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ABSTRACT

This paper proposes a technique for approximating two G1-continuous offset surfaces. Since offset
surfaces are in general not rational representation, spline approximations of offset surfaces are widely
used. However, when two G1-continuous offset surfaces are approximated using existing methods, the
shape data quality is reduced because gaps or creases arise between two approximated surfaces. Our
technique generates two G1-continuous approximated surfaces represented by C1-continuous bicubic
B-spline surfaces. The approximated surfaces are higher quality than those generated using existing
methods, because no gaps or creases arise between those surfaces.
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1. INTRODUCTION

Surface offset is an important operation in CAD
and various applications, such as NC machining,
tolerance analysis, or robotics. Since the face of a
three-dimensional model is usually constructed by
multiple rational parametric surfaces, offset surfaces
are required for the operation. An offset surface is
defined as a locus of points obtained by moving all
points of the original surface at constant distance
along the direction of the unit normal vector of the
surface at each of the points. If two surfaces are G1-
continuous, the offset surfaces of those are also G1-
continuous [6]. However, a spline approximation of
offset surfaces is widely used because offset surfaces
are in general not rational representation, except for
special cases such as analytic surfaces [1,11].

Offset surfaces are often given to numerical cal-
culation of first order differential equations, such as
trace calculations for blending surfaces or tracing
intersection between surfaces [5,12]. Thus, approxi-
mated surfaces are tractable if they are at least C1-
continuous. Several methods for approximating offset
surfaces with at least C1-continuous spline surfaces
have already been presented [4,7,14]. The methods
can approximate offset surfaces with piecewise bicu-
bic surface patches which are tractable since those are

low degree. However, none of those methods consider
the continuity of adjacent offset surfaces because
they generate offset surfaces individually. Therefore,
gaps or creases arise between two approximated sur-
faces when two G1-continuous offset surfaces are
approximated using the methods. G1-discontinuity
caused by such as gaps or creases reduces shape
data quality because it incurs data conversion failure
[9,10].

Thus, this paper proposes a technique for a C1

spline approximation of offset surfaces considering
continuity of adjacent offset surfaces. Our technique
can generate approximated offset surfaces which are
higher quality than existing methods because no
gaps or creases arise between approximated sur-
faces, when two G1-continuous offset surfaces are
approximated.

The remainder of the paper is organized as fol-
lows: In Section 2 we study the existing methods
of C1 spline approximation of offset surfaces, and
reveal details of the reason that gaps or creases arise
between two approximated surfaces, when two G1-
continuous offset surfaces are approximated using
the methods. Section 3 give the algorithm of our
technique for approximating two G1-continuous off-
set surfaces without gaps or creases between two
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approximated surfaces. Section 4 illustrates some
examples using practical models. Finally, in Section 5
we conclude this paper.

2. EXISTING METHODS

Farouki [4] approximates offset surfaces with piece-
wise bicubic Hermite interpolation patches. The
patches are applied to n2 square areas obtained
by subdividing the parameter domain of offset sur-
faces so that u and v directions are divided into n
sections uniformly. Then, the parameter domain is
subdivided until all the patches satisfy a given toler-
ance. Positions, partial derivatives and twist vectors
at four corners in each of the patches are coinci-
dent with those of the exact offset surface. Control
points of the patches except these ones on the four
corners are calculated by Hermite interpolation using
these properties. Thus, the adjacent patches are C1-
continuous. However, the [4] does not consider conti-
nuity of adjacent offset surfaces because it generates
offset surfaces individually. When two G1-continuous
offset surfaces are approximated using the method
[4], creases arise between two approximated offset
surfaces because G1-continuity are not guaranteed
between the surfaces, although no gap arises between
those if the number of divisions is equalized in each
of the parameter domains of the offset surfaces.
Fig. 1(a) and (b) show an example of such a situa-
tion where creases arise between two approximated
surfaces. Fig. 1(a) shows two approximated offset sur-
faces including creases. Each surface consists of 22

patches. Fig. 1(b) is the enlarged view of Fig. 1(a)
along the common boundary curve between two sur-
faces (or referred to as the common boundary in
the following description), and shows normal vectors
of the surfaces along boundary curves. As shown in
Fig. 1(b), creases between two surfaces are appeared.
Therefore, the method [4] reduces shape data quality
because creases arise as shown in Fig. 1(b).

Hoschek [7] approximates offset surfaces with
piecewise bicubic Bezier patches. The patches are

applied to each rectangular area obtained by subdi-
viding a parametric domain of an offset surface along
u and v directions. Then, the parametric domain is
subdivided until all the patches satisfy a given toler-
ance. In addition, subdivision points in the parametric
domain depend on the shape of the offset surface.
Positions and directions of partial derivative vectors
at four corners of each of the patches are coincident
with those of the exact offset surface. Control points
of the patches except for those on the four corners
are calculated using the least-squares method using
sample points chosen with equidistant parameter val-
ues in the parametric domain to be approximated.
Continuity between adjacent patches is C1 because
neighboring patches are given a constraint of C1-
continuity. However, the [7] does not consider conti-
nuity of adjacent offset surfaces because it generates
offset surfaces individually. When two G1-continuous
offset surfaces are approximated using the method
[7], in parametric domains of the surfaces, division
points on the common boundary between the sur-
faces as the result of subdivision are not coincident
each other. This is because the subdivision depends
on the shape of an offset surface, that is, the shapes of
two boundary curves of the approximated surfaces on
the common boundary are not same in general. Thus,
gaps arise between two approximated surfaces. The
portion in an oval with a broken line in Fig. 1(c) is an
example of gaps. Therefore, the method [7] reduces
shape data quality because gaps arise as shown in
Fig. 1(c).

