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ABSTRACT

Parametric biomechanical models of the human body have a wide range of applications. Factors that
make construction of such models difficult include the difficulty to model free form shapes, the exis-
tence of large shape variations, poor models for soft tissues, etc. An important step towards achieving
a solution is to generate parametric skeletal models. In this paper, we introduce a new method to
parametrically define shapes of skeleton components (bones). Our approach has several advantages:
we require only a few sample bones of a class to construct a fairly robust template model; we do
not rely on accurate identification of specific landmarks or shape features; finally, our algorithms are
robust and efficient. The main tool we use is free form deformation (FFD), which we use to modify
the shape of a template mesh by dislocating points of its affiliated lattice. This lattice is automatically
derived by mesh simplification. Using the template bone and the values of a few parameters, an FFD
based transformation automatically derives the shape of the bone instance. We evaluate the accuracy
of the model and analyze the performance of our approach under different settings.

Keywords: bio-mechanical models, parametric models, shape deformation.

1. INTRODUCTION

The initial motivation for this research came from the
problem of designing custom fit shoes. The design
and fit of shoes depends on the shape of the shoe
last that is used to fabricate them, which itself is
designed using measurements made on the user’s
foot. The same last can be used to construct mul-
tiple pairs of shoes for a customer. However, this
approach suffers if these multiple designs vary in
some parameters, especially the heel height and shoe
style; this is because the original measurements are
made with the user standing in a particular posture.
This is probably the reason that bespoke shoemak-
ers appear to predominantly cater to men rather than
women. Traditional shoe last design relies mainly on
statistical models that provide guidelines on how the
average foot shape varies as a function of heel height
etc. This approach works well for mass produced
shoes, but obviously loses its appeal if applied to
custom shoe-making. Our long term goal is to investi-
gate how to automatically generate the shape of shoe
lasts for specific shoe styles based on a single set of
measurements of the foot (in a specific posture).

One way to do this is by constructing a 3D
bio-mechanical model of human feet, which can be

used to predict the foot shape in different posi-
tions/elevations of the heel. Such a model would
require a parametric constrained assembly model of
the foot skeleton, as well as some quasi-static kine-
matics models of the joints in the foot. Statistical
models can be used to instantiate the parametric
model, and kinematic constraints can then be used
to derive the skeletal geometry at different postures.
Finally, statistical models for other soft tissues can be
used to generate the shape model for the foot. If such
a strategy is successfully developed, it can be used
as a basis for design and manufacture of customized
shoes. In this scheme, the user’s foot is scanned only
once, but for every subsequent pair of shoes, even
with different heel heights (for instance), the mod-
eler will be able to accurately predict the exact shape
required for the best fitting shoe last. Thus, the design
procedure can be optimized for mass customization
of footwear.

There are various difficulties in developing this
technique. First of all, there are a number of bones
in a skeleton model (e.g., 26 in a human foot). Every
bone of a skeleton has a unique shape. Each bone
model need to be built in a way such that it can be
applied on any arbitrary shape. Secondly, Magnetic
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Resonance Imaging (MRI) or Computerized Tomogra-
phy (CT) scanning of the human body is expensive; CT
scans also are not totally safe. It is not cost efficient
to collect a large number of samples and then use a
statistical approach to build a template model. Thus,
the approach should be able to capture the param-
eters given on a small number of samples. Thirdly,
since the shape of each bone type is different, the
set of parameters vary from bone to bone; further,
such parameters can assume different forms, such as
dimensions, angles, or curvature, depending on the
shape of the bone and the requirement of the user.
Finally, each bone has a unique shape for each individ-
ual. We need to consider this kind of natural variation,
and capture only the typical shape features of each
bone sample; otherwise, the template model would
not be useful as a predictor of the shape of a new
sample. In this paper, we shall restrict our focus to
the sub-problem of generating and using parametric
model for a particular bone in a skeleton. Informally,
the problem is defined as:

We are given the geometric shape of a set of bone
samples, Bi , i = 1 . . . n, (e.g. the first meta-tarsal bone),
one from each individual of a population. Using this
sample, we wish to (a) identify/generate a nominal (i.e.
a template, or exemplar) geometric model, TB of such
bones over the entire population; and (b) identify a
small but sufficient set of parametric measurements,
pB1 . . . pBk , and a simple mapping, f (pB1 . . . pBk):
TB : → B that can be used to accurately map the tem-
plate model to the geometric model of an unknown
shape for which we know only the parameter val-
ues pB1 . . . pBk . By solving this problem, we would be
able to construction a parametric skeleton model of a
human foot.

