
subsets of the data that can be fit by single quadric
surface patches, and then fitting, to find the best
quadric surface parameters fitting that data. Because
fitting quadric surfaces is a non-linear problem, effi-
cient quadric-fitting methods typically work in two
steps: (1) a linear, direct method (typically an “alge-
braic” fitting method) generates an initial guess; and
(2) a non-linear, iterative method is used to refine
that guess [7,15]. Chernov and Ma presented effi-
cient, non-linear optimization techniques to handle
the non-linear optimization step for any quadric type
[7]. The remaining challenge, and thus focus of this
paper, is the first step: generating an ‘initial guess’
that matches the desired quadric type, and is as close
as possible to the error-minimizing result.

Our direct fitting methods handle a wide range
of quadric types with just two high-level strate-
gies. In the first part of our paper, we show how
a closed-form line search in parameter space allows
us to more-effectively fit hyperboloids, ellipsoids, and
paraboloids. In the second part, we show that trans-
forming the problems to more convenient spaces and
reducing the parameters used in fitting allows us to
handle all remaining cases. In all cases we ensure
good results by minimizing a nearly-unbiased linear
error metric introduced by Taubin [23].
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Fig. 1: The difference between an ellipsoid and a hyperboloid can be very small in terms of local surface behavior,
leading to ambiguity in the best-fitting quadric type. We show a small section of a sphere (blue) with no noise
(a) and with small Gaussian noise (σ = 1% of bounding box size) (b and c) fit by a quadric (red). The top row
shows a zoomed in view, while the bottom row is zoomed out; note the shapes are almost indistinguishable in
the zoomed in view. For (a) and (b) we show the result of general quadric fitting (Sec. 2.2); for (c) we show the
result of sphere-specific fitting (Sec 4.5).

2. BACKGROUND

2.1. A Catalog of Quadric Types

For completeness, we give a brief overview of the
different quadric types. Quadrics in their most gen-
eral form are represented by a 10-parameter implicit
function of the form:

f (c, p) = c0 + c1px + c2py + c3pz + c4p2
x + c5p2

y

+ c6p2
z + c7pxpy + c8pxpz + c9pypz = 0.

(2.1)

When categorizing quadric types, it is more con-
venient to rotate to a canonical, axis-aligned form. In
that form, the quadratic cross terms are eliminated,
and we need only consider the signs of the remain-
ing pure squared terms. To perform this rotation, we
re-write the implicit quadric equation in matrix form:

pTAp + bTp + c0 = 0 with A =
⎛
⎝ c4 c7/2 c8/2

c7/2 c5 c9/2
c8/2 c9/2 c6

⎞
⎠ ,

b =
⎛
⎝c1

c2
c3

⎞
⎠ . (2.2)

We can then find an axis-aligning rotation of the
quadric by way of an eigendecomposition: A = RDRT.
In a rotated space pr = RTp, the new quadric becomes
pT

r Dpr + (Rb)Tpr + c0. For any non-zero squared term,
we can also translate the quadric to center it at the
origin along the corresponding axis, which eliminates
the linear term and thus results in a further-simplified
canonical equation.

We list the equations of different quadratic surface
types in Tab. 1. Note that all quadric types besides
ellipsoids and hyperboloids exist right on the bound-
ary of other, more general quadric types, typically
right at the point where a term of the equation in
canonical form becomes zero. These quadric types
are then all an infinitesimal parameter change ε away
from a more general type. When fitting a quadric
of a more general type, we allow the fitting result
to include bordering more-constrained types: i.e. an
elliptical cylinder is a valid fitting result of ellipsoid-
specific fitting. This simplifies our discussion, and
avoids exclusion of, or bias against, quadrics near the
boundary of their quadric type. Enforcing the “true”
quadric type can always be done subsequently by per-
turbing the result by ε as needed. We illustrate these
boundary relationships in Fig. 2.

Rotationally-symmetric quadric types (circular
cylinders, circular cones, spheroids, and circular
hyperboloids) have the same equations, with the
added constraint that two squared terms have
the same coefficient. In the case of a sphere, all the
squared terms are equal.

2.2. Algebraic Direct Fitting Methods and Taubin’s
Method

Algebraic direct fitting methods are a standard class
of methods commonly used for fitting quadric sur-
faces [19]. In this work, we focus primarily on
Taubin’s direct fitting method [23], which has been
shown to be an effective, nearly-unbiased direct
method for quadric fitting [7,9,21].
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Equation (Canonical Form) Quadric Type (Canonical Position) Distinguishing Property

c0 + c4p2
x + c5p2

y + c6p2
z = 0 Ellipsoid or Hyperboloid (Centered) Ellipsoid if all squared terms have

same sign
c4p2

x + c5p2
y + c6p2

z = 0 Cone (Centered) The constant term is zero
c0 + c3pz + c4p2

x + c5p2
y = 0 Paraboloid (Aligned with z-axis) One squared term is zero

c0 + c4p2
x + c5p2

y = 0 Cylinder (Aligned with z-axis) Squared and corresponding linear
term are both zero

c0 + c4p2
z = 0 Double Plane (Plane normals

aligned with z-axis)
Two pairs of squared and linear

terms are zero
c0 + c1px + c2py + c3pz = 0 Plane Quadratic terms all zero

Tab. 1: Equations of common quadratic surface types, in a canonical form (centered, axis aligned). In
each case we indicate the key property of the equation, indicating the quadric type.