Piegl and Tiller [14] approximate offset surfaces
with a bicubic B-spline surface. First, a large num-
ber of sample points are extracted for equally spaced
parameters on an offset surface. The number of the
sample points depends on the shape of the offset
surface. Next, a bicubic B-spline surface that has the
same number of control points as the sample points is
generated by interpolating the sample points. Finally,
these control points are reduced by removing as many
knots as possible in the range of a given tolerance.
Continuity between adjacent patches of the B-spline
surface is C2. However, the [14] does not consider

(a) (b) (c)

Fig. 1: (a) Two approximated surfaces with creases, (b) Enlarged view of (a) with normal vectors, (c) A gap
between two approximated surfaces.
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continuity of adjacent offset surfaces because it gen-
erates offset surfaces individually. When two G1-
continuous offset surfaces are approximated using
the method [14], the number of sample points on the
common boundary between two offset surfaces is not
equal generally since it depends on the shape of an
offset surface, that is, the shapes of two boundary
curves of the approximated surfaces on the common
boundary are not the same in general. Thus, gaps arise
between two approximated surfaces. Therefore, the
method [14] reduces shape data quality.

As described in this section, when two G1-
continuous offset surfaces are approximated using
existing methods [4,7,14], shape data quality is
reduced because gaps or creases arise between two
approximated offset surfaces. Thus, this paper pro-
poses a technique of high-quality approximation for
two G1-continuous offset surfaces by avoiding such
as gaps or creases.

3. THE APPROXIMATION OF TWO
G1-CONTINUOUS OFFSET SURFACES

3.1. Outline of the Algorithm

To avoid gaps or creases that reduce shape data qual-
ity, we propose a technique for approximating two
G1-continuous offset surfaces that generates two G1-
continuous approximated surfaces represented by C1-
continuous bicubic B-spline surfaces. First, approxi-
mate each of the offset surfaces with piecewise bicu-
bic Bezier patches. The patches are generated so that
two adjacent those are C1-continuous except those
existing along the common boundary. Then, if the
patches are not adjoining to be one-on-one on the
common boundary as the result of the approxima-
tion, subdivide the parameter domains so that two
sets of division points along the parameter inter-
val of the common boundary coincide with each
other. The details of this procedure are described
in Section 3.2. Next, adjust control points of the
patches existing along the common boundary so that
two adjacent those on the common boundary are G1-
continuous and those along the common boundary
are C1-continuous. To these control points, our orig-
inal two constraint conditions which enable patches
to satisfy G1- and C1-continuity simultaneously are
given, in addition to the constraint conditions guaran-
teeing G1- and C1-continuity individually. The details
of this procedure are described in Section 3.3. Finally,
generate two C1 bicubic B-spline surfaces by combin-
ing the patches. As the result, no gaps or creases
arise because two approximated surfaces are G1-
continuous.

3.2. Approximating Offset Surfaces with
Piecewise Bicubic Bezier Patches

To approximate two G1-continuous offset surfaces
with two C1 spline surfaces, we approximate each

of the offset surfaces with piecewise bicubic Bezier
patches while considering continuity of adjacent
patches. The approximation procedure consists of the
four steps: approximating an offset surface with a
bicubic Bezier patch (Step 1), measuring errors and
subdividing the patch (Step 2), joining the patches
with C1-continuity (Step 3), and joining the patches
one-on-one on the common boundary (Step 4).

Step 1: We approximate an offset surface with
a bicubic Bezier patch. Control points on boundary
curves of the patch and inner control points of the
patch are calculated separately in a similar manner
to Hoschek’s method [7]. Control points on bound-
ary curves are obtained by approximating boundary
curves of the offset surface with cubic Bezier curves.
The cubic Bezier curves are calculated using the least-
squares method using sample points on boundary
curves of the offset surface [7], while initial points
and directions of tangent vectors of the cubic Bezier
curves at both end points are constrained to be coin-
cident with ones of boundary curves of the offset
surface. These sample points occur at corners of poly-
lines approximating boundary curves of the offset
surface adaptively; that is, sample points are obtained
at subdivision points in parameter intervals of bound-
ary curves of the offset surface (black dots in Fig. 2(a)
are an example). First, in a parameter interval, we
divide a boundary curve of the offset surface into four
equal sections, and then check if each curve segment
can be regarded as a straight line segment. If an angle
between two tangent vectors of a curve segment at
both end points is regarded as zero in a range of
a given tolerance (or referred to as the angle toler-
ance in the following description), the curve segment
is regarded as a line segment. Next, in the param-
eter interval, we bisect the curve segments that are
not regarded as line segments, and then check if each
curve segment after the bisection can be regarded as a
straight line segment. These procedures are repeated
until all curve segments are regarded as straight
line segments. Meanwhile, inner control points of the
patch are calculated using the least-squares method
using sample points on the offset surface [15]. These
sample points occur due to parameter values of all
sample points obtained by the calculation of four
boundary curves of the patch. To be more specific,
sample points are generated at parameter position on
the offset surface in each u, v pair obtained from the
sample points which were used in the calculation of
four boundary curves of the patch, except for param-
eter values on the boundary curves (white dots in
Fig. 2(a) are an example).