2. RELATED RESEARCH

Bio-mechanical modeling has been an active research
topic for decades, with applications in medical,
ergonomics, textile design, animation, virtual reality,
motion analysis, etc. We briefly discuss the different
approaches that have been used by other researchers.

Several schemes create models based on mechan-
ical properties and kinematic motion of the human
body for applications in virtual reality and animation
[17,18,22,23,28,29]. Such models simulate motion of
the entire human body, including muscle and soft tis-
sue deformations [28]. However, these models did not
focus on the detailed geometry of individual body
parts, e.g., the foot. The human foot is a complex
structure, with 26 bones, 33 joints and hundreds of
muscles, tendons, and ligaments [11]. Besides, these
models are not parametric, so the technique required
to construct them cannot be easily adopted for our
application.

There are also some active researchers working
on building detailed foot models. In [1,4,5], 3D foot
model from MRI or CT scans are used to construct

a detailed 3D foot model for finite element analysis
(FEA). Such models are quite detailed [27], but are
static, i.e., the position and loading of the foot is
fixed. Furthermore, these models are not parametric.
In parametric modeling, shape design using template
shapes called features is an established technology
in CAD. When dealing with complex shapes within
a given context, semantic features have been used
successfully to define template models of sculptured
forms [2]. However, their approach cannot derive the
model directly from a scan of the real object.

There is some research on how to parameterize a
standard foot to make a prediction model, using the
measurement of the foot [19] or the 2D profile [20].
This method is fairly accurate, with a reported mean
absolute error of 1.02 mm. Other researchers also
have proposed frameworks for parametric human
body models [3,15,26], with reported errors of 2.7%.
However, they are not biomechanical models, and can-
not be adopted for predicting the shape of the same
foot in different postures.

Transforming a given 3D shape into another
requires a mapping function with desirable proper-
ties. Free-From Deformation (FFD) [25] has proven to
be the basis for many such transformation operators.
Initially FFD was used to deform object by NURBS vol-
ume using a lattice of regular shape. Later, it was
extended to allow deforming an object by using lat-
tices of different shapes [7,14,16,21]. Park and Lee
[24] built parametric models using FFD and an auto-
matically generated lattice as the control mesh. In
our application, accuracy of shape prediction depends
on using control meshes that follow the shape of
the typical samples; therefore we investigated var-
ious methods of mesh simplification [6,8–10,30] to
generate our control meshes.

Finally, we mention a closely related, on-going
project on human body modeling [12]. Their aim is
to develop parametric human biomechanical models
to support digital ergonomics. Their approach is to
collect a large collection of bone specimens and ana-
lyze these using statistical techniques. Their goal is
similar to ours. However, their approach is resource-
intensive, and requires human experts to identify and
locate anatomical landmarks. In contrast, we adopt a
more geometric approach.

3. METHODOLOGY

Here we will show the process of how we build
a parametric model, which can be used as a tem-
plate to generate an instance of a bone given the
measurements of only a few parameters. The mod-
eling process is divided into three stages: template
construction, regression and prediction. We describe
these three stages at a high level before giving details
of the individual steps.

In the template construction process, a number
of samples Bi are collected and aligned. Next, we
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measure the set of parameters pD1 . . . pD1 of each
of the target bone Bi . Using this, we can set up an
exemplar, or a template bone mesh Mt . This mesh is
too dense to be used directly for parametric shape
manipulation. Using a polyhedral simplification, we
create a corresponding control mesh, C. A parame-
terization process, based on FFD, is used to define a
mapping between the template mesh Mt and C, such
that when we change the shape of C, Mt is deformed
accordingly. Hence, we obtain a deformable template
model TB .

Fig. 1: Flow chart of the construction of the template
model TB .