Fig. 2: A chart of quadric types, not including rotationally symmetric subtypes. Arrows indicate “is on the
boundary of” relationships: One quadric type is on the boundary of another if any quadric of the first type can be
perturbed by ε to create a quadric of the second type. These relationships are transitive, so, for example, planes
lie on the boundary of all other quadric types.
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All algebraic fitting methods are based on the same
simple idea: We can approximate a difficult, non-linear
error (like the true orthogonal distance from data
points to a quadric surface) by a simple, linear approx-
imation:

∑n
i=0 f (c, pi)

2 where f (c, p) is an error metric
that is linear in terms of the parameter vector c. For
general quadrics, we use the algebraic function that
implicitly defines the quadric surface, Eqn. (2.1), as
our “algebraic” error metric, f (c, p).

The scale of that linear error metric is arbi-
trary: Scaling the vector c scales the error without
changing the surface. All algebraic methods there-
fore normalize the error by some quadratic normal-
ization function, q(c), arriving at the error metric,(∑n

i=0 f (c, pi)
2
)

/q(c). Because the error and normal-

ization are both quadratic functions, this permits
an efficient solution: We define symmetric matrices
M and N such that

∑n
i=0 f (c, pi)

2 ≡ cTMc and q(c) ≡
cTNc, and take the eigenvector c of the general-
ized eigenvalue problem (M − λN)c = 0 with smallest
eigenvalue λ as our solution.

Algebraic fitting methods are distinguished by
their choice of quadratic normalization function q(c).
The choice of q(c) dramatically affects the quality of
the results: A good choice can result in a fit that is
nearly as good as the best non-linear fit, while a poor
one will exhibit clear biases against large parts of
the solutions space. For example, an ellipse-specific
normalization used for 2D conic fitting [10] biases
against eccentric ellipses.

The best choices of q(c) in theory [21] and in prac-
tice [9] are Taubin’s method [23], and the more recent
HyperLS method [21]. HyperLS is marginally more
accurate, but also more complex and less intuitive. For
this paper we explain and use Taubin’s method.

Taubin’s method is to choose q(c) = ∑n
i=0

||∇pf (c, pi)||2. This is based on Sampson’s error, which
is a first-order approximation of the squared dis-
tance d(c, p)2 from a point p to a quadric c: d(c, p)2 ≈
s(c, p)2 = f (c,p)2

||∇pf (c,p)||2 [22]. We can view the algebraic

error f (c, p) as a product, f (c, p) = s(c, p)||∇pf (c, p)||,
of Sampson’s error approximation multiplied by the
(arbitrary) magnitude of the gradient of f (c, p). This
arbitrary gradient magnitude can be seen as a bias
term, weighting the algebraic error at each data point.
If these bias weights at the data points are smaller
overall for some shapes, then the algebraic error will
be smaller for those shapes, leading to a bias toward
those shapes. Taubin’s idea – normalizing by the
squared magnitude of these bias weights – counters
the aggregate effect of this bias: For example, when
the bias weights are smaller overall, Taubin’s normal-
ization q(c) is likewise also smaller, countering the
algebraic error’s bias towards the shape. For a rigor-
ous analysis of how well this approach removes bias,
see [21].

For any given data set, we compute matrices M
and N such that

∑n
i=0 f (c, pi)

2 ≡ cTMc and q(c) =

∑n
i=0 ||∇pf (c, pi)||2 ≡ cTNc. To do so, we define l(p)

such that l(p) · c = f (c,p) (we can always do so
because f (c,p) is linear in c), and define li(p) as
the partial derivative of l(p) with respect to the
ith dimension. Then M = ∑n

i=0 l(pi)l(pi)
T and N =∑n

i=0
∑3

j=1 lj(pi)lj(pi)
T. We compute Taubin’s error

metric as:
cTMc

cTNc
. Taubin’s method applies generally to

many least squares fitting problems. We will use it to
fit customized quadric functions and also kinematic
fields in Sec. 4.

3. FITTING METHOD FOR HYPERBOLOIDS,
ELLIPSOIDS AND PARABOLOIDS

Previous direct fitting methods for ellipsoids and
hyperboloids have used algebraic fitting with a cus-
tom normalization function q(c) to ensure that at
least one of the resulting eigenvectors has the desired
quadric type [1,14]. These methods guarantee a hyper-
boloid or ellipsoid, but the result may not be a good
fit: The type-constraining normalizations introduce
more bias than Taubin’s method, leading to poorer
fitting results in the presence of noise, as shown in
Fig. 3(a,c).