Step 2: First, we measure errors of the patch with
referencing the standard of geometrical tolerancing of
a profiled surface [8]. The standard defines a tolerance
zone to be between two envelope surfaces defined
by spheres of which a center lies on the theoretical
surface and a diameter equals a given tolerance [8].
However, it is difficult to measure errors of the patch
at every point successively. We, therefore, measure
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(a) (b)

Fig. 2: (a) Sample points on an offset surface, (b)
Subdivision of the parameter domain.

errors of the patch discretely. Then, boundary curves
of the patch and interior of the patch are measured
separately because they are approximated individu-
ally. For boundary curves of the patch, we measure a
distance between an exact point on a boundary curve
of the theoretical offset surface and a point on a
boundary curve of the patch, which is nearest to a
normal vector of the offset surface at the exact point.
To be more specific, for each of sample points which
were used to calculate control points on the bound-
ary curves, we calculate a nearest point by using the
Newton’s method, and check if a distance between
the nearest point and the sample point is not greater
than a given tolerance. For interior of the patch, we
measure a distance between an exact point on the the-
oretical offset surface and a point on the patch which
is nearest to the normal vector of the offset surface
at the exact point. To be more specific, for each of the
sample points which were used to calculate inner con-
trol points of the patch, we calculate a nearest point
by using the Newton’s method, and check if a distance
between the nearest point and the sample point is not
greater than the tolerance. Next, if the nearest point
that does not satisfy the tolerance on the boundary
curve of the patch exists, we subdivide a parameter
domain of the offset surface so that the parameter
interval in u or v direction is bisected. If the boundary
curve is along u direction, the parameter interval in u
direction is bisected. Otherwise, the parameter inter-
val in v direction is bisected. After the subdivision,
we generate bicubic Bezier patches in each of the sub-
divided area in the parameter domain of the offset
surface using the method in Step 1. Then, we recur-
sively repeat Step 2 for each patch until all boundary
curves of the patches are within the tolerance. Next, if
a nearest point not within the tolerance exists, we sub-
divide the parameter domain of the offset surface so
that the parameter interval in either the u or v direc-
tion is bisected. The parameter interval to be divided
depends on a deviation of the nearest points that are
not within the tolerance. More specifically, it depends
on difference between the rules of the nearest points
that do not satisfy the tolerance in each of two areas
generated by bisecting the parameter domain of the
patch in either the u or v direction. If the difference in
the u direction is greater than at in the v direction, the

parameter interval in u direction is bisected. Other-
wise, the parameter interval in v direction is bisected.
Fig. 2(b) is an example bisection. The black dots are
nearest points that are not within tolerance, and the
white dots are nearest points that are within toler-
ance. The dotted line depicted in Fig. 2(b) represents
the direction to bisect the parameter domain of the
patch. As the result, the parameter domain of the
patch is divided into two more precise areas and one
less precise area. The possibility that the more pre-
cise area is further subdivided is lower than the less
precise area. Accordingly, it is expected fewer patches
will be generated eventually than in the case when
both areas are further subdivided. After each subdivi-
sion, we generate bicubic Bezier patches within each
of the subdivided areas in the parameter domain of
the offset surface using the method in Step 1. We then
recursively repeat Step 2 in each of the patches until
all patches within the tolerance.

Step 3: If two or more patches are generated in
Step 2, we adjust position of control points of the
patches, using Beeker’s method [4], so that adja-
cent patches become C1-continuous except for those
along the common boundary. First, two boundary
curves of the patches connecting along the u or v

direction except for those on the common boundary
are adjusted to become C1-continuous. Two control
points adjacent to the connecting point of two bound-
ary curves (bold red dots in Fig. 3(a)) are adjusted
while retaining directions of tangent vectors of two
boundary curves at the connecting point. Let b be the
connecting point. Let a and c be the adjacent con-
trol points of b (see Fig. 3(a)), and let ã and c̃ be
the counterpart control points after the adjustment.
a and c are adjusted so that they satisfy the following
constraints:

c̃ − b = μ(b − ã), ã − b = λ(a − b), (3.1)

where μ is ratio of parameter intervals of two bound-
ary curves and λ is an unknown scalar. From Eqn.(3.1),
ã and c̃ are expressed by linear functions of λ.
Therefore, we determine λ as follows using the least-
squares method so that two control points move as
little as possible (see APPENDIX for the derivation).