In the next stage, we use regression to create the
best fitting deformation model. Assume that all sam-
ples, Bi , have been aligned as in the previous stage.
Each Bi is used, iteratively, as a target bone. We
deform C (into C′), and correspondingly, Mt , (into
some shape M ′

t ), so as to minimize the error between
M ′

t and Mi . We record the corresponding set of param-
eters pBi1 · · · pBik . Using this data set for all bones, the
relation between the set of parameters pB1 · · · pBk and
the resulting shape of the deformed control mesh C′
is established using linear regression.

In the prediction stage, we use the regression
model obtained in previous stage. Given a new set of
parameters pB1 · · · pBk , we use the mapping obtained
from the regression stage to estimate the control
mesh C′ of the (unknown) bone. Then, using the same
FFD map, we generate the predicted bone mesh, M ′

t ,
by deformation of the template bone, Mt .

We now describe some of the details of the key
steps of our approach.

Fig. 2: The flow chart regression stage.

Fig. 3: Flow chart showing steps for constructing a
bone model given parameter values pB1 . . . pBk .

Alignment

The sample bones differ from each other in geome-
try, so they must first be aligned in a common (global)
coordinate frame. The local coordinate frame of the
first bone sample is arbitrarily selected to coincide
with this global frame. The transformation (defined by
a translation and rotation) that minimizes the error
between the mesh M1 and any other mesh, Mj , is
computed by solving the error function numerically.
Assuming that the initial meshes are dense enough,
we approximate the distance between point q and
mesh M as:

e(q, M ) = min
qi∈M

{d(q, qi)}

The error, DH , between the meshes is defined using:

DH (M1, Mj) = max

{
sup
q∈M1

e(q, Mj), sup
q∈Mj

e(q, M1)

}
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Determination of the Template Mesh Mt

At the outset, it was unclear whether the ideal tem-
plate model should be some mesh model that could
adequately capture all shape features of all bones in
the sample set. Such a template could be constructed,
for instance, by an appropriate morphing over the
sample set. However, a series of experiments showed
that a randomly selected average sized bone sample
assigned as the template worked equally well for our
parametric shape deformations.

Constructing the Control Mesh, C

The control mesh C is a simplification of the template
bone mesh model, Mt . We adopted a triangle deci-
mation scheme that was robust, and preserved the
topology of Mt even when the set of control vertexes is
reduced to very small size, with, e.g., fewer than fifty
vertices, based on an approach proposed in [8]. This
is an edge collapse simplification algorithm based on
quadric error metrics.

Parameterization

The relationship between the control mesh C and the
bone mesh M is established using a parameteriza-
tion. Several variations of parameterization methods
have been proposed in the last couple of decades. We
adopted an approach based on triangular free form
deformation (t-FFD) [16], as described below. Let C
consist of N triangular facets, Ti , where i = 1 to N .
Each facet has vertices vi1, vi2, vi3. For each triangular
facet Ti , we establish a local coordinate system Ξi .

Ξi = {vi1; Ui , Vi , Wi} where Ui , Vi , Wi are the coordinate

axes

Ui = vi2 − vi1, Vi = vi3 − vi1, and Wi = U1 × V1√|U1 × V1|

Each vertex q in Mt is parameterized by each Ξi as
(ui , vi , wi): q = vi1 + uiUi + viVi + wiWi . The influence
of each facet Ti on q depends on the size of Ti and the
distance of q from Ti . This is quantified as a weight,
ki , defined as:

ki =
⎧⎨
⎩1 − |q − Gi |

βri
(0 ≤ |q− = Gi | < βri)

0 (βri ≤ |q − Gi |)

where ri = (|vi1 − Gi | + |vi2 − Gi | + |vi3 − Gi |+)/3 is the
size of the facet, and Gi is the centroid of Ti . The
parameter β controls the effective range of Ti ; when
the value of β is low, the deformation is more local. In
our model, we set β = 2, so the effective range of Ti is
two times of its size ri .

As a result, given the vertices vi1, vi2, vi3 of Ti and
each of the vertex q in Mt , we obtain the value of ui ,vi ,
wi and ki which will be used in the next step.