Others have proposed exploring the space of solu-
tions returned by the fitting method: While the best fit
may not have the desired type, algebraic fitting uses
a generalized eigenvalue method that returns a basis
of solutions, and one of the other eigenvectors might
have the desired type [1]. However, these eigenvectors
are not optimal in terms of fitting error – in fact, even
the second-best eigenvector tends to correspond to a
very poor fit, as we illustrate in Figs. 4 and 5.

Our approach is to combine these ideas with pre-
vious work in the domain of 2D conic fitting: Harker
et al. [12] showed that an effective approach for
ellipse- and hyperbola-specific fitting is to rely on
the biased ellipse- or hyperbola-specific fitting meth-
ods to ensure the correct conic type is found, but
then compensate for the bias by searching a linear
subspace of conics for a better-fitting result.

In this section, we generalize the search method of
Harker et al. to quadrics. We improve the method by
more carefully considering which subspace we should
search, and we simplify the search by introducing
the observation that, when Taubin’s method does not
return the desired type, then the best fit is right on
the boundary of that type; i.e. it is within ε of being
a paraboloid. This result also leads us naturally to
a method to fit paraboloids, and to constrain the
number of sheets in the hyperboloid fit.

3.1. How to Define a Good Linear Subspace of
Ellipsoids and Hyperboloids

Our goal is to search a linear subspace spanning
both hyperboloids and ellipsoids for the best quadric
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Fig. 3: Ellipsoid- and hyperboloid-specific fitting results for an 8th of an ellipsoid with vertices perturbed by
Gaussian noise (σ = 0.5% of bounding box size). We show the results of Allaire et al.’s hyperboloid- and ellipse-
specific fitting methods (a) and (c) respectively, and our improved methods (b) and (d). Top row: Side view of
mesh to be fit (blue) and quadric fitting result (red). Bottom row: Heat maps of error of fit over mesh surface,
with error key on left. Errors are orthogonal distances from mesh surface to quadric, relative to bounding box
size, ranging from 3% outside (blue, bottom of key) to 3% inside (red, top of key). Note the high-error regions in
the center of (a) and corners of (c).

Fig. 4: A sampling of the quadrics in a linear subspace ca + tcb, where ca and cb are the best and second-best
eigenvectors of Taubin’s fitting method applied to a section of a sphere. In each image the quadric is shown in
red, and the data (a section of a sphere) is shown in blue. As parameter t goes from −10000 to 10000, the quadric
shape goes through hyperboloids of one and two sheets, ellipsoids, cones, and paraboloids. When t is near zero,
the quadrics approximate the data well.

of the desired type. First, we need to identify a
good subspace to search: That is, we need to iden-
tify two parameter vectors ca, cb, such that ca + tcb
includes both ellipsoids and hyperboloids – ideally,
well-fitting ones. For example, if we have one param-
eter vector ce that defines an ellipsoid, and another
parameter vector ch that defines a hyperboloid, then
ce + tch is an acceptable subspace spanning both

hyperboloids and ellipsoids; at t = 0, the original
ellipsoid is reproduced, and as t → ∞, the original
hyperboloid is reproduced (because the scale of the
quadric parameters has no effect on the shape).

We always let the first parameter vector ca be the
best fitting quadric under Taubin’s method, without
any type-specific normalization; it will be within ε of
being either an ellipsoid or a hyperboloid (because
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Fig. 5: Fitting errors at samples of a linear subspace of quadrics formed from the best two eigenvalues of
Taubin’s method (visualized in Fig. 4 above). Interpolation parameter t has been transformed by tθ = atan(t) to
compress its range, and errors have been normalized by the error at the worst-fitting quadric. Taubin error (red
crosses) approximates the true non-linear error (blue squares).

every quadric is, as shown in Sec. 2.1). For the second
parameter vector, cb, there are two natural strate-
gies: We could use one of the remaining (not optimal)
eigenvectors from Taubin’s fit, or we could use one of
the biased, constrained fitting methods. The subspace
including the first- and second-best eigenvectors has
the lowest maximum error of all subspaces, because
the Taubin error is bounded between the correspond-
ing eigenvalues. We find that when the data could
be reasonably approximated by both ellipsoids and
hyperboloids, this subspace tends to include both
types and to span reasonable fitting results, as shown
in Fig. 4. If the data is very far from an ellipsoid, how-
ever, the subspace may only include hyperboloids.
The biased fitting methods may give poorer fitting
results, but guarantee the resulting quadric type. We
use a hybrid strategy: First we search the space of
the two best eigenvectors, and if this fails to include
the desired quadric type we fall back to using the
biased fitting method to find the second vector cb
by constraining it to have the type that ca does not
have.

