
99

Determining Curves in Convex Hull from a Set of Planar Closed Convex Curves

Vishwanath A.V. and Ramanathan M.

Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India {vishwanathavin,
emry01}@gmail.com

ABSTRACT

Convex hull, a minimum enclosing convex envelope is a popular construction in the field of computa-
tional geometry. Typical convex hull include not just the points in the hull but also the connectivity
between them. However, at times, it may be sufficient to get only points contributing to the hull, which
can then be employed in constructions such as positive α-hull. Algorithms for convex hull primarily
focus on point-set as input. Very few algorithms handle input curves as such, without discretization.
In this paper, algorithm for determining curves that belong to convex hull using minimum spanning
tree (MST) is proposed. The edges of the MST can be considered as a rubber-band connecting all the
curves with zero enclosed area. Valency of nodes in the MST is used to define curve triplets. Maximum
inscribed circle (MIC) for all triplets is identified (and stored in a triplet matrix) and its minimum is
then picked to identify the starting triplet. The triplet is then deleted, updating the triplet matrix. The
deletion of the triplet is akin to leaving out curves in the interior to the convex hull. Updating a triplet
matrix emulates the pushing out the rubber-band (edges of MST) and moving towards the curves in
the convex hull. Repeating the process of deleting a triplet and updating the triplet matrix will even-
tually form pairs of curves that lie in the convex hull. Connectivity information is then derived using
re-ordering. Results are presented that show curves belonging to convex hull.

Keywords: convex hull, freeform curves, minimum spanning tree, maximum inscribed circle.

1. INTRODUCTION

Convex hull [5,17] of a set is defined as a mini-
mal area convex enclosure of the set. Quite a few
algorithms exist for computing the convex hull of a
point set [17], both in R2 as well as in R3. Convex
hull has found numerous applications, ranging from
interference checking [15] to shape matching [4].

Convex hull typically imply that it consists of
not just few elements from the set but also poly-
gon (consisting of both points and connecting
edges). Moreover, in some applications such as pos-
itive α-hull, only points on the convex hull play a
role and hence it may be sufficient to determine
them.

Problems such as convex hull are usually consid-
ered for a set of points, and belong to the filed known
as computational geometry. Fields such as CAD, geo-
metric modelling which deal typically with domains
like closed curves and surfaces are now being used
as input to study such problems. Curved inputs have
been used in various forms. For example, spline-
gons, where the straight edges in the polygons are

replaced by curved edges have been employed (for eg.
[13] studied the art-gallery problem and whereas [20]
computed the medial axis). Single non-convex closed
curve without discontinuities [3] (Voronoi diagram) as
well as a set of such curves (examples, convex hull
[8], minimum enclosing hypershpere [16], minimum
enclosing ellipse [2], smallest enclosing ball of a set of
balls [11]) have also been considered. Few other works
used the input which can be termed as pseudo-circles
- a set of disjoint convex curves having no discontinu-
ities. Computation of Vornoi cell for such input has
been presented in [12], Voronoi diagram for ellipses
in [10], Delaunay graph for ellipses [9], and Visibility
graph [18].

Inputs such as curves also call for different kind
of approach for the same problem for a set of points.
For example, for the computation of convex hull of a
set of curves, tangents and bi-tangents computations
are required [8]. Similarly, computations of visibility
graph [18], shortest path [19] etc. also requires tan-
gents and bi-tangents for a set of curves, which is
not the case for a set of points. The computations

Computer-Aided Design & Applications, 11(1), 2013, 99–106, http://dx.doi.org/10.1080/16864360.2013.834148
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

mailto:\protect \T1\textbraceleft vishwanathavin, emry01\protect \T1\textbraceright @gmail.com

100

are typically much more numerically intensive than
its point-set counterpart.

To the best of the knowledge of the authors, very
few algorithms compute the convex hull for a set of
curves represented exactly (i.e. without approximat-
ing the curves using sample points). An algorithm for
computing the convex hull of a set of freeform curves
has been provided in [8] which was then extended to
freeform surfaces [21].