Deformation

Suppose that a vertex v = [vi1vi2vi3] of C moves to
a new position, v′ = [v′

i1v′
i2v′

i3]; the local coordinate
system Ξi of each Ti are updated to {v′

i1; U ′
i , V

′
i ,

W ′
i } using the above equations. The corresponding

updated position, q′, of a vertex q of M is given by:

q′ =
∑N

i=1 ki(v
′
i1 + uiU

′
i + viV

′
i + wiW

′
i )∑N

i=1 ki

Deriving the Mapping between the Parameters and
Control Mesh Vertices

Given only a set of parameters, how can we predict
the shape of the control mesh C that can deform
the template model to get an accurate mesh repre-
senting the corresponding bone? Here, we have to
find the relationship between the set of parameter
pB1 · · · pBk and the shape of the control mesh. As the
vertices, vj , of the control mesh C of Mt move, the
error D(M ′

t , Mi) changes. So our problem amounts to
obtaining a solution for the system ∂D(M ′

t , Mi)/∂v = 0.
We use a numerical steepest descent algorithm to
solve for this system for each bone.

Given a set of parameters pn+1,1 . . . pn+1,k for a new
bone Bn+1, we wish to determine the control mesh
C′ such that the corresponding modified template,
T ′

B approximates the bone Bn+1. We use a regression
model to define the relation between each vertex vj of
C and the parameters pB1 . . . pBk

vj = fj(pB1 . . . pBk)

We tested linear as well as some non-linear (poly-
nomial) regression models; linearly regression was
finally adopted, since it gave us the best compromise
between quality and speed.

Using matrix notation, Vr = AP , r ∈ {1, 2, 3}, where

Vr =

⎡
⎢⎢⎢⎣

v1r
v2r
...

vn r

⎤
⎥⎥⎥⎦ A =

⎡
⎢⎣

a1,0 · · · a1,k
. . .

an,0 · · · an,k

⎤
⎥⎦ P =

⎡
⎢⎢⎢⎣

1
pB1

...
pBk

⎤
⎥⎥⎥⎦

This linear regression model and the data of the first
n bones is used to determine the matrices A for each
coordinate axis r .

4. EXPERIMENTAL RESULTS

We tested our approach on two sets of bones. Ani-
mal bones were used in these tests instead of human
bones, since the former are readily and inexpensively
available. The first set was made up of 13 left metatar-
sus bones from chicken legs, and the second set of ten
femur bones from pig’s legs. All bones were cleaned,
painted with a thin coat of non-reflective paint, and
scanned using a Minolta laser scanner to generate the
input meshes.
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Model number 1 2 3 4 5 6 7 8 9 10 11 12 13

# control facets 15 15 15 29 29 29 29 29 29 29 29 29 100
# control vertices 9 9 9 17 17 17 17 17 17 17 17 17 53
set of parameter 3 3 5(a) 3 3 3 3 3 4(a) 4(b) 5(a) 5(b) 3
no. of sample 6 13 13 6 8 10 12 13 13 13 13 13 13
bone1 1.66 1.79 1.88 1.88 1.85 1.76 1.74 1.85 1.75 1.84 1.77 1.77 1.39
bone2 1.47 1.58 1.47 1.48 1.44 1.34 1.44 1.39 1.37 1.37 1.46 1.42 1.56
bone3 1.66 1.84 1.74 1.46 1.56 1.70 1.67 1.71 1.72 1.71 1.68 1.31 1.58
bone4 1.74 2.14 1.75 1.88 1.97 2.10 2.20 2.22 2.25 0.28 1.88 2.03 2.31
bone5 1.48 1.29 1.26 1.54 1.27 1.35 1.26 1.23 1.31 1.26 1.25 1.25 1.68
bone6 1.92 1.73 1.80 1.69 1.86 1.82 1.70 1.66 1.58 1.69 1.74 1.72 1.61
bone7 0.96 0.54 0.43 0.89 0.64 0.70 0.51 0.55 0.68 0.51 0.47 0.69 0.76
bone8 2.08 1.47 1.52 1.93 1.37 1.37 1.45 1.41 1.35 1.46 1.41 1.33 1.37
bone9 2.00 1.77 1.87 2.53 2.18 1.45 1.46 1.43 1.42 1.53 1.59 1.49 1.57
bone10 2.74 1.97 1.98 2.40 2.23 1.98 1.94 1.92 1.97 1.97 2.03 2.13 1.89
bone11 2.57 2.23 2.05 2.43 2.29 2.28 2.05 1.98 1.96 1.89 1.79 1.81 1.94
bone12 2.54 1.99 1.64 2.27 2.10 2.01 1.75 1.73 1.65 1.69 1.68 1.87 1.92
bone13 3.72 1.66 1.62 3.27 2.98 2.85 2.41 1.63 1.62 1.70 1.73 1.56 1.78
Average 2.04 1.69 1.62 1.97 1.83 1.75 1.66 1.59 1.59 1.45 1.58 1.57 1.64