λ = |a − b|2 + μ(a − b)(b − c)

(1 + μ2)|a − b|2 . (3.2)

ã and c̃ are calculated by substituting Eqn. (3.2) into
Eqn.(3.1). Next, four inner control points adjacent to
the point at which corners of four patches converge
(bold red dots in Fig. 3(b)) are adjusted. Let d, e, f,
and g be four inner control points, counter-clockwise,
starting from the control point nearest to the ori-
gin of the parameter domain of the offset surface
(see Fig. 3(b)). Let d̃, ẽ, f̃, and g̃ be counterpart control
points after the adjustment. Let h, i, j, and k be con-
trol points of boundary curves adjacent to the point
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(a) (b) (c)

Fig. 3: (a) Two control points adjacent to the connecting point, (b) Four inner control points adjacent to the
point at which corners of four patches converge, (c) Two control points adjoining across the boundary curve.

at which corners of four patches converge, counter-
clockwise, starting from the control point nearest to
the v axis of the parameter domain of the offset sur-
face (see Fig. 3(b)). d, e, f, and g are adjusted so that
they satisfy the following constraints:

ẽ − i = μ(i − d̃), g̃ − h = ν(h − d̃),

f̃ − k = μ(k − g̃), f̃ − j = ν(j − ẽ), (3.3)

where μ is ratio of parameter intervals of the patches
in the u direction and ν is ratio of parameter inter-
vals of the patches in the v direction. From Eqn. (3.3),
the simultaneous equations that consist of four equa-
tions are derived. However, the solution of the system
is indefinite because of rank deficiency. On the other
hand, ẽ, f̃, and g̃ are expressed as linear functions of d̃
from Eqn.(3.3). Therefore, we determine d̃ as follows
using the least-squares method so that four control
points move as little as possible (see APPENDIX for
the derivation).

d̃ =
d + μ{(1 + μ)i − e} + ν{(1 + ν)h − g}+

μν{μ(1 + ν)h − (1 + μ)k + f}
1 + μ2 + ν2 + μ2ν2

. (3.4)

ẽ, f̃, and g̃ are calculated by substituting Eqn.(3.4)
into Eqn.(3.3). Next, two inner control points exist-
ing beside the boundary curve of the offset surface
except for the common boundary and existing across
the control point of a boundary curve shared by two
patches (bold red dots in Fig. 3(c)) are adjusted. Let �

and n be two inner control points, and let m be the
control point of the boundary curve between � and n
(see Fig. 3(c)). Let �̃ and ñ be the counterpart control
points after the adjustment. � and n are adjusted so
that they satisfy the following constraints

ñ − m = μ(m − �̃), (3.5)

where μ is ratio of parameter intervals of two patches
along the boundary curve of the offset surface.
From Eqn.(3.5), ñ is expressed by a linear function

of �̃. Therefore, we determine �̃ as follows using
the least-squares method so that two control points
move as little as possible (see APPENDIX for the
derivation).

�̃ = � + μ{(1 + μ)m − n}
1 + μ2

. (3.6)

ñ is calculated by substituting Eqn.(3.6) into Eqn.(3.5).
Finally, we measure errors of each patch using the
method in Step 2. If the patches which exceed the
tolerance are detected, we subdivide the parameter
domain of the offset surface and generate bicubic
Bezier patches using the method in Step 2. After that,
we repeat Step 3.

Step 4: After the procedure from Step 1 to Step 3 is
applied to two offset surfaces, some of bicubic Bezier
patches on both offset surfaces are adjacent to the
common boundary. If the patches are not adjoining
each other to be one-on-one on the common bound-
ary, we subdivide parameter domains of the offset
surfaces so that segmentations of parameter inter-
vals along the common boundary in two parameter
domains coincide with each other (bold red line in
Fig. 4(a) is an example). Then, if the number of seg-
ments of the common boundary is smaller than three,
we subdivide both parameter domains to prepare for
the procedure described in Section 3.3 so that the
parameter intervals are divided into four equal sec-
tions (bold red line in Fig. 4(b) is an example). Then,
we approximate each subdivided area with a bicu-
bic Bezier patch using the method in Step 1. Then,
we adjust adjacent patches to become C1-continuous
using the method in Step 3. As the result, four or more
couples of patches on the common boundary are gen-
erated. Moreover, two adjacent boundary curves on
the common boundary in each couple of the patches
have same shape because two curves are calculated,
using the methods in Step 1 and in Step 3, and using
same input and procedure.
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(a)        (b)

Fig. 4: (a) Subdivide parameter domain so that the patches adjoin one-on-one on the common boundary, (b)
Subdivide parameter domains to increase patches on the common boundary.

Fig. 5: Patches along the common boundary.

3.3. Adjusting Control Points of Patches Existing
Along the Common Boundary

3.3.1. Control points to be adjusted and constraint
conditions

We adjust control points of patches existing along
the common boundary so that two adjacent those on
the common boundary are G1-continuous and those
along the common boundary are C1-continuous. To
describe this technique in Section 3.3.2, this section
presents the control points to be adjusted, constraint
conditions for the G1- and C1-continuity, and our orig-
inal constraint conditions that guarantee the G1- and
C1-continuity simultaneously. Fig. 5 shows patches
along the common boundary. The description in this

section proceeds according to Fig. 5. Assume two off-
set surfaces are adjoining along v direction in same
order. The n(≥ 4) couples of patches adjoining on
the common boundary are indexed as 1, 2, . . . , n in
ascending order of v. Pk

j and Qk
j are control points

existing beside the common boundary, and Rk
j are

control points on the common boundary, where k is
the index of the couples, and j is an index from 0 to 3
in ascending order of v. Rk

