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ABSTRACT

This paper investigates the feature sampling strategies for 3D partial shape retrieval using
bag-of-words model. The SHREC 09’ parts query models [3] are tested for comparison. These parts
models are obtained by cutting parts from complete models, which are different from range scans.
Dense sampling and pyramid sampling are proposed to extract local salient features from the depth
images of the 3D models. Bag-of-words model is used to represent of both of parts query and complete
target models. The optimal sampling configurations for the proposed feature extraction strategies are
obtained by comparing the retrieval accuracy using maximum histogram intersection distance (MHID).
The results suggest that extracting more features does not guarantee better retrieval accuracy using
the bag-of-words model. The feature sampling configurations also have significant impacts on the
retrieval accuracy.
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1. INTRODUCTION

3D object matching and retrieval have received
increasing attention during the past two decades.
While algorithms for 3D complete shape matching
and retrieval have been intensively investigated, par-
tial shape matching is far less explored and well
defined. In practice, it happens often that two objects
are not similar in whole, but some of their parts are
similar. As for a 3D shape retrieval system, incom-
plete 3D models may be more common either because
sometimes complete model acquisition is not eas-
ily accessible, or designers may intend to manifest
search for specific parts only.

According to the types of query and target models,
current research for partial matching of 3D shapes
can be categorized into three classes: (1). range scan
queries and complete target models; (2). parts model
queries and complete target models; (3). partial sim-
ilarity between complete queries and targets. Note,
for the second type, the parts query models could
either be an incomplete model or certain parts from
complete models. While most of existing work aims
at matching range queries to complete target mod-
els, few have addressed the latter two issues. This
work will focus on the second type, i.e. matching 3D
parts query models with complete target models. To

our best knowledge, this work is an early attempt
to emphasize the importance of matching between
parts-based queries with complete target models.
The effectiveness of the proposed method has been
demonstrated on SHREC 09’ Shape Retrieval Contest
of Partial Models with the first query set, for which
they have received on results.

For matching using range scan queries, Daras et al.
[2] proposed a compact multi-view descriptor (CMVD)
for 3D object retrieval using range scan queries. It
firstly takes a set of uniformly distributed binary and
depth images and then extracts 2D rotation-invariant
descriptors for each image. After that, the query
range image is compared to all views of the 3D num-
ber and the most similar view is selected. Ohbuchi
et al. [5] used bag-of-features model to represent
local visual features extracted from multiple-view 2D
depth images of the model. A vocabulary is learned
using k-means clustering from the sets of features.
Then each model is coded as a histogram according
to its occurrence frequency according to the dictio-
nary. Grid sampling is used to extract more dense
visual features. However, how to choose optimal sam-
pling of local features is not discussed in detail in [5].
For measuring the partial similarity between complete
queries and targets, Bronstein et al. [1] formulated the
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partial similarity problem as an optimization process
using the notion of Pareto optimality. It aims to find a
good trade-off between the partiality and similarity.
Toldo et al. [8] proposed a part-based representa-
tion by firstly partitioning the objects into subparts
and then characterizing each segment with geomet-
ric descriptors using bag-of-words model. Instead of
merging descriptors in a bigger set, a multi-clustering
approach is used to represent different shapes of
object parts. This method is based on the parts seg-
mentation, which is non-trivial and error-prone itself
in the first place. Therefore, it is not easy to obtain
stable results and also not scalable to large-scale
databases.

We investigate in depth how the features are sam-
pled to be more representative and distinctive enough
for retrieval. We configure dense sampling and pyra-
mid sampling parameters for SIFT feature extractions
and compare the retrieval accuracy with the one using
the original salient sampling. Bag-of-words model is
used for 3D model representation. Experiments are
conducted with varying sampling strategies to obtain
the optimal sampling strategies. We have demon-
strated the proposed methods on SHREC 09’ partial
model dataset [3] and showed that the model retrieval
is efficient.