Tab. 1: Maximum deviation between the template model and the real bone.

Fig. 4: The deviation analysis of bone number 10 (a) front view (b) back view.

4.1. Chicken Bone Models

It is useful to describe the series of experiments we
performed in details. In order to test the robustness
of the modeling, several different sample sizes were

used to build the parameterization model: by using
only the first six/eight/ten/twelve bones.

We also experimented to find out how many (and
what type of) parameters are ideal. Obviously, a
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Model number 1 2 3 4 5 6 7 8 9 10 11 12 13

bone1 0.90 0.92 0.91 0.90 0.90 0.90 0.90 0.92 0.92 0.94 0.88 0.87 0.84
bone2 0.79 0.72 0.76 0.80 0.78 0.76 0.75 0.72 0.69 0.73 0.71 0.77 0.67
bone3 0.88 0.91 0.90 0.87 0.86 0.91 0.93 0.93 0.88 0.92 0.93 0.78 0.91
bone4 0.78 0.83 0.81 0.70 0.71 0.85 0.85 0.83 0.86 0.77 0.71 0.81 0.83
bone5 0.73 0.86 0.86 0.69 0.76 0.84 0.86 0.86 0.87 0.85 0.84 0.84 0.91
bone6 0.82 0.82 0.84 0.74 0.81 0.78 0.74 0.79 0.79 0.80 0.82 0.74 0.79
bone7 0.63 0.35 0.35 0.59 0.44 0.45 0.36 0.36 0.47 0.38 0.38 0.48 0.43
bone8 1.36 1.01 1.02 1.35 0.96 0.99 1.03 1.02 0.87 0.99 0.99 0.89 0.95
bone9 1.40 0.79 0.76 1.32 1.23 0.84 0.80 0.75 0.76 0.74 0.71 0.77 1.02
bone10 1.33 0.94 0.88 1.34 1.20 0.94 0.92 0.90 0.89 0.88 0.89 0.87 0.81
bone11 1.08 0.89 0.94 1.12 1.06 1.03 0.87 0.86 0.87 0.95 0.90 0.81 0.74
bone12 1.35 0.97 0.93 1.26 1.19 1.09 1.00 0.99 0.91 0.85 0.89 1.04 1.00
bone13 1.75 0.98 0.94 1.97 1.87 1.59 1.38 0.92 0.88 0.88 0.89 0.88 0.85
Average 1.06 0.85 0.84 1.05 0.98 0.92 0.88 0.83 0.82 0.82 0.81 0.81 0.82

Tab. 2: 95% deviation between the template model and the real bone.

Fig. 5: 95% deviation between models with different number of samples.

Fig. 6: 95% deviation between models with different number of control vertices.

single parameter (e.g. length) is likely to be poor,
while a very large measured set, e.g. the entire
mesh scan, would be very accurate but impracti-
cal. For the chicken bone, potential candidates that
we considered included: length, head width, tail
width, head height, tail height, head angle, tail angle,
body angle and twist angle. We created different

models using the following subsets of these mea-
sures:

3 parameters: length, head width, tail width
4 parameters: length, head width, tail width, body

angle (called 4(a) below)
4 parameters: length, head width, tail width, twist

angle (called 4(b) below)
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Fig. 7: 95% deviation between models with different sets of parameters.