In the fall back case, where a biased fitting method
is needed, we follow the method of Allaire et al.
[1]. Allaire et al. build basis-invariant normalization
functions that constrain the solution to have the
desired type, using a weighted combination of basis-
invariant quadratic functions of matrix A from the
matrix form of the quadric (Eqn. (2.2)): qAllaire(A) =
α

∑
detP

2(A) + ηtr(A)2, where
∑

detP
2(A) is the sum of

the three principal second-order minors of A, and
tr(A) is the trace of A. This normalization, used
with the algebraic fitting framework (Sec. 2.2), guar-
antees the fitting solution will include an ellipsoid
if we choose α = 4, η = −1, and hyperboloids if we
choose α = 0, η = −1. Solving with this normalization
will result in a set of eigenvectors; we evaluate each

eigenvector and take the best under Taubin’s error
metric with the desired quadric type. To efficiently
determine if a quadric is an ellipsoid, we check that
the second leading principal minor of A is positive,
and that the first and third leading principal minors
of A have the same sign. Note that previous work has
suggested instead using the sign of the eigenvalue
corresponding to each eigenvector to determine the
quadric type [14], but (as noted by that work) doing
so makes the fit unable to handle some shapes such
as flattened ellipsoids. Our approach of directly test-
ing the quadric type of each eigenvector avoids this
limitation.

3.2. The Best Ellipsoid or Hyperboloid is Always a
Paraboloid (if it isn’t the Best Quadric Overall)

Assume for this discussion that the best quadric
under Taubin’s metric does not have the desired
type: Otherwise, we would have simply returned the
result of Taubin’s method. When the best quadric
does not have the desired type, then the best quadric
of the desired type must be right at the transition
point between quadrics: at some exact point t where
the interpolated quadric becomes the quadric of the
desired type. This transitional quadric is a paraboloid
(or on the boundary of a paraboloid). To prove this, we
first note that Harker et al. showed that the maxima
and minima of Taubin’s error for any linear sub-
space ca + tcb can be found by solving the roots of
a quadratic equation in the interpolation parameter
t [12]. Because this error function is always non-
negative, and quadratic equations have at most two
roots, it can only have one minima and one maxima.
Let c′

a and c′
b be the minima and maxima respec-

tively, and consider the subspace c′
a + tc′

b. This is
equivalent to searching the original subspace ca + tcb:
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Due to scale invariance, ca + tcb spans the full planar
subspace s(ca + tcb), and any two different quadrics
from this planar subspace will span the same set
of quadrics. In the limit as t → ∞ or t → −∞ the
interpolated quadric c′

a + tc′
b becomes c′

b, again due
to scale invariance. Therefore the maximum error is
at the limits t → ±∞, and the error is monotonic in
the ranges t ∈ [0, +∞) and t ∈ [0, −∞). When the min-
ima does not have the desired type, it follows that
within each monotonic range the best quadric of the
desired type must be on the boundary of that type:
If it were not, we could move t closer to 0 with-
out changing the type and arrive at a quadric of the
desired type with lower error, thanks to monotonicity.
Therefore, the best quadric of the desired type over-
all is also on the boundary of that type – i.e., it is a
paraboloid.

This result is not an artifact of our choice to
restrict our search to a specific linear subspace of
quadrics, since the reasoning applies to any linear
subspace – including an optimal subspace spanning
the true best ellipsoid and hyperboloid. It is there-
fore a fundamental property of Taubin’s metric on
quadrics that the best quadric of a specific type is
either the best quadric of general type, or it is right on
the boundary of the desired quadric type. (It is also a
property of other metrics, including HyperLS.)

Note that the result is not specific to quadrics: Any
linear subspace of parameters has at most one max-
ima and one minima under Taubin’s error, regardless
of the application, so the logic of this section also
applies to any other cases where Taubin’s error is
used. For example, it follows for 2D conics that the
best ellipse or hyperbola under Taubin’s metric is a
parabola (if it isn’t the best conic overall).

3.3. Fitting Ellipsoids or Hyperboloids

If the desired type is returned by unconstrained
Taubin fitting, then we just use that result. Other-
wise, we know that the best quadric of the desired
type is at a transition (Sec. 3.2), and we have selected
a reasonable subspace of quadrics to search for that
best quadric (Sec. 3.1). We now find all the transitional
quadrics in our chosen subspace, and return one with
the desired type and lowest error.

To search the subspace ct = ca + tcb for transi-
tions between ellipsoids and hyperboloids, we refer
to the matrix form of the quadric expression (2.2)
to express the subspace of the quadratic coefficient
matrices as an interpolated matrix At = Aa + tAb.
We search for the points t where At could change
its positive- or negative-definiteness. Because eigen-
values of a symmetric matrix are continuous with
respect to the entries of the matrix [11], these are
the points where one or more of the eigenvalues
is 0; i.e., where the matrix determinant is 0. To com-
pute the determinant of At as a function of t, we
express the determinant of At with column vectors

|At | = ∣∣a1 + tb1 a2 + tb2 a3 + tb3
∣∣ where ai and bi

are the ith column of Aa and Ab, respectively. We use
the linear independence of the columns to expand the
determinant to a third degree polynomial:

∣∣At
∣∣ = ∣∣a1 a2 a3

∣∣ + (∣∣b1 a2 a3
∣∣ + ∣∣a1 b2 a3

∣∣
+ ∣∣a1 a2 b3

∣∣) t + (∣∣a1 b2 b3
∣∣ + ∣∣b1 a2 b3

∣∣
+ ∣∣b1 b2 a3

∣∣) t2 + ∣∣b1 b2 b3
∣∣ t3. (3.1)

The best quadric of the desired type is then (within
ε of) one of the roots of this cubic polynomial. If we
want a hyperboloid, then it is simply the root with the
lowest error under Taubin’s metric. For an ellipsoid,
we also require all non-zero eigenvalues of At to have
the same sign, to ensure it can be perturbed by ε to
generate an ellipsoid.

When fitting hyperboloids, we may also wish to
constrain the number of sheets in the hyperboloid we
fit. If the result of hyperboloid-specific fitting has the
wrong number of sheets, then Sec. 3.2 shows that the
best hyperboloid with the desired number of sheets
must be at the boundary of the desired type. In this
case, that means it must be (within ε of) either a
paraboloid or a cone. Therefore, if the initial fit does
not have the desired number of sheets, we separately
fit a paraboloid (elliptical for two sheets, hyperbolic
for one sheet; see Sec. 3.4) and cone (Sec.4.3) to
the data, and take whichever has the lowest Taubin
error.

3.4. Fitting Paraboloids

Because the hyperboloid and ellipsoid fitting method
above already finds well-fitting paraboloids, it seems
natural to use the same approach for paraboloid-
specific fitting. Any quadric is within ε of a paraboloid
if its matrix of quadratic coefficients A is singular;
i.e., if |A| = 0. Therefore, the roots of (3.1) are all
the paraboloids in a linear subspace of quadrics. We
use the linear subspace of quadrics formed by the
best two eigenvectors of Taubin’s method, and take
the quadric corresponding to the root of (3.1) with
the lowest Taubin error as our paraboloid-specific
fit.

To fit elliptical paraboloids specifically, we search
the subspace including both ellipsoids and hyper-
boloids found in Sec. 3.2; this subspace must also
include elliptical paraboloids because the quadric
type on the boundary between hyperboloids and ellip-
soids is the elliptical paraboloid (Fig. 2).

To fit hyperbolic paraboloids specifically, we first
search the space of the best two eigenvectors, which
generally includes hyperbolic paraboloids. However,
since this is not guaranteed, in the event that no
hyperbolic paraboloid is found, we suggest fitting
a hyperbolic cylinder (Sec. 4.2) – the most gen-
eral quadric type on the boundary of hyperbolic
paraboloids (Fig. 2) – based on the intuition of Sec. 3.2.
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(a) (b) (c)

Fig. 6: Data from a hyperbolic paraboloid (blue) fit with a quadric (red). (a) Noise-free data. (b and c)
Data with Gaussian noise (σ = 2% of bounding box size). (b) General quadric fitting finds a hyperboloid. (c)
Paraboloid-specific fitting finds a hyperbolic paraboloid.

An example of hyperbolic paraboloid fitting is shown
in Fig. 6.

4. FITTING METHODS FOR LOWER-DIMENSIONAL
QUADRIC TYPES

Ellipsoids and hyperboloids exist in a high-
dimensional parameter space with 9 degrees of free-
dom (having 10 unconstrained, but scale-invariant,
parameters). The remaining quadric types all exist
in simpler sub-spaces with fewer degrees of free-
dom [17]. The key to efficiently fitting these quadric
types is to express the quadric with fewer parame-
ters, such that only quadrics of the specified type can
be generated, and then apply the standard algebraic
fitting procedures of Sec. 2.2 on that parametrically-
reduced form. For example, for planes and spheres we
can simply drop and combine terms from the stan-
dard implicit quadric function to arrive at a plane-
or sphere-specific function (e.g. c0 + c1px + c2py +
c3pz + c4(p2

x + p2
y + p2

z ) = 0 for spheres).
For most other lower-dimensional quadrics, the

required low-dimensional space is more complicated:
For example, there is no known linear least-squares
method to fit circular cones and cylinders to a point
cloud using just point positions [17]. However, there
are linear least-squares methods for fitting such
shapes to point clouds with normals [15]. For dense
point clouds and polygonal meshes we can estimate
normals (e.g. by local plane fitting, or averaging tri-
angle normals), and then use a two-step process to
fit the quadric. First, we estimate key parameters
of the quadric using a direct “kinematic surface fit-
ting” procedure that can determine properties such
as a rotation symmetry axis (for a rotationally sym-
metric quadric), the direction in which the shape
does not change (the axis of a cylindrical shape),
or the central point of scaling (for a general cone)
[5]. Second, we transform the data to a more conve-
nient space and perform the standard algebraic fit
in that space. In the transformed space, it is pos-
sible to reduce the quadric parameters as we did
for planes and spheres. For example, to fit general
cones we translate the data so that the cone apex is
at the origin, and then fit a quadric with the linear

and constant parameter terms dropped: c4p2
x + c5p2

y +
c6p2

z + c7pxpy + c8pxpz + c9pypz = 0 (Sec. 4.3).