It has been shown that the boundary of Delau-
nay triangulation results in convex hull. However, it
should be noted that, though the theoretical founda-
tion as well as algorithms for Voronoi diagram of a
set of freeform curves has been well-developed in the
recent past (for example, please refer to [12] for com-
puting Voronoi cell), computing Voronoi diagram for
such input is still a topic of active research. Moreover,
Delaunay triangulation for a set of curves is not well
known (under the condition that the curves are not
discretized into set of points).

A set of disjoint curves is a useful representation
in computing Voronoi diagram, α-hull, convex hull
and in applications such as profile milling. Convex
hull of the set of curves is very useful in applications
such as collision detection when a cutter is used for
profile milling.

One approach to find the convex hull for a set
of curves is to generate set of points on the curves
and then use an existing algorithm. However, this
approach may result in a very coarsely approximated
hull (depending on the sampling on each curve) of
the input curves which might impede the accuracy
of the results (this argument has been shown to be
true for algorithms such as Delaunay graph [10] and
medial axis [20]). A bi-arc based approximation of the
curves has shown to improve efficiency in computing
the convex hull [14], though with an error bound.

Let S be a set of disjoint free-form (parametric)
convex curves (curves without inflection points) with
no straight line portions and having no discontinu-
ities in R2. It is to be noted that as the closed curves
have well defined exterior and interior unlike that
of points. It is assumed that the interior of a closed
curve lies to its left as we travel along the increasing
direction of parametrization.

In this paper, an algorithm for computing the
curves that belong to the convex hull from the set
S, has been presented. The algorithm starts from a
triplet of curves (say C1 (t1), C2 (t2), and C3 (t3) hav-
ing counter clockwise direction of parametrization.
Maximal inscribed circle (MIC), which is the maxi-
mum radius circle that touches all the curves and
not containing any of them is employed. Using con-
straint equations (Equations (1) and (2)) and then the
radius of MIC (RMIC) is first computed for a triplet.
This triplet is then removed and updated. In general,
at each iteration of the algorithm, one curve in left
out from further computation. Constraint equations
to identify where MIC lies is also formulated. It is to
be noted that an algorithm for convex hull of a set of

points need not return the points in the convex hull
in an ordered manner [17]. In this paper, the output
from the algorithm gives the connectivity information
of the curves forming the convex hull of the set.

2. CONSTRAINTS

Definition 1 Bitangent (BT) - It is the line segment
connecting a pair of points that is tangent to the curves
C1(t) and C2(r), forming the end points of the line
segment.

Definition 2 Touchpoint - It is the point on a curve
at which a circle/disc of radius R touches the curve.

2.1. Constraint for Three Curves

Consider three curves C0(t), C1(r), and C2(s). For a
circle to be touching the three curves (in this paper,
it is assumed that each touchpoint are from distinct
curves), the following constraints have to be satisfied;

< C′
0(t), P(x, y) − C0(t) > = 0,

< C′
1(r), P(x, y) − C1(r) > = 0,

< C′
2(s), P(x, y) − C2(s) > = 0,

‖P(x, y) − C0(t)‖ = ‖P(x, y) − C1(r)‖
‖P(x, y) − C1(r)‖ = ‖P(x, y) − C2(s)‖ (1)

where P(x, y) is the center of the disc and ′ denote
the tangent at a point on the curve. First three equa-
tions denote that the circle is tangent to the curves
and the last two denote that touch points are equidis-
tant from the center. Constraints in Equation (1) will
lead to finite set of solutions. A containment check is
used to decide the validity of solution set that then
determines the touchpoints.

2.2. Containment Check: Is a Curve Outside the
Disc of Radius R

The following constraint is used to determine if a
curve C(t) is outside (Equation (2)) the disc

‖D(x, y) − P(x, y)‖ >= R (2)

where D(x, y) is the minimum distance point on the
curve C(t) from the center P(x, y) of a circle with radius
R.