# of control facets 30 30 30 100
# of control vertexes 17 17 17 52
set of parameter 1 3 3 3
no. of sample 8 8 10 8
Deviation max 95% mean max 95% mean max 95% mean max 95% mean
bone1 3.94 1.60 0.59 3.88 1.60 0.57 3.84 1.60 0.56 3.59 1.40 0.49
bone2 4.26 2.20 0.91 2.87 1.90 0.65 3.10 1.90 0.67 2.56 1.50 0.57
bone3 3.73 2.00 0.79 3.47 1.70 0.65 3.48 1.80 0.68 3.05 1.70 0.58
bone4 5.12 2.80 1.21 1.11 0.60 0.20 1.47 1.10 0.49 0.91 0.50 0.18
bone5 3.27 2.00 0.74 3.03 1.90 0.71 3.54 1.90 0.75 3.31 1.90 0.66
bone6 3.82 2.10 0.83 3.29 1.70 0.68 3.37 1.80 0.69 3.15 1.50 0.61
bone7 5.25 2.20 0.91 3.85 1.80 0.70 4.66 1.80 0.75 3.33 1.50 0.60
bone8 3.94 1.70 0.61 3.98 1.70 0.64 3.97 1.60 0.61 4.35 1.60 0.57
bone9 4.43 3.10 1.42 3.70 2.70 1.15 3.05 2.00 0.81 4.03 2.70 1.14
bone10 4.72 3.30 1.51 3.84 2.50 1.09 3.25 1.80 0.71 4.17 2.80 1.15
Average 4.25 2.30 0.95 3.29 1.81 0.70 3.37 1.73 0.67 3.25 1.71 0.65

Tab. 3: Experimental results for pig bones: deviation between actual and predicted models.

5 parameters: length, head width, tail width, head
angle, tail angle (5 (a))

5 parameters: length, head width, tail width, head
height, tail height (5 (b)).

We also suspect that the number of control ver-
texes in the control mesh would cause some effect
on the accuracy of the model. We have built a num-
ber of models using control meshes with 9, 17 or
53 control vertexes and compare their performance.
We used the mesh model of bone 7 as the tem-
plate. For each bone, we measured the parameter
values and applied our mesh deformation model to
obtain an instance of a bone, which was then com-
pared against the actual mesh of the corresponding
bone for error analysis. The data of the bones that
were used as samples for constructing the model
are shown in green highlighted cells below, and the
template bone data is highlighted in yellow. The
other bones were not used in constructing the model,
and were used to validate the predictive accuracy of
the model. The table below summarizes the maxi-
mum deviation test data. The error/deviation analysis
was performed using a commercial CAD software,
CATIA.

While some of the deviation values were some-
what large, the maximum deviation typically occurred
in regions with poor scanned geometry (e.g. slightly
occluded regions or sharp corners). Such regions are
often not useful in constructing skeletal models, since
there is no joint in this region. It is therefore more
useful to test the accuracy on the model by ignoring
these outliers, and looking at, say, the deviation at the
95-th percentile deviation between the predicted and
actual bone model.

The following figures show the remaining experi-
mental results.

4.2. Pig Bone Models

As above, a similar series of experiments was con-
ducted for a set of ten pig femur bones. We were
interested in testing mainly whether the approach
worked for bones of different shapes, and also of dif-
ferent size. The main results of the experiments are
summarized in the following table. For brevity, we do
not show the various experimental variations, except
to note that the experiments were made over different
subsets of (with either one or three) parameters, and
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Fig. 8: The deviation analysis of bone number 10 (a) front view (b) back view.

with control meshes containing either 52, or as few as
17 vertices.

5. DISCUSSION AND CONCLUSIONS

We first make a few observations about our proposed
methodology. We see a slight deviation between the
predicted model and the actual model of the template
bone. This is due to the use of the regression model;
even if we select a template model bone as one with
a somewhat unusual shape, the effect of this irregu-
larity is reduced due to our approach, as this effect is
dampened due to the other samples.