4.1. Kinematic Field Fitting

Kinematic surface fitting is a type of fitting procedure
aimed at reconstructing shapes that can be generated
by sweeping a general profile curve along a simple,
linear velocity field, such as surfaces of revolution [5].
These methods work by reconstructing velocity fields,
and can be adapted for quadric fitting to find proper-
ties of the desired quadric: the axis of invariance for a
cylinder, or the axis of rotation for a spheroid, or the
central point of scaling for a general cone. We can use
that property to transform the data to a space where
the type-specific quadric fitting problem is easier to
specify.

Kinematic velocity fields are linear functions v(p)
that define a velocity everywhere in space. For our
quadric fitting catalog we use three specific field types
(Fig. 7): First, the simple general cylinder field due to
[20], which defines a constant velocity field: v(p) = a,
where a is a parameter vector defining the direction
of the field. Second, we use the rotational field due
to [18], which defines a rotational (or helical) motion:
v(p) = r × p + a, where r and a are parameter vectors
encoding the rotation axis and position of the axis
(plus helical motion, if any). And finally, we use a
scaling field, which defines a scaling motion: v(p) =
γp + a, where γ is a parameter defining the scaling
and a is a parameter vector encoding the center of
the scaling.

To fit a field, we need data points that include
both position and normal information. (Normals, if
unavailable, can be approximated for dense point
clouds [6]; for meshes we use area-weighted vertex
normals.) Data points fit the field if they define a sur-
face that is tangent to the field, which we characterize
by the error function f (p, n) = v(p) · n. Andrews and
Séquin show [5] that an effective direct solution to
this fitting problem for any field is to apply Taubin’s
method (Sec. 2.2), with

∑n
i=0(v(pi) · ni)

2 ≡ cTMc and
q(c) = ∑n

i=0 ||v(pi)||2 ≡ cTNc, where c is a vector con-
catenating all parameters defining the velocity field
(e.g. for scaling, c = [γ , ax , ay , az]T ).

Computer-Aided Design & Applications, 11(1), 2013, 107–119, http://dx.doi.org/10.1080/16864360.2013.834155
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



115

(a) (b) (c)

Fig. 7: Red streamlines showing velocity fields fit to mesh data: (a) constant, (b) rotational, (c) scaling.

4.2. Fitting Cylinders

Cylinders of any subtype can be fit in two steps: First,
we fit a general cylinder field to find the invariant axis
of the cylinder, along which the cross section does
not change. Next, we rotate all points so that this axis
is aligned with the z-axis. We then fit a conic of the
desired type to the points: i.e., for a circular cylin-
der, we fit a circle; for an elliptical cylinder, we fit
an ellipse. For circle fitting, we fit the equation c0 +
c1px + c2py + c4(p2

x + p2
y ) = 0 directly using Taubin’s

method. For other types, we use the methods from
Sec. 3 (adapted from Harker et al. [12]) for type-
specific conic fitting, as explained below. The result-
ing conic equation, evaluated in 3D, is a cylinder along
the z-axis. We finally rotate the cylinder back to the
original basis.

In detail, the type-specific conic fitting method
proceeds as follows: First, we fit using Taubin’s
method, and check the type of the best fit result. If
it is the correct type, we return that and stop. Other-
wise, we use biased fitting to find some (sub-optimal)
conic of the desired type; specifically, use the normal-
ization qFitzgibbon(c) = 4c4c5 − c2

7 [10]. We search the
subspace between the best fit conic using Taubin’s
method, ca, and the biased fit of the desired type, cb,
for an improved fit of the desired type. We define Aa
and Ab as 2 × 2 matrices of quadratic terms terms, of

the form A =
(

c4 c7/2
c7/2 c5

)
(analogous to the 3 × 3 of

Eqn. (2.2)), and define At ≡ Aa + tAb. Sec. 3.2 shows
that the best conic of the desired type must be the
transitional parabola where the conic changes type:
i.e., where |At | = 0. With ai and bi defining the ith

columns of Aa and Ab respectively, we solve for
the roots of

∣∣At
∣∣ = ∣∣a1 a2

∣∣ + (∣∣b1 a2
∣∣ + ∣∣a1 b2

∣∣) t +∣∣b1 b2
∣∣ t2 = 0, and take the root with lowest Taubin

error.

4.3. Fitting General Cones

To fit a cone, we first find the center point of scal-
ing by fitting the kinematic scaling field v(p) = γp + a.
The center of scaling is −a/γ . Note that if |γ | is very
small, then division by γ becomes unstable. In the
limit, as γ → 0, the center of scaling moves infinitely
far from the origin, so the cone becomes a cylinder.