j are common control points
between the couple of the patches. Control points

to be adjusted are Pk
j , Qk

j , Rk
1, and Rk

2. Let P̃
k
j , Q̃

k
j , R̃

k
1,

and R̃
k
2 be counterpart control points after the adjust-

ment. Two control points in each of Pk
3 Pk+1

0 , Qk
3 Qk+1

0 ,
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and Rk
3 Rk+1

0 are identical. The same can be said
in each of the control points after the adjustment.
ak

j , bk
j , and ck

� (� = 0, 1, 2) are vectors between Rk
j and

its adjacent control point, i.e. ak
j = Rk

j − Pk
j , bk

j = Qk
j −

Rk
j , and ck

� = Rk
�+1 − Rk

� . Let ãk
j , b̃

k
j , and c̃k

� (� = 0, 1, 2)

be counterpart vectors after the adjustment. tk(k =
0, 1, . . . , n) are parameter values at corners of the
patches on the common boundary in the direction
of v.

The constraint condition of C1-continuity [2] is
given by:

P̃
k+1
1 − P̃

k
3 = νk(P̃

k
3 − P̃

k
2),

Q̃
k+1
1 − Q̃

k
3 = νk(Q̃

k
3 − Q̃

k
2),

R̃
k+1
1 − Rk

3 = νk(Rk
3 − R̃

k
2) (k = 1, 2, . . . , n − 1) where

νk = (tk+1 − tk)/(tk − tk−1). (3.7)

The constraint condition of G1-continuity [3] is
given by

αk(v)

3∑
j=0

B3
j (v)ãk

j + βk(v)

3∑
j=0

B3
j (v)b̃

k
j

+ γk(v)

2∑
j=0

B2
j (v)c̃k

j = 0 (k = 1, 2, . . . , n), (3.8)

where αk(v), βk(v), and γk(v) are polynomial functions
of v. Referring to Peter’s method [13], we define the
polynomials as:

αk(v) = (1 − v)αk(0) + vαk(1),

βk(v) = (1 − v) + v,

γk(v) = (1 − v)2γk(0) + v2γk(1). (3.9)

By substituting Eqn. (3.9) into Eqn. (3.8), according
to the degree elevation relation [3], the constraint
condition of G1-continuity is given anew by:

αk(0)ãk
0 + b̃

k
0 + γk(0)c̃k

0 = 0,

αk(0)ãk
1 + b̃

k
1 + 1

3

{
αk(1)ãk

0 + b̃
k
0

}
+ 2

3
γk(0)c̃k

1 = 0,

αk(1)ãk
1 + b̃

k
1 + αk(0)ãk

2 + b̃
k
2

+ 1
3

{
γk(0)c̃k

2 + γk(1)c̃k
0

}
= 0,

αk(1)ãk
2 + b̃

k
2 + 1

3

{
αk(0)ãk

3 + b̃
k
3

}
+ 2

3
γk(1)c̃k

1 = 0,

αk(1)ãk
3 + b̃

k
3 + γk(1)c̃k

2 = 0. (3.10)

From the first and the fifth equations in Eqn. (3.10)
and the balance of coplanar three vectors, we have:

αk(0) = (b̃
k
0 × c̃k

0)(c̃k
0 × ãk

0)∣∣∣c̃k
0 × ãk

0

∣∣∣2
, γk(0) = (ãk

0 × b̃
k
0)(c̃k

0 × ãk
0)∣∣∣c̃k

0 × ãk
0

∣∣∣2
,

αk(1) = (b̃
k
3 × c̃k

2)(c̃k
2 × ãk

3)∣∣∣c̃k
2 × ãk

3

∣∣∣2
, γk(1) = (ãk

3 × b̃
k
3)(c̃k

2 × ãk
3)∣∣∣c̃k

2 × ãk
3

∣∣∣2
.

(3.11)

To satisfy Eqn. (3.7) and Eqn. (3.10) simultaneously,
we introduce the following two constraints:

αk(0) = αk(1) = α (k = 1, 2, . . . , n),

γk(1) = γk+1(0) = 0 (k = 1, 2, . . . , n − 1), (3.12)

where α is a constant scalar. From the first constraint
of Eqn. (3.12), magnifications which are given to ãk

3 to

balance with b̃
k
3 are constrained to α. Likewise, mag-

nifications which are given to ã0
0 to balance with b̃

0
0

are also constrained to α. We determine α using par-
tial derivative vectors of two offset surfaces at both
ends of the common boundary. Let a0, b0, c0, a1, b1,
and c1 be the partial derivative vectors that have
same initial point and direction as a1

0, b1
0, c1

0, an
1, bn

1,
and cn

1, respectively. Since the offset surfaces are

G1-continuous, the following relations are obtained
analogous to Eqn. (3.10).