The contribution of this paper can be summarized
in three-folds. First, we test the proposed methods
on SHREC 09’ parts query dataset which no previous
methods have been tested on and achieved appealing
retrieval accuracy. Second, by identifying the opti-
mal sampling strategies for SIFT feature extraction,
we find that extracting more features do not neces-
sarily result in higher retrieval accuracy. Rather, how
the features are sampled should be more informa-
tive and less redundant. Third, we propose to use the
maximum histogram intersection distance (MHID) to
measure the partial matching between two objects,
which shows more robust results compared to the
normalized L1 distance.

2. OVERVIEW OF FRAMEWORK

The 3D parts model retrieval follows the procedures
shown in Fig. 1. Pose normalization is applied to
both of the parts query models and target mod-
els. Then depth images are rendered from 6-view or

18-view direction. SIFT features are extracted from
each depth image using proposed sampling strate-
gies. Then, a dictionary is learned from all extracted
features, based on which a model can be represented
as a histogram according to the occurrence of each
“word” in the dictionary. The histogram of query
models are then compared to all the target models
in the target set and those with high rankings are
returned as retrieved models. Brief explanations for
each step will be given in the following except for
feature sampling, which will be detailed in section 3.

• Pose normalization
The 3D models might be given in any posi-
tion and size; pose normalization is applied to
transform the models into uniform scale and
position. For each model, its center of mass is
first translated to the origin of the coordinate
system, and then the average distance for each
face is normalized into 1. Continuous principle
component analysis (CPCA) is applied to achieve
rotation invariance. The following step of 6-view
and 18-view depth images rendering will further
alleviate the ambiguity of rotation.

• Depth Image Rendering
In this work, 6-view and 18-view depth images
are generated from 6 vertices of an 8-hedron
and 18 vertices from a 32-hedron respectively.
Both the 8-hedron and 32-hedron is placed at
the enclosing unit sphere with respect to the
center of the model. We use the method in [6] to
do mesh voxelization and then project the depth
value of each voxel to obtain the depth images.
The resolution of each depth image is 256 × 256,
as in most existing work.

• Dictionary Learning and Model Representation
A visual dictionary will be constructed by unsu-
pervised K-means clustering of all the features
extracted in the feature sampling step. Differ-
ent dictionary sizes (K = 100, 300, 500, 1000,
1500, 2000) are experimented and the optimal K
for each sampling configuration will be obtained
based on the empirical performance. Each fea-
ture is encoded as a visual word according to
the dictionary of K words. The shape descriptor
is therefore a histogram of K bins representing
the occurrence of each visual feature.

Fig. 1: Flow chart of 3D part model retrieval from large sets of target models.
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• Similarity Comparison
Given two feature descriptors, they are the fea-
ture vectors of 3D models as stated in the previ-
ous section. The number of the histogram bins
K equals to the number of vocabulary. Maximum
Histogram Intersection Distance (MHID) is used
to compute the histogram distances, as shown
in Eqn. (2.1). It is firstly proposed by Swain et al.
[7], which is used to represent the similarity
between two objects in the presence of occlu-
sion and over change in view. To compute the
similarity of two model descriptors, histogram
intersection (HI) distance is used. It is given by

DHI (H1, H2) = 1 −
∑k

1 min(H1(i), H2(i))

max(
∑k

1 H1(i),
∑k

1 H2(i))
(2.1)

where H1 and H2 are the two shape histograms
and k equals the vocabulary size. The distance
measure is normalized into the range of [0, 1],
which indicates increased distance between two
models when the distance value varies from 0
to 1. It is designed in such a way that partial sim-
ilarity is maximized, and hence makes it suitable
for partial similarity comparison here.

3. DENSE SAMPLING AND PYRAMID SAMPLING
OF SIFT FEATURES

The Scale Invariant Feature Transform (SIFT) [4] is a
highly distinctive local feature detector. The original
SIFT implementation detects locations and scales of
local extrema across the scale-space. The difference-
of-Gaussian is given by:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ I (x, y) (3.1)

In Eqn. (3.1), D(x, y, σ) is the variable-scale Gaussian,
∗ is the convolution operator, I (x, y) is the input
depth image, and k is a constant multiplicative fac-
tor. The position of local extrema is determined by
comparing with its eight neighbors in the current
scale and nine neighbors in the neighboring scales.
At each candidate keypoint location, a detailed fit of
location, scale and principle curvatures is performed
on the nearby data to reject points that have low
contrast and edge effects. Histograms of orientation
gradients at each sample location are generated by
counting the gradients weighted by its magnitude
within a Gaussian-circular window. The final descrip-
tor is therefore a 128-dimensional feature vector of
4 × 4 array of histograms with 8 orientation bins in
each array.