3. ALGORITHM DETAILS

3.1. MST of a Set of Curves

As the set of curves are disjoint, MST is used to make
a connectivity between them. Moreover, the edges in
the MST act as a part of a rubber-band that enclose
the curves. MST also guarantees that no other edge

Computer-Aided Design & Applications, 11(1), 2013, 99–106, http://dx.doi.org/10.1080/16864360.2013.834148
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

101

Fig. 1: MST for a set of curves and dilation of edges: (a) Initial set of curves, (b) MST of the set, (c) Edges e and f
replace to form g.

obstruct the edge between two curves. Establishing
connectivity through MST also determines the start-
ing set of triplets of curves. The minimal spanning
tree (MST) of a set of curves is defined as follows: each
curve corresponds to a node and the minimum dis-
tance line joining two curves corresponds to an edge.
To determine the minimum distance line between
two curves, it can be noted that they have to be
antipodal to both curves [16]. For two planar closed
C1-continuous curves C1(t) and C2(r), the antipodal
constraints are:

< C′
1(t), C1(t) − (C1(t) + C2(r))/2 >= 0,

< C′
2(r), C2(r) − (C1(t) + C2(r))/2 >= 0, (3)

where C′
1(t) and C′

2(r) denote the tangent of the curves
at the respective parameters t and r. Equation (3) will
generate all the sets of antipodal points, the least of
which forms an edge of MST. Prim’s algorithm is used
to generate the MST for a set of curves (Algorithm 1).
Figure 1(b) shows the MST for the set of curves given
in Figure 1(a).

Algorithm 1 MST (S = C1, C2, . . . , Cn)

Add curve C1 to a set C.
while C �= S do

for Each curve Ci belonging to C do
Find antipodal line to every curve Cj in S not
belonging to C

end for
Find min line ML and add Sj and ML to C.

end while
return(c)

3.2. Forming Triplets using MST

For the MST of a set of curves shown in Figure 1(b), the
adjacent edges (e and f) are then dilated to form a new
edge (g) as shown in Figure 1(c). However each time
the dilation is performed, a portion of the curves is
left from further computation. In the case of Figure 2,
curve C2 has edges to curves C1 and C3 in the MST
which are replaced by a new edge, a portion of curve
C2 is omitted from further computation whereas the
other portion is still considered. Thus the curves have
to be divided into segments to denote the portions

(a) (b)

Fig. 2: Segmenting Curves: (a) Minimum area enclo-
sure, (b) Newly created edge.

of the curve. In the current case, the curve C2 is
called the ‘central’ curve. The central curve is split
into two segments using the antipodal points. Once
the curve is split into two segments, it is denoted by
the triplet which has the included angle (with respect
to the central curve) in the counter clockwise sense.
For example (Figure 2(b)), the curve C2 is split into
C21 (portion of C2 from the point a to b) and C22 (por-
tion of C2 from b to a). The corresponding triplets
are represented as [C1 C2 C3] and [C3 C2 C1] respec-
tively. In the case of curve C3 in Figure 2(a), the entire
curve is stored as a single segment and denoted as
[C2 C3 C2].

3.3. Triplet Matrix

For a set of curves as shown in Figure 1(a), the triplets
of each of the curves form a triplet matrix (TM). The
valency of a curve is determined by the number of
MST edges attached to it. A curve in a MST is split
into segments equal to the valency of the curve. For
each such segment obtained, triplets are generated
as described in section 3.2. In a similar way, all the
triplets identified are stored in TM. Table 1 shows
the triplet matrix of each central curve at the start
using the MST (Figure 1(b)). Algorithm 2 explains the
formation of TM from MST.