α0a0 + b0 + γ0c0 = 0,

α1a1 + b1 + γ1c1 = 0. (3.13)

If γ0 = γ1 = 0 and α0 = α1 = −1, two offset surfaces
adjoin with C1-continuity at both ends of the common
boundary at least. Thus, we set α to

α = 1
2

(α0 + α1) (3.14)

so that approximated surfaces adjoin with C1-
continuity in that case. From the second constraint of

Eqn. (3.12), ãk
3 and b̃

k
3(k = 1, 2, . . . , n − 1) are restricted

to same direction. We define the direction of ãk
3 and b̃

k
3

as an intermediate direction between ak
3 and bk

3 given
by

Vk = ak
3∣∣∣ak
3

∣∣∣ + bk
3∣∣∣bk
3

∣∣∣ (k = 1, 2, . . . , n − 1). (3.15)

3.3.2. Adjusting control points according to
constraint conditions

We adjust control points of patches existing along the
common boundary so that two adjacent patches on
the common boundary are G1-continuous and those
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along the common boundary are C1-continuous. Con-
trol points to be adjusted and constraint conditions
to satisfy G1- and C1-continuity simultaneously are
described in Section 3.3.1. First, we adjust control
points on the common boundary (bold red dots in

Fig. 6(a), i.e., Rk
1, Rk

2 (k = 1, 2, . . . , n) in Fig. 5). For R̃
1
1

and R̃
1
2, to retain directions of partial derivative vec-

tors of the patches in the v direction at the end point
of the common boundary, we introduce the constraint

R̃
1
1 − R1

0 = λv(R1
1 − R1

0), (3.16)

where λv is an unknown scalar. By substituting
Eqn. (3.12) and k = 1 into Eqn. (3.10), the second
equation in Eqn. (3.10) is expressed as follows accord-
ing to the other four equations in Eqn. (3.10).

c̃1
0 + c̃1

2 − 2c̃1
1 = 0. (3.17)

Since c̃1
0 = R̃

1
1 − R1

0, c̃1
1 = R̃

1
2 − R̃

1
1, and c̃1

2 = R1
3 − R̃

1
2, R̃

1
2

is expressed with R̃
1
1 from Eqn. (3.17).

R̃
1
2 = R̃

1
1 + 1

3
(R1

3 − R1
0). (3.18)

From Eqns. (3.18) and (3.16), R̃
1
1 and R̃

1
2 are expressed

by linear functions of λv. Therefore, we determine
λv as follows using the least-squares method so that
two control points move as little as possible (see
APPENDIX for the derivation).

λv = 1
2

− (R1
1 − R1

0)(R1
3 + 2R1

0 − 3R1
2)

6
∣∣∣R1

1 − R1
0

∣∣∣2
. (3.19)

R̃
1
1 and R̃

1
2 are given by substituting Eqn. (3.19) into

Eqn. (3.16) and then substituting Eqn. (3.16) into

Eqn. (3.18). In addition, R̃
2
1 are given by substituting

Eqn. (3.18) into Eqn. (3.7). R̃
n
1, R̃

n
2, and R̃

n−1
2 are sim-

ilarly calculated. For R̃
k
2 and R̃

k+1
1 (k = 2, 3, . . . , n − 2),

we calculate them using the method described in
Section 3.2.

Next, we adjust control points existing beside the
common boundary and belonging to the boundary
curves of the patches in the u direction (bold red

dots in Fig. 6(b), i.e., P̃
1
0, Q̃

1
0, P̃

k
3, Q̃

k
3 (k = 1, 2, . . . , n)

in Fig. 5). For P̃
1
0 and Q̃

1
0, to retain the direction of the

partial derivative of the patches in the u direction at
the end of the common boundary, we introduce the
following constraints:

ã1
0 = λaa1

0, b̃
1
0 = λbb1

0, (3.20)

where λa and λb are unknown scalars. By substituting
Eqns. (3.20) and (3.12) into Eqn. (3.11), λb is expressed

as follows by a linear function of λa since c̃1
0 is known

already.

λb = α
�
α

λa where �
α = (b1

0 × c̃1
0)(c̃1

0 × a1
0)∣∣∣c̃1

0 × a1
0

∣∣∣2
. (3.21)

From Eqns. (3.20) and (3.21), P̃
1
0 and Q̃

1
0 are expressed

by a linear functions of λa since ã1
0 = R1

0 − P̃
1
0 and

b̃
1
0 = Q̃

1
0 − R1

0. Therefore, we determine λa as follows
using the least-squares method so that two control
points move as little as possible (see APPENDIX for
the derivation).

λa =
�
α2

∣∣∣a1
0

∣∣∣2 + �
αα

∣∣∣b1
0

∣∣∣2
�
α2

∣∣∣a1
0

∣∣∣2 + α2
∣∣∣b1

0

∣∣∣2
. (3.22)

Substituting Eqns. (3.22) and (3.21) into Eqn. (3.20)

yields P̃
1
0 and Q̃

1
0. P̃

n
3 and Q̃

n
3 are similarly calculated.

For P̃
1
3 and Q̃

1
3, ã1

3 and b̃
1
3 are restricted to the direction

defined by Eqn. (3.15). Then, ã1
3 is given by

ã1
3 = λuV1, (3.23)

where λu is an unknown scalar. By substituting

Eqn. (3.12) into Eqn. (3.10), b̃
1
3 is expressed as follows

(a) (b) (c)

Fig. 6: (a) Control points on the common boundary, (b) Control points beside the common boundary, (c) Inner
control points.
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according to the fifth equation of Eqn. (3.10).

b̃
1
3 = −αã1

3. (3.24)

From Eqns. (3.23) and (3.24), ã1
3 and b̃

1
3 are expressed

by linear functions of λu. Therefore, we determine
λu as follows using the least-squares method so that
two control points move as little as possible (see
APPENDIX for the derivation).