We therefore define a threshold tcyl = 10−6, and if
|γ | < tcyl, we consider the best cone to be a cylinder, so
we can fit an elliptical cylinder instead of a cone (see
Sec. 4.2). Alternatively, if a cylinder is not desired, we
can take the best eigenvector returned by algebraic
fitting with |γ | > tcyl.

Once some (non-infinite) cone center is chosen, we
can translate the points so that the cone center is at
the origin, and fit a centered cone quadric equation
c4p2

x + c5p2
y + c6p2

z + c7pxpy + c8pxpz + c9pypz = 0
using Taubin’s method. Finally, we translate the
resulting quadric back to the original space.

4.4. Fitting Rotationally Symmetric Quadrics

To fit a rotationally symmetric quadric, we first find
the axis of rotational symmetry by fitting the rota-
tional field v(p) = r × p + a. We normalize the result-
ing parameters by dividing both a and r by ‖r‖, and
then find a point on the axis of the rotational field
pr = r × (a − (a · r)r). If ‖r‖ is very small, then nor-
malizing by ‖r‖ is unstable, so we use a threshold
tcyl = 10−6: If ‖r‖ < tcyl then we assume ‖r‖ ≈ 0 so
the best motion is approximately a pure translation,
i.e. a cylinder; we then fit a circular cylinder (see
Sec. 4.2). Otherwise, we transform the data so that the
z-axis is aligned with r, and the point pr is at the ori-
gin. We then fit the equation c0 + c3pz + c4(p2

x + p2
y ) +

c6p2
z = 0 for a general quadric with rotational sym-

metry, and finally transform the result back to the
original basis. We can directly apply the methods of
Section 3 to further constrain the quadric type.

For circular cones we either find the center of scal-
ing and make that pr , then fit the simpler equation
c4(p2

x + p2
y ) + c6p2

z = 0, or we can alternatively rotate
the data points to a shared plane and fit a 2D line to
find the angle of the cone. Note that quadric cones are
in fact two cones connected at the tip, and this second
method ignores the possibility that the data points
may come from both cones; but it may be desirable in
the common case where only one of the two cones is
desired in the fit.

For spheres we directly fit the equation c0 + c1px +
c2py + c3pz + c4(p2

x + p2
y + p2

z ) = 0 [2]. For planes, we
translate the data to its centroid and fit the equation
c1px + c2py + c3pz = 0 [16]. We handle double planes
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and intersecting planes with multiple plane fits,
because we prefer single-plane solutions.

5. APPLICATIONS

Because noise in the data can easily alter the best-
fitting quadric type detected by general quadric fit-
ting (Figs. 1, 6, 8), type-specific fitting is useful in
any quadric fitting application where the correct or
desired quadric type is known a-priori. There are
many such applications: Allaire et al. give the example
of fitting a bone joint that is known to be a hyper-
boloid [1]; many CAD parts are known to be cylin-
ders or cones by construction; hyperbolic paraboloids
show up in architecture, art, and Pringles potato
chips. In some cases it is important that the quadric
surface be bounded – for example, if the whole
quadric surface is expected to correspond to some
real surface – and in this case, the type must be an
ellipsoid and not a hyperboloid. (The best ellipsoid is
within ε of a paraboloid (Sec. 3.2), which is effectively
not bounded, but the linear subspace of Sec. 3.1 gen-
erally also contains much less eccentric, well-fitting
ellipsoids, so this subspace is a good place to start a
non-linear search for an ellipsoid of bounded eccen-
tricity.) There are other cases where one knows the
surface must have one of several types: Minimal sur-
faces (“soap film”) have negative Gaussian curvature
everywhere, so they should be fit by hyperboloids of
one sheet or related boundary types such as hyper-
bolic paraboloids. Developable surfaces must have
zero Gaussian curvature everywhere, so they should
be fit by general cylinders, cones, and planes.

Type-specific fitting is also useful when a designer
has some preference regarding the quadric type they
wish to fit to some surface: They may not know a-
priori what the best fit is, but still prefer to work
with simpler or rotationally-symmetric quadric types.

To demonstrate this kind of user-oriented applica-
tion, we extend a simple region growing method from
Andrews et al. [4] for selecting a quadric on a mesh
surface: Starting from a user stroke on a mesh sur-
face, the original algorithm selects the triangles under
the stroke and then iteratively fits a quadric to the
selection, and grows the selection to the neighboring
triangles that are close to the fitted quadric (in posi-
tion and orientation). This algorithm is convenient,
but faces inherent ambiguity both in the best direc-
tions to grow the selection (Fig. 9, top row) and how
much error should be accepted in order to fit a larger
region (Fig. 9, bottom row). A user’s preference for a
quadric of a specific type or with a specific property,
like rotational symmetry, can reduce that ambigu-
ity (Fig. 9c). If the user’s type-preference is absolute,
we simply replace general quadric fitting with the
appropriate type-specific fitting method. Otherwise,
the user can specify how much additional error they
will accept in exchange for a simpler quadric type; the
system will fit both the simpler type and the general
type, and use the simpler fit only if its error is within
the user’s additional error threshold of the general fit.