In the deviation analysis images, the red areas
(which indicate the max deviation), are usually located
at the corner or hole of the bone. This may due to
the problem of scanning. Some holes or corners can-
not be easily scanned. Therefore we recommend using
the 95-th percentile deviation point as a more robust
measure for the predictive inaccuracy. No obvious
trend was found for using different number of con-
trol vertices, and in fact the models with fairly sparse
control meshes perform quite well. There is a sig-
nificant decrease in error when we move from one
parameter to three parameters. But beyond 4 or 5
parameters, the accuracy does not really change sig-
nificantly. This is also reassuring, since it indicates
that relatively few measurements obtained, e.g., from

external measurements on the body can be fairly use-
ful in generating accurate predicted models. However,
the accuracy does depend on which parameter(s) are
used in the model. This indicates that some domain
expertise may be required to create concise but robust
models. Finally, the results for pig and chicken bones
are fairly consistent, which is also reassuring since the
bones in a typical human foot, e.g., vary quite a lot in
size and shape.

We conclude by noting that we have presented a
new approach to create parametric models of com-
plex shapes, such as those of bones in human/animal
skeletons. We believe that the approach is accurate
enough for some applications where models of skele-
tons need to be generated based on a few parametric
measurements; the accuracy can be further improved
by experimenting with more sophisticated versions of
the FFD model and regression algorithm in the future.
However, we still need to extend our work in several
ways before we can comment on its applicability to
our original motivation. In particular, how to estimate
the parameter values for each bone in a foot skeleton
based on, say, only a scan of the external shape of a
foot is a challenging problem.

ACKNOWLEDGEMENTS

Part of this research was funded by UGC GRF grants #
HKUST 614205 and HKUST 614407.

Computer-Aided Design & Applications, 11(1), 2013, 90–98, http://dx.doi.org/10.1080/16864360.2013.834147
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



98

REFERENCES

[1] Antunes, P. J.; Dias, G. R.; Coelho, A.T.; Rebelo,
F.; Pereira, T.: Non-Linear Finite Element Mod-
eling of Anatomically Detailed 3D Foot Model,
Proc. of VIPIMAGE 2007, 1st ECCOMAS The-
matic Conference on Computational Vision and
Medical Image Processing, 135–142, 2008

[2] Au, C.K.; Yuen, M.M.F.: A semantic fea-
ture language for sculptured object modeling,
Computer-Aided Design, 32, 2000, 63–74.

[3] Baek, S.-Y.; Lee, K.: Parametric human body
shape modeling framework for human-centered
product design, Computer-Aided Design, 44,
2012, 56–67.

[4] Camacho, D. L. A.; Ledoux, W. R.; Rohr, E. S.;
Sangeorzan, B. J.: A three-dimensional, anatom-
ically detailed foot model: A foundation for a
finite element simulation and means of quan-
tifying foot-bone position, Journal of Rehabili-
tation Research and Development, 39(3), 2002,
401–410.

[5] Cheung, J. T.-M.; Zhang, M.: Finite Element Mod-
eling of the Human Foot and footwear, ABAQUS
Users’ Conference, 2006

[6] Cignoni, P.; Montani, C.; Scopigno, R.: A com-
parison of mesh simplification algorithms,
Comput. & Graphics, 22(1), 1998, 37–54.

[7] Coquillart, S.: Extended Free-Form Deforma-
tion: A Sculpturing Tool for 3D Geometric
Modeling, Computer Graphics, 24(4), August
1990.

[8] Garland, M.; Heckbert, P. S.: Surface Simplifica-
tion Using Quadric Error Metrics, SIGGRAPH ’97
Proc. of the 24th annual conference on CG and
interactive techniques, 209–216, 1997.

[9] Hoppe, H.: Progressive Meshes, ACM SIGGRAPH
1996 Proceedings, 99–108.

[10] Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald,
J.; Stuetzle, W.: Mesh optimization, SIGGRAPH
’93 Proc. of the 20th annual conf. on CG and
interactive techniques, 19–26.

[11] http://www.healthcommunities.com/
foot-anatomy/foot-anatomy-overview.shtml

[12] http://www.parametrichuman.org/
[13] Huang, J.; Chen, L.; Liu, X.; Bao, H.: Efficient

mesh deformation using tetrahedron control
mesh, Computer Aided Geometric Design, 26,
2009, 617–626.