λu = V1a1
3 − αV1b1

3

(1 + α2) |V1|2
. (3.25)

P̃
1
3 and Q̃

1
3 are given by Eqns. (3.25), (3.23) and (3.24)

since ã1
3 = R1

3 − P̃
1
3 and b̃

1
3 = Q̃

1
3 − R1

3. P̃
k
3 and Q̃

k
3(k =

2, . . . , n − 1) are similarly calculated.
Finally, we adjust the remaining inner control

points (bold red dots in Fig. 6(c), i.e., P̃
k
1, P̃

k
2, Q̃

k
1,

Q̃
k
2 (k = 1, 2, . . . , n) in Fig. 5). For P̃

1
1 and Q̃

1
1, by sub-

stituting Eqn. (3.12) and k = 1 into Eqn. (3.10), the
third equation in Eqn. (3.10) is expressed as follows
according to the fourth and the fifth equations in
Eqn. (3.10).

αã1
1 + b̃

1
1 + 1

3
γ1(0)c̃1

2 = 0. (3.26)

Since ã1
0, b̃

1
0, and c̃1

0 are already known, γ1(0) is given

by Eqn. (3.11). Thus, Q̃
1
1 is expressed by a linear func-

tion of P̃
1
1 as follows from Eqn. (3.26) since ã1

1 = R̃
1
1 −

P̃
1
1, b̃

1
1 = Q̃

1
1 − R̃

1
1, and c̃1

2 = R1
3 − R̃

1
2.

Q̃
1
1 = R̃

1
1 − α(R̃

1
1 − P̃

1
1) − 1

3
γ1(0)(R1

3 − R̃
1
2). (3.27)

Therefore, we determine P̃
1
1 as follows using the least-

squares method so that two control points move as
little as possible (see APPENDIX for the derivation).

P̃
1
1 = P1

1 + αQ1
1 + α(α − 1)R̃

1
1 + αγ1(0)(R1

3 − R̃
1
2)/3

1 + α2
.

(3.28)

Q̃
1
1 is given by substituting Eqn. (3.28) into Eqn. (3.27).

P̃
n
2 and Q̃

n
2 are similarly calculated. For P̃

1
2, Q̃

1
2, P̃

2
1,

and Q̃
2
1 (which are four inner control points adja-

cent to the point at which corners of four patches
converge), by substituting Eqn. (3.12) into Eqn. (3.10),
the following simultaneous equations are given from

Eqns. (3.10) and (3.7) since R̃
2
1, R̃

1
2, P̃

1
3, and Q̃

1
3 are

known.

⎡
⎢⎢⎣

α −1 0 0
1 0 ν1 0
0 0 α −1
0 1 0 ν1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̃
2
1

Q̃
2
1

P̃
1
2

Q̃
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(α − 1)R̃
2
1

(ν1 + 1)P̃
1
3

(α − 1)R̃
1
2

(ν1 + 1)Q̃
1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.29)

However, the solution of Eqn. (3.29) is indefinite

because of rank deficiency. On the other hand, Q̃
1
2, P̃

2
1,

and Q̃
2
1 are expressed by linear functions of P̃

1
2 from

Eqn. (3.29). Therefore, we determine P̃
1
2 as follows

using the least-squares method so that four control
points move as little as possible (see APPENDIX for
the derivation).

P̃
1
2 =

P1
2 + αQ1

2 − ν1P̃
2
1 − αν1Q̃

2
1 + α(α − 1)(R̃

1
2 − ν1R̃

2
1)

+ν1(ν1 + 1)(1 + α2)P̃
1
3

1 + α2 + ν2
1 + α2ν2

1

.

(3.30)

Q̃
1
2, P̃

2
1, and Q̃

2
1 are calculated by substituting

Eqn. (3.30) into Eqn. (3.29). Remaining each of the
four inner control points adjacent to the point at
which corners of four patches converge are similarly
calculated.

As the result, two patches adjacent on the com-
mon boundary are G1-continuous and those along the
common boundary are C1-continuous. Then, using the
method described in Section 3.2, we measure errors
of boundary curves of these patches and interior of
these patches, and subdivide parameter domains of
the offset surfaces if the patches that do not sat-
isfy the tolerance are detected. After that, using the
method described in Section 3.2 and 3.3.2, we recon-
struct patches repeatedly until all patches satisfy the
tolerance.