In this work, dense sampling and pyramid sam-
pling are proposed to extract features using the same
128-dimensional vector description as SIFT, except
that the bin size and sampling steps of features are
configured to a set of parameters. Note that in the
original SIFT feature detection, the descriptors are
automatically generated.

The geometry of dense sampling is shown in
Fig. 2(a). The 4 × 4 array window slides from left to
right, top to bottom until covers the whole image
domain. The bin size and sampling step determine the
scale and sampling frequency of features. There is a
trade-off between the representativeness and distinc-
tiveness of the sliding window. Larger window usually
contains more information, and therefore are more
informative, but less distinctive at the same time. So
these two parameters must be properly chosen in
accordance with the application requirements. Based
on the dense sampling, pyramid sampling is to extract
features the same way as dense sampling with vary-
ing sampling steps and bin size, but across multiple

Fig. 2: Feature sampling illustration: (a) Dense sampling, (b) Pyramid sampling across multiple scales.
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scales. The multiple-scale feature frame is shown in
Fig. 2(b).

For dense sampling, bin size is always 16 (B16)
while sampling steps are configured as 8 (S8) and 16
(S16) respectively. For pyramid sampling, sampling
step is fixed at 16 while the scale is chosen at [4 8
16 32].

The average numbers of features generated for
each model are summarized in Tab. 1 and Tab. 2
for 6-view and 18-view depth images respectively.
The number of features for 18-view depth images
are three times the number of 6-view depth images
for dense and pyramid sampling, and nearly three

6 View S6 D6−S8B16 D6−S16B16 P6

Part queries 447 4056 1014 3492
Targets 481 4056 1014 3492

Tab. 1: Average number of features per model for
6-view depth images.

18-View S18 D18−S8B16 D18−S16B16 P18

Part queries 1231 12,168 3,042 10,467
Targets 1437 12,168 3,042 10,467

Tab. 2: Average number of features per model for
18-view depth images.

times for original SIFT features. Dense sampling with
step 8 and bin size 16 generates the most number of
features, and pyramid sampling with step size 16 gen-
erates slightly less number of features. Original SIFT
sampling extracts the least number of features.

4. EXPERIMENTS AND RESULTS

We use the first query set from SHREC 09’ Partial
3D models [3] as the parts query models. Note that
there are no results submitted for the first query set.
The SHREC 09’ partial 3D models contest track only
received results for the second query set, where the
queries are range images not the first query set of
parts queries used in this paper. The query set con-
sists of 20 parts models obtained by cutting parts
from complete models. Both of the query datasets
contain one example for each class as shown in Fig. 3.
The target dataset contains 720 complete 3D models,
which is categorized into 40 classes. Standard shape
retrieval accuracy measures, precision-Recall curve,
nearest neighbor (NN), first tier (FT), second tier (ST),
discounted cumulated gain (DCG), and mean average
precision (MA) are computed to evaluate the retrieval
performance.

Experiments are conducted to investigate the opti-
mal performance for the matching and retrieval of 3D
parts models by varying the number of depth images
(6-view and 18-view), dictionary size K , and sampling

Fig. 3: List of 20 parts query models [3].
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configurations with varying sampling step S and bin
size B. Herein, we will use S6, D6, P6 to annotate orig-
inal SIFT, dense sampling and pyramid sampling of
features on 6-view depth images and S18, D18, P18
on 18-view depth images.