3.4. Updating Triplet Matrix

Suppose a triplet be picked from the triplet matrix
(say [C7 C1 C4]). Though the triplet denotes the seg-
ment of the curve C1, it should be noted that from
the triplet [C7 C1 C4], pairs of curves [C7 C1] and
[C1 C4] may be part of another triplet in TM (see

Computer-Aided Design & Applications, 11(1), 2013, 99–106, http://dx.doi.org/10.1080/16864360.2013.834148
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

102

C1 C2 C3 C4 C5 C6 C7

[C3 C1 C7] [C1 C2 C1] [C1 C3 C1] [C6 C4 C1] [C7 C5 C7] [C4 C6 C4] [C5 C7 C1]
[C7 C1 C4] [C1 C4 C6] [C1 C7 C5]
[C4 C1 C2]
[C2 C1 C3]

Tab. 1: Starting Triplet Matrix for convex hull.

C1 C2 C3 C4 C5 C6 C7

[C3 C1 C7] [C1 C2 C1] [C1 C3 C1] [C6 C4 C1] [C7 C5 C7] [C4 C6 C4] [C5 C7 C1]
[C4 C1 C2] [C7 C4 C6] [C1 C7 C5]
[C2 C1 C3]

Tab. 2: Updated Triplet Matrix convex-hull.

Algorithm 2 Triplet Matrix (MST)

for Each curve Ci ∈ MST(S) do
if Valency(Ci) ≥ 2 then

for Each pair of adjacent MST edges Lm and Ln
connecting Ci to Cj and Ck respectively do

The segment of the curve between Lm and Ln
is denoted as [Cj Ci Ck]
Add [Cj Ci Ck] to triplet matrix TM
corresponding to Ci .

end for
else

Add [Cj Ci Cj] to triplet matrix TM
corresponding to Ci .

end if
end for
return TM

Table 1). Thus, when concavities are removed by
deleting triplets, other dependent triplets have to be
updated. The triplet matrix is updated in the follow-
ing way: we check to see if the pair [C7 C1] exists as
a part of any other triplet under C7 and replace C1
by C4. Similarly we check for [C1 C4] under C4 and
replace C1 by C7 as shown in Table 2. At each itera-
tion, one triplet gets eliminated from the matrix and
two triplets are updated.

Effect of the changes in the Table 2, edges in the
initial MST now dilates as shown in Figure 1(c) (newly
formed edge is shown in grey). The dilation of the
initial MST is a result of deletion of the triplet or in
other words the segment of the curve from the triplet
matrix. This is akin to pushing out the rubber-band
formed by MST towards the exterior (this can also
be thought of eliminating right oriented triplets until
only left oriented triplets remain, which will then cor-
respond to the convex chain). Also, the segment of the
curve will play no role in the further computations.
Algorithm 3 describes the procedure for updating the
triplet matrix.

Algorithm 3 Update TM(TM , [CiCjCk])

if The pair [CiCj] is present in the triplets under [Ci]
then

Replace the triplet [Cn Ci Cj] by [Cn Ci Ck]
end if
if The pair [Cj Ck] is present in the triplets under
[Ck] then

Replace the triplet [Cj Ck Cm] by [Ci Ck Cm]
end if
Delete [CiCjCk] from TM.

3.5. Starting Triplet

Section 3.4 described how to update the triplet. How-
ever, algorithm for updating a triplet matrix typically
needs a starting triplet. At the start of the updat-
ing step of the algorithm in each stage till the triplet
matrix becomes empty and pairs are formed, the max-
imum inscribed circle is found for all triplets in the
current triplet matrix. The minimum radius out of
the maximum inscribed circle and its corresponding
triplet is chosen as the starting triplet. Also, if no cir-
cle is available from the triplets in the triplet matrix,
then it means that all the curves in the triplets are a
part of the convex hull. Union of all the pairs of curves
will form the convex hull. The reason for picking the
triplet with smallest radius of MIC is very similar to
the empty circumcircle of a Delaunay triangulation.
Since our aim is to push the rubber band out, the
smallest radius MIC is picked.