4. EXAMPLES

Fig. 7 is an example of applying the technique
described in this paper. Fig. 7(a) shows a three-
dimensional model in the shape of bottles. Fig. 7(b)
shows two G1-continuous bicubic Bezier surfaces of
the model. The distance between end points of the
common boundary is 80.0. We applied our technique
to the surfaces. Fig. 7(c) shows the result. Fig. 7(d) is
other view of Fig. 7(c). The offset distance is 5.0, the
tolerances for boundary curves of patches and inte-
rior of patches are 0.1, and the angle tolerance is 1.0
degree. Fig. 7(e) shows the sample points used to gen-
erate the approximated offset surfaces rendered in
Fig. 7(c),(d). The blue dots are the sample points used
to calculate the inner control points of patches in the
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(a) (b) (c) (d)

(e) (f) (g)

(h)

Fig. 7: (a) A bottle shape, (b) Two G1-continuous surfaces, (c) The result, (d) Another view of (c), (e) Sample
points, (f) Control points for (c), (g) Bicubic Bezier patches for (f), (h) Enlarged view of (g) with normal vectors.

approximated surface. The red dots are the sample
points used to calculate control points on bound-
ary curves of the patches. Fig. 7(f) shows the control
points of the approximated offset surfaces rendered
in Fig. 7(c), (d). Fig. 7(g) shows the bicubic Bezier
patches which are combined to two bicubic B-spline
surfaces depicted in Fig. 7(f). As understood from
comparison between Fig. 7(f) and Fig. 7(g), each bicu-
bic B-spline surface in Fig. 7(g) has no control points
on boundary curves of the patches because those are
C1-continuous. Fig. 7(h) is the enlarged view of the
bicubic Bezier patches of Fig. 7(g) along the common
boundary, and shows normal vectors of the approx-
imated offset surfaces along the boundary curves.
As shown in Fig. 7(h), no gaps and creases appear
between two surfaces because the patches adjoin to
be one-on-one along the common boundary and those
are G1-continuous.

Fig. 8 is another example. Fig. 8(a) shows a three-
dimensional model in the shape of levers. Fig. 8(b)
shows two G1-continuous bicubic Bezier surfaces of
the model. The distance between end points of the
common boundary is about 63.3. Fig. 8(c) is another
view of Fig. 8(b). We applied our technique to the sur-
faces. Fig. 8(d) shows the result. The offset distance is
5.0, the tolerances for boundary curves of patches and
interior of patches are 0.1, and the angle tolerance is
1.0 degree. Fig. 8(e) shows the sample points used to
generate the approximated offset surfaces rendered
in Fig. 8(d). The meanings of color of the sample
points are same as the previous example. Fig. 8(f)
shows the control points of the approximated off-
set surfaces rendered in Fig. 8(c), (d). Fig. 7(g) shows
the bicubic Bezier patches which are combined to
two bicubic B-spline surfaces depicted in Fig. 8(f). As
understood from comparison between Fig. 8(f) and
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(a)                                     (b) (c) (d)

(e)        (f) (g) (h)

Fig. 8: (a) A lever shape, (b) Two G1-continuous surfaces, (c) Another view of (b), (d) The result, (e) Sample points,
(f) Control points for (d), (g) Bicubic Bezier patches for (f), (h) Enlarged view of (g) with normal vectors.

Fig. 8(g), each bicubic B-spline surface in Fig. 8(g)
has no control points on boundary curves of the
patches because those are C1-continuous. Fig. 8(h) is
the enlarged view of the bicubic Bezier patches of
Fig. 8(g) along the common boundary, and shows nor-
mal vectors of the approximated offset surfaces along
the boundary curves. As shown in Fig. 8(h), no gaps
and creases appear between two surfaces because the
patches adjoin to be one-on-one along the common
boundary and those are G1-continuous.

On a PC with Intel(R) Core(TM)2 Duo 2.2 GHz CPU
and 2 GB RAM, the processing time is about 4.0 sec-
onds in the case of Fig. 7 and is about 1.8 seconds
in the case of Fig. 8. Our technique could run at a
practical speed although it may be somewhat bovine
because of a lot of sample points marked in Fig. 7(e)
and Fig. 8(e).

5. CONCLUSION

This paper proposed a technique for approximating
two G1-continuous offset surfaces. The technique gen-
erates two G1-continuous approximated surfaces rep-
resented by C1-continuous bicubic B-spline surfaces.
The approximated surfaces are higher quality than
generated using existing methods, because our tech-
nique avoids gaps or creases between the surfaces
with the following two ideas: (1) subdivide parame-
ter domains of offset surfaces so that the patches
along the common boundary adjoin each other to
be one-on-one on the common boundary, and ensure
the shapes of two boundary curves on the common
boundary between two patches adjoining each other
are same, and (2) use the original constraint con-
ditions to control points of the patches along the

common boundary to satisfy G1- and C1-continuity
simultaneously. Furthermore, because our approxi-
mated surfaces are C1-continuous, those are tractable
in numerical calculation of first order differential
equations, such as trace calculations for blending
surfaces or tracing intersection between surfaces.
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APPENDIX

Let Pi(i = 1, 2, . . . , n) be control points to be adjusted
and constrained by each other. Let P̃i be the control
points after adjustment, the condition to minimize
the sum of distance to be moved δ is given by

δ =
n∑

i=1

∣∣∣P̃i − Pi

∣∣∣2 → min. (A.1)

If P̃2, P̃3, . . ., and P̃n are linear functions of P̃1, δ is
a quadratic function of P̃1. Therefore, P̃1 satisfying
Eqn. (A.1) is obtained by solving

dδ

dP̃1
= 0. (A.2)

If P̃1, P̃2, . . ., and P̃n are linear functions of an
unknown scalar λ, δ is a quadratic function of λ.
Therefore, λ satisfying Eqn. (A.1) is obtained by
solving

dδ

dλ
= 0. (A.3)
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