For each sampling configuration, we first conduct
a series of experiments when K is equal to 100, 300,
500, 1,000, 1,500 and 2,000 respectively to find the
optimal dictionary size. Tab. 3 shows an example for
D18_S16B16 with different dictionary sizes. It can be
shown that overall best retrieval accuracy is achieved
when K equals to 2000. For different sampling config-
urations, the dictionary size K might be different. The
first column of Tab. 4 lists the optimal dictionary size
for the proposed sampling configurations.

From Tab. 4 and Fig. 4, we can see that retrieval
accuracy for 18-view depth buffer images is gener-
ally better than that of 6-view depth buffer images
except for P6 and P18. It can be also seen that

S16B16 achieves better results than S8B16 for both
of 6-view depth images and 18-view images, although
S8B16 has four times the number of features of
S16B16. Although P6 and P18 have not outperformed
dense sampling, they have achieved better results
than S6 and S18. D18_S16B16 shows the best retrieval

Dictionary
Size K NN FT ST DCG E

100 0.35 0.211 0.333 0.514 0.216
300 0.35 0.242 0.375 0.566 0.254
500 0.35 0.258 0.375 0.556 0.262
1000 0.35 0.250 0.389 0.572 0.264
1500 0.5 0.283 0.400 0.581 0.272
2000 0.55 0.292 0.397 0.583 0.286

Tab. 3: Retrieval accuracy for D18−S16B16.

Method K NN FT ST DCG E

S6 500 0.10 0.139 0.239 0.453 0.172
D6−S16B16 1500 0.30 0.183 0.278 0.486 0.190
D6−S8B16 1500 0.20 0.122 0.161 0.421 0.118
P6 300 0.30 0.111 0.158 0.437 0.100
S18 1500 0.40 0.206 0.342 0.542 0.228
D18−S16B16 2000 0.55 0.292 0.397 0.583 0.286
D18−S8B16 500 0.30 0.203 0.317 0.515 0.248
P18 300 0.20 0.156 0.247 0.466 0.164
CMVD-binary [3] 0.35 0.217 0.283 0.521 0.152
CMVD-depth [3] 0.45 0.197 0.267 0.511 0.174
CMVD-combined [3] 0.35 0.211 0.281 0.526 0.192
BF-SIFT [3] 0.15 0.114 0.267 0.521 0.174
BF-GridSIFT [3] 0.45 0.225 0.297 0.532 0.204

Tab. 4: Retrieval results for proposed sampling methods compared to
results in [3].
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Fig. 4: Precision-Recall curve of proposed methods compared to those in [3].
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accuracy. From the above observation, we conclude
that more features do not guarantee better retrieval
accuracy for 3D parts model queries retrieval.

Although the results of CMVD [3] and BF [3] are
based on the second query set from the SHREC 09’
Partial 3D models contest, we have also listed them in
Tab. 4 and Fig. 4 for a general comparison. It can be
seen that our D18_S16B16 has outperformed them for
NN, FT, ST, DCG and E measures. The precision recall
curve also shows an evident sign that D18_S16B16 has
obtained the best retrieval accuracy.

Method K Time Expenses (s)

S6 500 410.9
D6−S16B16 1500 2401.5
D6−S8B16 1500 9692.6
P6 300 1286.0
S18 1500 3418.8
D18−S16B16 2000 9934.4
D18−S8B16 500 11041.0
P18 300 4180.0

Tab. 5: Time expenses for dictionary learning.

We use the toolbox from VLFeat Toolbox[9] to do
the K-means clustering. The time expenses for dic-
tionary learning by K-means clustering are given in
Tab. 5. The time costs increase as a function of the
total number of features learned and the dictionary
size K .

5. CONCLUSIONS

In this paper, we propose the optimal sampling strate-
gies to extract local salient features for 3D partial
model retrieval using the bag-of-words model. Exper-
iments conducted on the SHREC’ 09 partial model
dataset demonstrate that dense sampling with bin
size and sampling step of 16 achieved a higher
retrieval accuracy, although other sampling methods
may have extracted more features than this. This
leads to the conclusion that more features do not

guarantee a result with a higher efficiency; while
the choice of feature extraction parameters is more
important than other factors.
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