4. ILLUSTRATION OF THE ALGORITHM

The pseudo-code to compute the curves in the con-
vex hull is presented in Algorithm 4. The algorithm
is illustrated for the set of curves shown in Figure 1.
Table 3 to Table 8 explain the various deletions and
updating that happen in the triplet matrix at every
step. In each table, the triplet to be deleted is shown

Computer-Aided Design & Applications, 11(1), 2013, 99–106, http://dx.doi.org/10.1080/16864360.2013.834148
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

103

C1 C2 C3 C4 C5 C6 C7

[C4 C1 C2] [C1 C2 C1] [C1 C3 C7] [C6 C4 C1] [C7 C5 C7] [C4 C6 C4] [C5 C7 C4]
[C2 C1 C3] [C7 C4 C6] [C3 C7 C5]

Tab. 3: Updated Triplet Matrix cvx-hull-2.

C1 C2 C3 C4 C5 C6 C7

[C6 C1 C2] [C1 C2 C1] [C1 C3 C7] [C7 C4 C6] [C7 C5 C7] [C4 C6 C1] [C5 C7 C4]
[C2 C1 C3] [C3 C7 C5]

Tab. 4: Updated Triplet Matrix cvx-hull-3.

C1 C2 C3 C4 C5 C6 C7

[C6 C1 C2] [C1 C2 C1] [C1 C3 C5] [C7 C4 C6] [C3 C5 C7] [C4 C6 C1] [C5 C7 C4]
[C2 C1 C3]

Tab. 5: Updated Triplet Matrix cvx-hull-4.

C1 C2 C3 C4 C5 C6 C7

[C2 C1 C3] [C6 C2 C1] [C1 C3 C5] [C7 C4 C6] [C3 C5 C7] [C4 C6 C2] [C5 C7 C4]

Tab. 6: Updated Triplet Matrix cvx-hull-5.

C2 C3 C4 C5 C6 C7

[C6 C2 C3] [C2 C3 C5] [C7 C4 C6] [C3 C5 C7] [C4 C6 C2] [C5 C7 C4]

Tab. 7: Updated Triplet Matrix cvx-hull-6.

C2 C3 C4 C5 C6

[C6 C2 C3] [C2 C3 C5] [C5 C4 C6] [C3 C5 C4] [C4 C6 C2]

Tab. 8: Updated Triplet Matrix cvx-hull-7.

in red color and the triplets to be updated are shown
in blue color. At each stage, the edges connecting the
curves (the rubber-bands) gets pushed out and at the
last stage, the edge connectivity will give the curves
that will be on the convex hull. Figures 3(a) to 3(f)
indicate the process of formation of the curves in
the convex hull. Since no more MIC is possible from
the triplets in Table 8, the triplets are split pair-wise
and are added to the pair matrix (PM) which gives the
curves in the convex hull.

5. RESULTS AND DISCUSSIONS

Implementation of the algorithm (Algorithm 4) has
been carried out using IRIT [6], a solid modeling ker-
nel. The constraint equations were solved using the

geometric constraint solver [7] in IRIT. Figure 3(f)
shows the result for the curves in Figure 1(b), which
shows the MST of the set. Figure 4 shows the set of
curves with MST in the top row with corresponding
output (curves in the convex hull in the bottom row).
Fig. 4(e) shows the results for a human modeled as set
of closed curves and its convex curves are in Fig. 4(j).

5.1. Complexity of the Algorithm

Using Algorithm 4, the complexity can be derived
as follows: MST computation starts from the antipo-
dal ones, which is a complete graph and takes O(n2).
Hence, the MST computation of the prim’s algorithm
will be of O(n2 logn) [1]. Assume constraint equations
are performed in constant time O(1). If there are e

Computer-Aided Design & Applications, 11(1), 2013, 99–106, http://dx.doi.org/10.1080/16864360.2013.834148
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

104

Fig. 3: Dilation of the MST edges through the various stages of the algorithm.

Fig. 4: Test results showing MST (top) and curves in convex hull (bottom).

