
141

Automated Conflict Avoidance in Multi-user CAD

Ammon I. Hepworth1, Kevin Tew2, Thomas Nysetvold3, Mark Bennett4 and C. Greg Jensen5

1Brigham Young University, ammon.hepworth@byu.edu
2Brigham Young University, kevin_tew@byu.edu

3Brigham Young University, tom.nysetvold@gmail.com
4Brigham Young University, marktb1@gmail.com

5Brigham Young University, cjensen@byu.edu

ABSTRACT

The NSF Center for e-Design, Brigham Young University (BYU) site has re-architected Computer Aided
Design (CAD) tools enabling multiple users to concurrently create, modify and view the same CAD part
or assembly. This technology allows engineers, designers and manufacturing personnel to simultane-
ously contribute to the design of a part or assembly in real time, enabling parallel work environments
within the CAD system. Such systems are only as robust as their methods for managing conflicts (i.e.
simultaneous edits of the same feature by multiple users). A heavy-handed conflict prevention would
limit collaborative freedom. This paper discusses an automated feature reservation method which
prevents multiple users from simultaneously editing the same feature. The method is implemented
in a commercial CAD system. Results show that this methodology prevents data inconsistency that
results from feature/self conflicts. This system prevents CAD modeling conflicts, while providing an
agile user experience within the collaborative environment.

Keywords: collaborative design, concurrent engineering, multi-user CAD, CAE.

1. INTRODUCTION

Today’s commercial Computer Aided Design (CAD)
systems are single user modeling and design environ-
ments. This is evidenced, within any engineering firm,
by the number of designers, modelers, engineers, etc.
huddled around a single workstation attempting to
make needed changes during a critical moment in a
design cycle. Or, watching as one individual spends
days, weeks and months to build a complex assem-
bly model from hundreds, thousands or millions of
CAD parts. In the post-World War II era we had
teams of engineers working simultaneously on the
same large J-size sheet of mylar or vellum, completing
the drawings in a fraction of the time it would take
a single engineer. However, today only one drafts-
man can work inside the CAD drafting environment
regardless of the size of drawing sheet. The days of
concurrent parallel workflows have given way to the
single user serial CAD workflow. The National Sci-
ence Foundation (NSF) Center for e-Design, Brigham
Young University (BYU) site is currently developing
multi-user CAD tools which enable teams of users
to simultaneously create, modify and view the same

CAD part. This effort leverages commercial CAD sys-
tem APIs to build plug-ins which extend existing
CAD tools functionality to become multi-user. This
allows teams of users to concurrently contribute to
the design of a part in real time, enhancing collabora-
tion and enabling a parallel work environment within
the CAD system [4,14,16].

Interferences that occur when multiple users edit
the same part or assembly are one of the central
problems encountered in the development of simul-
taneous multi-user collaborative CAD. Varying simul-
taneous edits of the same or dependent geometric
parameters may cause conflicts to arise within the
model. When various users simultaneously input dif-
ferent values for the same entity, the distributed
multi-user CAD system becomes inconsistent. For
example, simultaneously editing the same height
value, without conflict management, can result in a
value of 10 mm on one user’s workstation and a
conflicting value of 2 mm on a second user’s work-
station. A conflict management system must be in
place to ensure data consistency between distributed
users.

Computer-Aided Design & Applications, 11(2), 2013, 141–152, http://dx.doi.org/10.1080/16864360.2014.846070
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

mailto:ammon.hepworth@byu.edu
mailto:kevin{_}tew@byu.edu
mailto:tom.nysetvold@gmail.com
mailto:marktb1@gmail.com
mailto:cjensen@byu.edu


142

The current literature describes two major appro-
aches in overcoming the data conflict conundrum:
optimistic and pessimistic. The optimistic approach
assumes that conflicts are infrequent and are resolved
only after they occur. It accepts data operations
that are submitted asynchronously and uses algo-
rithms to merge the data, detecting conflicts that
occur [17]. Some examples of existing optimistic col-
laborative software systems are Google docs, CoWord
and CoPowerPoint. Many of these systems utilize a
technique called operational transform to keep data
concurrent [8,19]. The optimistic approach can cause
additional work for the user when they are required to
manually resolve conflicts. It can also require redun-
dant work if one completed operation is rejected in
favor of another. The optimistic approach is often
not optimal because it introduces overhead into the
design process.