[14] Ju, T.; Schaefer, S.; Warren, J.: Mean Value
Coordinates for Closed Triangular Meshes,
ACM Transactions on Graphics, 24(3), 561–566,
2005.

[15] Kim, S.; Park, C. K.: Parametric Body Model Gen-
eration for Garment Drape Simulation, Fibers
and Polymers, 5(1), 2004, 12–18.

[16] Kobayashi, K. G.; Ootsubo, K.: t-FFD: Free-Form
Deformation by using Triangular Mesh, Pro-
ceedings of the Symposium on Solid Modeling
and Applications, 226–234, 2003.

[17] Lee, S.-H.; Terzopoulos, D.: Heads Up! Biome-
chanical Modeling and Neuromuscular Control
of the Neck, ACM Transactions on Graphics,
25(3), 2006, 1188–1198.

[18] Lee, S.-H.; Terzopoulos, T.: Spline Joints for
Multibody Dynamics, ACM Transactions on
Graphics, 27(3), 2008.

[19] Luximon, A.; Goonetilleke, R. S.: Foot Shape
Modeling, Human Factors; 46(2), Summer 2004.

[20] Luximon, A.; Goonetilleke, R. S.; Zhang, M.: 3D
foot shape generation from 2D information,
Ergonomics, 48(6), 625–641, 2005.

[21] McDonnell, K. T.; Qin, H.: PB-FFD: A Point-based
Technique for Free-Form Deformation, Journal
of Graphics, GPU, and Game tools, 12(3), 25–41,
2007.

[22] Ng-Thow-Hing, V.; Agur, A.; Ball, K.; Fiume,
E.; McKee, N.: Shape reconstruction and sub-
sequent deformation of soleus muscle mod-
els using B-spline solid primitives, Proc. SPIE,
3254, 423–434, 1998.

[23] Ng-Thow-Hing, V.; Shao, W.: Modular Com-
ponents for Detailed Kinematic Modeling of
Joints, International Society of Biomechanics
XIXth Congress, July 6–11, 2003.

[24] Park, H.; Lee K. H.: A new parametric control
method for freeform mesh models, Int. J. Adv.
Manuf. Technol., 27, 313–320, 2005.

[25] Sederberg, T. W.; Parry, s. R.: Free-Form Defor-
mation of Solid Geometric Models, Computer
Graphics, 20(4), Aug. 1986, p. 151–160.

[26] Seo, H.; Magnenat-Thalmann, N.: An Automatic
Modeling of Human Bodies from Sizing Param-
eters, Procs. I3D ’03 Proceedings of the 2003
symposium on Interactive 3D, 19–26.

[27] Tao, K.; Wang, D.; Wang, C.; Wang, X.; Liu, A.;
Nester, C. J.; Howard, D.: An In Vivo Experi-
mental Validation of a Computational Model
of Human Foot, Journal of Bionic Engineering,
6(4), 2009, 387–397.

[28] Terzopoulos, D.: Artificial Life and Biomechani-
cal Simulation of Humans, Digital Human Sym-
posium 2009

[29] Terzopoulos, D.; Waters, K.: Physically-Based
Facial Modeling, Analysis, and Animation, Jour-
nal of Visualization and Computer Animation,
1(2), 1990, 73–80.

[30] Zhou, M.; Wang, M. Y.: Engineered Model Simpli-
fication for Simulation Based Structural Design,
Computer-Aided Design & Applications, 9(1),
2012, 87–94.

Computer-Aided Design & Applications, 11(1), 2013, 90–98, http://dx.doi.org/10.1080/16864360.2013.834147
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

http://www.healthcommunities.com/foot-anatomy/foot-anatomy-overview.shtml
http://www.healthcommunities.com/foot-anatomy/foot-anatomy-overview.shtml
http://www.parametrichuman.org/

	INTRODUCTION
	RELATED RESEARCH
	METHODOLOGY
	EXPERIMENTAL RESULTS
	Chicken Bone Models
	Pig Bone Models

	DISCUSSION AND CONCLUSIONS
	Acknowledgements
	References