Algorithm 4 Curves In ConvexHull(S)

TM = nil
PM = nil.
MST = MST(S).
TM = TripletMatrix(MST).
while TM �= NULL do

for Each element in TM do
Find MIC (Maximum inscribed circle) using
Equations (1) and (2)

end for
if Number of MIC �= 0 then

Circmin = Minimum (MIC).
Let [Ci Cj Ck] be the triplet corresponding
to CircMin
Call UpdateTM(TM,[Ci Cj Ck])

else
for Each Element Tx in TM do

Split Tx = [Ci Cj Ck] into [Ci Cj] and [Cj Ck]
and

add to PM
delete Tx

end for
end if

end while
for Every pair [Ci Cj] in PM do

Merge the pairs to get curves in the convex hull
end for

edges in the MST, in the worst case, the number of
triplets is 2e. At the most, the updating of the triplet
matrix has to be carried out e times. This implies that
that Algorithm 4 runs in O(n2 logn) in the worst case.

5.2. Correctness Proof of the Algorithm

A convexity exists between three curves C1, C2 and C3
only if a straight line can be drawn between curves C1
and C3 which does not intersect curve C2 (Figure 5(a)).

Lemma 1 Maximum inscribed circle exists between
three curves C1, C2 and C3 exist if and only if the
convexity exists.

Proof Let us assume that there exists a MIC between
curves C1, C2 and C3 which does not have convexity
(Figure 5(b)). Maximum inscribed circle between three
curves is always tangential to the curves. A general
property of circles is that any point in the circum-
ference of a circle should be visible from any other
point. In other words there must be some point in
each of the three curves from which the other two
curves are visible. In Figure 5(b) there exist no straight
line connecting curves C1 and C3 that does not inter-
sect C2. This means that no MIC is possible between
curves where there is no convexity. If there exists two
points on C1 and C3 (say a and c), consider the inter-
section point of the normals from the two points (let
the point be I). From I, circles can be drawn using I as
center and Ia and Ib as respective radii. If at least one
of the circles cut the curve C2, then it can be shrunk
to find mic, since the curves are c1-continuous and
hence the normal field is also continuous (if both cir-
cles do not cut c2, then one can find a pair of different
set of points and then use a similar argument). In our
algorithm, each time the triplet matrix is updated, the
rubber band enclosure surrounding the set of curves
reduces in length. In actual terms, two edges of a
triangle are replaced by a single edge as shown in

Computer-Aided Design & Applications, 11(1), 2013, 99–106, http://dx.doi.org/10.1080/16864360.2013.834148
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

105

Fig. 5: Concavity and convexity between three curves: (a) Bi-tangent line L1 does not intersect curve C2 (b) No
Line exists between c1 and c3 that does not intersect C2.

figure 1(c). Since the algorithm is terminated at a stage
when there are no more triplets with concavity, it is
concluded that the remaining set of curves will be in
the convex hull of the set. �

5.3. Comparison

Though there are numerous algorithms to compute
the points on a convex hull from a set of points,
to the best of the knowledge of the author, only [8]
handle curves without approximating them (it should
be noted our algorithm does not actually compute
the hull). Algorithm in [8] uses point-curve tangents
and bi-tangents, formulation constraint equations to
obtain them. They are then processed for transver-
sal intersection with a curve, either to be part of
the convex hull or reject them. Complexity of the
algorithm appears to be O(d2), where d is the num-
ber of bitangents. The number of bitangents used in
[8] to compute convex hull seems to be quite high as
it involves all curves in the set. Using the algorithm in
this paper, the number can be substantially reduced
as we know which curves contribute to the convex
hull and also the connectivity, essentially requiring
4n bitangents, where n is the number of curves in the
convex hull.

It is also to be noted the algorithms such as gift-
wrapping can be extended to the curve domain as
well. In any case, it appears that the computation of
bitangent is not avoidable along with the predicate
computation of whether the curve is right or left of
a bitangent. Curves in the convex hull presented here
will reduce the number of curves that have to be used
in the computation of convex hull thereby reducing
the number of bitangents and a possible elimination
of the predicate tests. The algorithm in [14] has been
shown to improve the efficiency of the computation
of the convex hull. However, the algorithm requires a
pre-processing step that approximates the curves into
a set of bi-arcs with an error bound. Moreover, this
kind of approximation does not seem to generalize

for higher dimensions such as in three dimensions,
where as the constraints proposed in this paper are
extendable to higher dimensions.