The pessimistic approach forces serialization of
concurrent activities so conflicts cannot occur. It uses
techniques to block concurrent access to certain data
so that data stays consistent between users [14,17].
Pessimistic systems implement various levels of data
blocking, ranging from locking small sections of the
model, to a complete lock of the entire model allow-
ing only a single user to edit that model at a time [14].
Pessimistic approaches limit user agility (the ability
of the user to respond to change) by restricting users
from contributing where and when they are needed.

A balance between the extremes of the pessimistic
and optimistic approaches has the potential to mini-
mize overhead and maximize concurrent user agility.
This paper presents a hybrid approach between the
extremes of purely optimistic or pessimistic conflict
management. To avoid conflicts that would require
manual resolution, the hybrid approach automati-
cally places restrictions on model access (i.e. fea-
ture locks). It communicates user’s design intent and
avoids potential modeling conflicts through the use of
intelligent visual cues and selection limitations. While
this approach applies some restrictions and warnings
to avoid manual merging of conflicts, they are set to
a minimum to preserve an agile and uninterrupted
multi-user experience. Fig. 1 compares the hybrid
approach with the extreme optimistic and pessimistic
approaches.

2. BACKGROUND

Several methods exist for managing conflicts and data
consistency in collaborative design environments. For
organizational purposes, the conflict management
methods are divided into the following categories:
turn based, model decomposition, on demand lock-
ing, and rules based. They are listed roughly in order
from the most pessimistic to most optimistic. Finally,
we summarize what is lacking in these methods for an
agile and uninterrupted multi-user design experience
within a parametric, feature based CAD system.

Fig. 1: Comparison to extreme optimistic and pes-
simistic approaches.

2.1. Turn Based

Chan presents methods using a token based system
allowing only the user who holds the token to edit the
part while the other users are just observers [6]. Li uti-
lizes a similar method that uses a turn based system
for specific user functionality (i.e. viewing, deleting
and adding to the part) [10]. These methods ensure
that users do not make conflicting changes to the
model since only one user is allowed to edit the part
at a time. However, it disallows a fully parallel design
workflow, causing one user to wait while another is
modeling.

Bidarra et al. created a collaborative design sys-
tem called WebSpiff where they assume users will
coordinate their operations in a collaborative envi-
ronment over phone or chat. To assist in this effort
they implemented a traffic light system which visu-
ally warns users when another user is performing an
operation but does not strictly lock users from mak-
ing changes. Essentially, this softly reserves the entire
part, warning other users about making contributions
while another user is performing an operation. Their
paper only discusses one type of conflict, which is
where a user tries to edit a feature that no longer
exists and mention that a user is notified when this
occurs [2]. This method has some advantages over
Chan and Li’s methods because there is not a strict
part lock, but they do not present enough informa-
tion to determine whether the conflict management
methods are sufficient for complex feature based CAD
modeling.

2.2. Model Decomposition

Cera et al. developed methods to hide specific design
data from certain users’ view in a collaborative design
environment based on each user’s role. The user role
controls the access of users to view certain geome-
try through the partitioning of 3D models. Within a
partition, multi-resolution techniques are employed
to obscure the geometry in that region so that it

Computer-Aided Design & Applications, 11(2), 2013, 141–152, http://dx.doi.org/10.1080/16864360.2014.846070
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



143

remains secure from users without the appropriate
level of access [5]. Marshall presents a method of
model decomposition within a collaborative CAD sys-
tem that sets boundaries within a part before model-
ing is performed. Her method enables administrative
controls to divide a model into regions or tasks. These
divisions limit a user’s access to other regions or
tasks [14]. The pre-work required to decompose a
model takes time away from the actual design work.
The partitions of model decomposition reduce the
agility of the design process and inhibit the flexibility
of a parallel design workflow.