6. IMPLEMENTATION

Each direct fitting method we describe involves sim-
ply solving generalized eigenvalue problems, and in
some cases finding the roots of a cubic or quadratic
equation. Generalized eigenvalue problems can be
solved with standard linear algebra packages (we use
LAPACK [3]), but some care must be taken to avoid
numerical instability and ensure good results. We
observed some cases in which floating point error
corrupted the ordering of the eigenvalues of a gen-
eralized eigenvector problem cTMc = λcTNc for clean
data with low noise. To ensure that the best eigenvec-
tor is chosen, we disregard the computed eigenvalues

(a) (b) (c)

Fig. 8: An image-based reconstruction of a sculpture has a noisy cone as its base (a). We select the base (blue)
and fit quadrics (red). (b) Without type specific-fitting, the result is a hyperboloid with a non-zero neck at the top.
(c) With cone-specific fitting, the result is an exact cone.
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(a) (b) (c)

Fig. 9: (a) A user has made a small stroke (yellow) on a mesh surface (top row: teapot; bottom row: moonbus), to
select a quadric surface under the stroke using a region growing method [4]. (b,c) We show the fit quadric (red)
and wireframe views of the mesh (selection in blue): (b) Shows the result of general quadric fitting. (c) Shows the
result of rotationally-symmetric quadric fitting.

(a) (b) (c) (d)

Fig. 10: (a) Dunavant’s integration points. (b) A wireframe view of a mesh with sparse, non-uniformly distributed
vertices. (c) Fitting result when error is measured only at vertices: A double-plane quadric that interpolates the
vertices. (d) Fitting result when error is integrated over mesh surface: A cylinder.

and instead directly compute Taubin’s error metric
for each eigenvector. We then choose the eigenvec-
tor with lowest error (ignoring eigenvectors of the
wrong quadric type, if the matrix N was intended to
constrain the quadric type). We also use double preci-
sion floating point numbers, and center and re-scale
the data points (to a unit-sized bounding box) before
fitting.

Another important implementation detail is the
method of sampling of the original surface. When
fitting segments of a polyhedral mesh, we have two
reasonable options: We could sample the error at ver-
tices, or we could integrate the error over the surface
of the mesh. Sampling error at vertices makes it easier
to smooth noise implicitly, for example by using aver-
aged vertex normals. It also leads to more intuitive
results if the vertices represent true samples from
an original surface, which is often the case. However,
integrating the error over the surface of the mesh can
greatly reduce ambiguity in the case of sparse, non-
uniform sampling, as shown in Fig. 10. In our tests, we

found that the reduced ambiguity can greatly improve
robustness when fitting implicit quadric equations.

For ease of implementation, we perform integra-
tion over a polyhedral mesh by triangulating the mesh
and using Dunavant’s Gaussian quadrature rules [8].
This is simple to implement because it is exactly
like fitting with discrete points: We just generate
six sample points per triangle (at barycentric co-
ordinates given by Dunavant) and weight each point
according to Dunavant’s rules. Because the error func-
tion (a squared quadratic) is a quartic polynomial in
terms of position, Dunavant’s six-point rule correctly
integrates the error without approximation.

7. LIMITATIONS AND FUTURE WORK

All of the methods presented in this paper are least
squares fitting methods, and therefore are sensitive
to outliers. Small noise and discontinuities are not a
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problem, but large outliers may require robust statis-
tical methods such as M-estimators to achieve good
results [13]: i.e., iteratively fit with least squares, and
then re-weighting the data based on the distance to
the last fitted surface.

Some issues arise if one fits a quadric type that
cannot match the data well. For example, if one
fits a hyperbolic paraboloid to bowl-shaped data,
even though hyperbolic paraboloids cannot be bowl-
shaped, then the solution may look like a double-
plane slicing through the bowl twice to better mini-
mize squared error. This approximates a single patch
of data with two disconnected patches of quadric
surface, which is a valid error-minimizing result, but
typically not desirable by the user. New constraints
may need to be invented to avoid this kind of solution.
Fortunately, this is only a problem in the uncommon
case that one wishes to fit a quadric type to data that
it cannot fit well.

The linear subspace search we perform for fitting
ellipsoids, hyperboloids and paraboloids is something
that could be improved in future work: Our current
choice of subspace is heuristic; it would be nice to
find a more rigorous choice of subspace, and a direct
method to search a larger subspace (e.g., a 2D or 3D
subspace instead of a linear subspace).

For simplicity, we used Taubin’s method instead of
the more-advanced HyperLS method [21]; for slightly
better results one can use the HyperLS method
instead. All analysis and methods we presented in
the context of Taubin’s method apply directly to the
HyperLS method as well.
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