5.4. Limitation

Though it has been assumed that the disc touches
only one point on a curve, computing multi-touching
point within the same curve is still possible. For exam-
ple, in the case of two points lying on the same curve,
the constraint equations can be solved considering
C1 = C2. However, as the same curve can play a role
in multiple touchpoints, maintaining and updating
triplet matrix has to be appropriately done.

6. CONCLUSION

In this paper, an algorithm for determining curves
that belong to the convex hull from a set of planar
closed disjoint curves based on MST computation.
It has been shown that the curves in convex hull
can be obtained without geometrical structures such
as Voronoi diagram or Delaunay triangulation, that
are traditionally proven to be difficult to compute
for curves. The curves are assumed to be simply-
connected convex curves, having no straight line por-
tions and no discontinuities. Results indicate that the
algorithm is very amenable for implementation. Pos-
sible future work can include GPU-based computation
and also handling of intersecting curves.

REFERENCES

[1] Aho, A. V.; Hopcroft, J. E.; Ullman J. D.: Data
Structures and Algorithms. Addison-Wesley,
1983.

[2] Albocher, D.; Elber, G.: On the computation of
the minimal ellipse enclosing a set of planar
curves, In Shape Modeling International, 2009,
185–192. 10.1109/SMI.2009.5170147

Computer-Aided Design & Applications, 11(1), 2013, 99–106, http://dx.doi.org/10.1080/16864360.2013.834148
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

106

[3] Chou, J. J.: Voronoi diagrams for planar shapes,
IEEE Comput. Graph. Appl., 15(2), 1995, 52–59.
10.1109/38.365006

[4] Corney, J.; Rea, H.; Clark, D.; Pritchard, J.;
Breaks, M.; MacLeod, R.: Coarse filters for shape
matching, IEEE Computer Graphics and Appli-
cations, 22, 2002, 65–74. 10.1109/MCG.2002.
999789

[5] De Berg, M.; Cheong, O.; van Kreveld, M.; Over-
mars, M.: Computational geometry: algorithms
and applications, Springer, 2008.

[6] Elber, G.: IRIT 10.0 User’s Manual, The
Technion—Israel Institute of Technology, Haifa,
Israel, 2009.

[7] Elber, G.; Kim, M.-S.: Geometric constraint
solver using multivariate rational spline func-
tions, In SMA ’01: Proceedings of the sixth
ACM symposium on Solid modeling and appli-
cations, 1–10, New York, NY, USA, 2001. ACM.
10.1145/376957.376958

[8] Elber, G.; Kim, M.-S.; Heo, H.-S.: The convex hull
of rational plane curves, Graph. Models, 63(3),
2001, 151–162. http://dx.doi.org/10.1006/
gmod.2001.0546

[9] Emiris, I. Z.; Tsigaridas, E. P.; Tzoumas, G.
M.: Exact Delaunay graph of smooth convex
pseudo-circles: general predicates, and imple-
mentation for ellipses. In 2009 SIAM/ACM Joint
Conference on Geometric and Physical Mod-
eling, SPM ’09, 211–222, New York, NY, USA,
2009. ACM. 10.1145/1629255.1629282

[10] Emiris, I. Z.; Tzoumas, G. M.: A real-time and
exact implementation of the predicates for
the Voronoi diagram of parametric ellipses, In
Proceedings of the 2007 ACM symposium on
Solid and physical modeling, SPM ’07, 133–
142, New York, NY, USA, 2007. ACM. 10.1145/
1236246.1236266

[11] Hanniel, I.; Muthuganapathy, R.; Elber, G.; Kim,
M.-S.: Precise Voronoi cell extraction of free-
form rational planar closed curves. In SPM
’05: Proceedings of the 2005 ACM sympo-
sium on Solid and physical modeling, 51–59,
New York, NY, USA, 2005. ACM. 10.1145/
1060244.1060251