2.3. On Demand Locking

Bu et al. presented an approach for object locking
within a collaborative graphics design environment
to avoid conflicts in user’s design intent, also known
as semantic preservation. Their methods of locking
both regions and objects on demand, giving the user
an opportunity to attach design intent data or block
users from making specific design changes within the
region or object. They also presented a method to
overcome conflicts in semantic locking operations.
They successfully implemented these methods in a
collaborative graphics design system called CoDe-
sign [3,10]. Moncur also presented a method for on
demand feature reservation within a commercial 3D
CAD system. His method allows users to reserve a
feature or group of features for a specified dura-
tion of time so that other collaborative users have
limited or no access to the feature(s) [14]. These meth-
ods allow for data consistency in a manual way by
requiring users to intelligently reserve features as
necessary. However, his method requires users to
predict when conflicts will occur, which adds some
additional overhead to the design process.

2.4. Rules Based

Shen et al. introduce a collaborative drafting tool to
aid in mechanical engineering design education. This
tool handles conflicts by implementing authorization
rules and a team manager. The authorization rules
allow other users to modify one designer’s entities
only when they are authorized to do so. In addi-
tion, a user who makes changes to entities that he
owns will automatically override any changes made
by other users. The team manager acts as a team coor-
dinator and mediator between users; however, he acts
as a common designer when making changes to the
model [18].

Chen et al. present their collaborative assem-
bly modeling system called e-Assembly. This system
allows multiple users to jointly build and constrain
an assembly model in real time, based on coordina-
tion rules to help avoid conflicts. The rules govern
who works on which link entity and allow only one

collaborator to work on the same atomic component
or link entity [7].

Lin et al. acknowledge that if operations in a multi-
user collaborative environment are competing with
each other, one of the operations has to be removed.
They suggest that a method which involves elimi-
nating user’s operations through blocking/aborting is
less desirable than a masking method because when
such a method is employed, these operations are
lost to the system and cannot be brought back when
necessary. The masking method, on the other hand,
maintains both resulting variations of the model when
conflicts occur, but only displays the version that
has the highest priority, thus masking all other varia-
tions. Since all variations are stored internally, if the
operation with the highest priority is removed, the
system displays the operation with the next highest
priority. This masking strategy was implemented in
Collaborative Genetic Software Engineering to man-
age tree structure constraints. They suggest that the
masking method may also be applied to CAD, spread-
sheets, graphical interface toolkits, and simulation
systems [12].

Agustina et al. suggest that an optimistic approach
using operational transform is not possible for a CAD
system due to the relational complexity of the fea-
tures in a CAD part; however, research by Jing et
al. has shown that this may be feasible [1]. They
utilize operational transforms to merge multiple com-
patible user operations on uniquely named topology,
allowing for a less constrained multi-user interac-
tion within a collaborative CAD system. They do
not however, discuss methods for managing con-
flicts on multiple child features referencing the same
topology or handling conflicts between incompatible
features [10].

2.5. Background Summary

Turn based conflict management systems are severely
limiting for a parallel design workflow because only
one user can edit the part at a time. Model decompo-
sition takes time away from the actual design because
of the necessary pre-work to divide the model. It
reduces the agility of the design process by forcing
users to work in a confined area. On demand feature
locking methods require users to predict when con-
flicts will occur. Future rules-based approaches have
the potential to provide the least overhead and most
agility for a collaborative CAD environment.

3. CONFLICT MANAGEMENT METHODS

We present an automated, rule-based conflict manage-
ment system for a multi-user CAD environment. This
system allows multiple users to edit the same part
simultaneously, without dividing the part into single
user regions or manually locking features.

Computer-Aided Design & Applications, 11(2), 2013, 141–152, http://dx.doi.org/10.1080/16864360.2014.846070
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



144

3.1. Types of Conflicts in Feature Based CAD

There are two main types of conflicts in feature
based CAD: syntactic and semantic conflicts. Syntactic
conflicts result from multi-user operations which
cause incompatible data to coexist and lead to errors
in the CAD program. Semantic conflicts originate
from users misunderstanding each other’s design
intent which lead to unexpected design results. Within
a parametric feature based CAD system there are var-
ious types of potential syntactic conflicts which occur
in a part. We have classified syntactic conflicts into
the following categories: feature/self, parent/child
and child/child.

The feature/self conflict occurs when multiple
users simultaneously edit the same feature or feature
parameters. An example of this is when two users try
to edit the same extrude feature and one user inputs
3 mm for the extrude length while the other inputs
5 mm. Since the value for extrude length cannot be
both 3 mm and 5 mm, a conflict will occur (see Fig. 2).

Fig. 2: Feature/self conflict example.

Fig. 3: Parent/child conflict example.

The parent/child conflict occurs between a parent fea-
ture and a child feature which directly depends on
that parent. This happens when a simultaneous cre-
ation, edit or deletion of a parent or child causes the
other to fail. For example, this occurs if one user
creates a hole in an extrusion while a second user
changes the extrusion length. Since the hole and the

extrusion no longer intersect, this renders the hole
invalid (see Fig. 3).

The child/child conflict is between two features
which reference the same parent geometry. An exam-
ple of this would be if one user creates a chamfer
on an edge while a second user creates a fillet on
the same edge. Since these two features reference the
same edge and the edge disappears after one of these
operations is performed, a conflict results (see Fig. 4).
If these various types of syntactic conflicts are not
appropriately managed, they will lead to errors within
the multi-user CAD system.

In addition to syntactic conflicts, semantic con-
flicts are also important to manage. These are con-
flicts which originate from users misunderstanding
each other’s design intent, which result in operations
which cause unintended design results. For example,
two designers put a hole on a face at slightly dif-
ferent locations, causing the holes to overlap each
other (see Fig. 5). This would not cause a syntac-
tic violation because these are both valid operations
that can coexist. However, this causes unintended
results in the model and thus violates each of the
users’ design intent. Semantic conflicts reflect lack
of communication between users, not a CAD system
architectural flaw. However, managing these conflicts
will reduce redundancy and overhead in the parallel
design process.

Fig. 5: Semantic conflict example.

In this paper, we focus on the first type of syntactic
conflicts, feature/self conflicts, and present a system
capable of automatically preventing them. This sys-
tem also includes methods to communicate feature
reservations between users. Visually communicating
work areas leads to an overall reduction in semantic
conflicts.

Fig. 4: Child/child conflict example.

Computer-Aided Design & Applications, 11(2), 2013, 141–152, http://dx.doi.org/10.1080/16864360.2014.846070
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



145

3.2. Multi-user CAD Architecture

In order to help the reader understand the con-
flict management methods discussed herein, we first
present the reader with a basic overview of the multi-
user CAD system architecture. The system uses a
client-server architecture with a thin server and thick
client. This requires each user to have a session of
the CAD program running on their individual client
machines. The system provides each client with iden-
tical copies of the CAD part. When an operation
occurs, the data to perform that operation is pushed
from the source client to the server and subsequently
pulled by each of the destination clients. Once the
data is pulled, functions are invoked to perform the
operation on the destination clients. The server also
pushes the operation data to the database where
all the data associated with the part is stored per-
sistently. Fig. 6 shows a high level diagram of the
software architecture.

Fig. 6: Thick client multi-user CAD architecture.

3.3. Feature Conflict Avoidance

Commercial CAD systems allow only a single user per
part, thus making the part the atomic unit for con-
current CAD interaction with multiple users. With the
shift in the CAD modeling paradigm to allow mul-
tiple users to modify a part simultaneously, a new
atomic unit for multi-user interaction must be estab-
lished. This research proposes that the atomic unit
of a multi-user, feature based CAD system should
be the feature. This means that multiple users may
not simultaneously modify the same feature within
a distributed part. In mathematical terms it can be
expressed as follows: Given that F is the set of all fea-
tures in part P , at a given time interval t, and f is a
feature in part P , at time interval t. U is the set of all
users in part P , at time interval t and u is a user in
part P , at time interval t. The following is true:

f ∈ F(P , t) (3.1)

u ∈ U (P , t) (3.2)

Axiom 1 states that for a given edit operation there
exists a unique set E , in part P , at time interval t,
which contains only one feature f and one user u
where

E(P , t) = {f , u} (3.3)

For interval

tbeginEdit ≤ t ≤ tendEdit (3.4)

Multi-user, feature atomicity is enforced above by
only allowing a single instance of set E to exist in
part P , at time interval t, where t is the time interval
from the beginning to the end of the edit operation.
If this atomicity is not enforced, conflicts of a feature
with itself will occur when a user on one client edits a
feature while another user is editing the same feature.