[12] Fischer, K.; Gartner, B.: The smallest enclosing
ball of balls: combinatorial structure and algo-
rithms, In Proceedings of the nineteenth annual

symposium on Computational geometry, SCG
’03, 292–301, New York, NY, USA, 2003. ACM.
10.1142/S0218195904001500

[13] Karavelas, M. I.: Guarding curvilinear art gal-
leries with edge or mobile guards, In Pro-
ceedings of the 2008 ACM symposium on
Solid and physical modeling, SPM ’08, 339–
345, New York, NY, USA, 2008. ACM. 10.1145/
1364901.1364950

[14] Kim, Y.-J.; Lee, J.; Kim, M.-S.; Elber, G.: Efficient
convex hull computation for planar freeform
curves, Computers & Graphics, 35(3), 2011,
698–705, Shape Modeling International (SMI)
Conference 2011. http://dx.doi.org/10.1016/
j.cag.2011.03.028

[15] Lee, Y.-S.; Chang, T.-C.: 2-phase approach to
global tool interference avoidance in 5-axis
machining, Computer-Aided Design, 27(10),
1995, 715–729. http://dx.doi.org/10.1016/
0010-4485%2894%2900021-5

[16] Muthuganapathy, R.; Elber, G.; Barequet, G.;
Kim, M.-S.: Computing the minimum enclosing
sphere of free-form hypersurfaces in arbitrary
dimensions, Comput. Aided Des., 43, 2011,
247–257. 10.1016/j.cad.2010.12.007

[17] O’Rourke, J. Computational Geometry in C,
Cambridge University Press, New York, NY,
USA, 1998.

[18] Pocchiola, M.; Vegter, G.: Computing the vis-
ibility graph via pseudo-triangulations, In
Proceedings of the eleventh annual sympo-
sium on Computational geometry, SCG ’95,
248–257, New York, NY, USA, 1995. ACM.
10.1145/220279.220306

[19] Ram, S. B.; Ramanathan, M.: The shortest
path in a simply-connected domain having
a curved boundary, Computer-Aided Design,
43(8), 2011, 923–933. http://dx.doi.org/10.
1016/j.cad.2011.03.007

[20] Ramanathan, M.; Gurumoorthy, B.: Construct-
ing medial axis transform of planar domains
with curved boundaries, Computer-Aided
Design, 35(7), 2003, 619–632. http://dx.doi.
org/10.1016/S0010-4485%2802%2900085-4

[21] Seong, J.-K.; Elber, G.; Johnstone, J. K.; Kim
M.-S.: The convex hull of freeform surfaces,
Computing, 72(1–2), 2004, 171–183. 10.1007/
s00607-003-0055-x

Computer-Aided Design & Applications, 11(1), 2013, 99–106, http://dx.doi.org/10.1080/16864360.2013.834148
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1006/gmod.2001.0546
http://dx.doi.org/10.1006/gmod.2001.0546
http://dx.doi.org/10.1016/j.cag.2011.03.028
http://dx.doi.org/10.1016/j.cag.2011.03.028
http://dx.doi.org/10.1016/0010-4485{%}2894{%}2900021-5
http://dx.doi.org/10.1016/0010-4485{%}2894{%}2900021-5
http://dx.doi.org/10.1016/j.cad.2011.03.007
http://dx.doi.org/10.1016/j.cad.2011.03.007
http://dx.doi.org/10.1016/S0010-4485{%}2802{%}2900085-4
http://dx.doi.org/10.1016/S0010-4485{%}2802{%}2900085-4

	INTRODUCTION
	CONSTRAINTS
	Constraint for Three Curves
	Containment Check: Is a Curve Outside the Disc of Radius R

	ALGORITHM DETAILS
	MST of a Set of Curves
	Forming Triplets using MST
	Triplet Matrix
	Updating Triplet Matrix
	Starting Triplet

	ILLUSTRATION OF THE ALGORITHM
	RESULTS AND DISCUSSIONS
	Complexity of the Algorithm
	Correctness Proof of the Algorithm
	Comparison
	Limitation

	CONCLUSION
	References