The process of editing a feature in a CAD sys-
tem often takes several seconds to perform because
multiple parameters for the feature may need to be
modified. During the time it takes to complete an
edit operation by a user (Laura), a second user (Steve)
could potentially make an edit to that same feature.
Once Laura finishes the edit, the update is sent to
Steve over the server. This update cannot be pro-
cessed by Steve because he is performing an edit
operation and the commercial CAD client can only
perform a single operation at a time. Therefore the
edit is put into the delayed operation queue. Mean-
while, Laura’s update stays consistent on her client
with the values she input until Steve finishes his edit.
When he finishes, the change is sent over the server
to Laura and her feature is modified to the values
of Steve’s update. After Steve finishes his edit, he
will process Laura’s update which was sitting in the
delayed operation queue. Thus, Laura receives Steve’s
edit update and Steve receives Laura’s edit update.
This results in feature data inconsistency between
clients after local edits of the same feature (see Fig. 7).

Fig. 7: Simultaneous feature edit leading to feature
data inconsistency.

In order to prevent simultaneous edits of a single
feature by multiple users, we propose a method for

Computer-Aided Design & Applications, 11(2), 2013, 141–152, http://dx.doi.org/10.1080/16864360.2014.846070
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



146

automatic feature reservation and blocking. If a user
is editing a feature, this method blocks any other user
from editing that feature until the first user finishes
his edit. This reservation is communicated by a user
sending a message telling the server that the feature
is blocked and the server sending a message to all the
clients telling them to block the feature. This block
makes it so that other users are unable to edit the
feature and creates a visual indicator (i.e. color) show-
ing them that it is unavailable. Once the feature edit
is complete, a message is sent to the server reporting
completion of the edit. The server then sends a mes-
sage to all clients telling them to remove the feature
block. In this way, other users are unable to edit the
feature for the duration of a user edit. This is what we
call the client blocking method.

This method fulfills Axiom 1 if communication
between clients and the server is instantaneous. How-
ever, due to network latency, this method alone
breaks down if multiple users attempt to edit the fea-
ture at nearly the same time. Within the time it takes
for the client to tell the server to block the feature and
for the server to tell all the clients that the feature
is blocked, a second client could attempt to make an
edit. It is shown that the set E in Eqn. (3.3) is unique
only for the interval after the message is received.
This accounts for the time it takes to send the block
message (taddBlock) and the time it takes the send the
remove block message (tremoveBlock):

tbeginEdit + taddBlock ≤ t ≤ tendEdit + tremoveBlock (3.5)

Since the interval where set E is unique begins only
after the blocking message is received, it is not guar-
anteed to be unique until after time taddBlock. This
violates Axiom 1 and results in a potential data con-
flict scenario as illustrated in Fig. 8. This scenario
becomes more likely with higher network latency and
as the quantity of concurrent users increases.

Fig. 8: Potential issue with client blocking method.

Additional logic is added to the client blocking
method so that multiple simultaneous edits of a
feature remain consistent, even if they edit it at

approximately the same time. This logic, the server
reservation method, asynchronously reserves features
on the server. An asynchronous approach is used so
that a user does not need to wait for a response from
the server to begin editing a feature. This method
functions as follows: A user attempts to make an edit
on a feature that is not yet blocked on the client.
A message is sent to the server requesting reserva-
tion of that feature. If the feature is not reserved, the
server will automatically reserve that feature. This is
done by setting a Boolean flag associated with that
feature to be true. A message is sent to all other
clients telling them that the feature is reserved. All
clients will then implement a client block on that fea-
ture. No message is sent to the originating client, so
he continues to edit the feature assuming he is autho-
rized to make the edit. Once the edit is complete, a
message is sent to the server to cancel the feature
reservation and set the Boolean flag back to false.

If a client requests reservation on a feature that is
already reserved on the server it means that another
user is currently editing that feature and the request-
ing client has not yet received the blocking mes-
sage. The server will ignore this request. When the
requester receives the blocking message he will be
ejected from editing the feature (see Fig. 9).

Fig. 9: Server reservation method does not allow
simultaneous, multi-user feature editing.

The server reservation method provides that the first
client to have their request received by the server
will be the one authorized to edit a feature. This
is because the feature becomes reserved once the
message is received, assuming it wasn’t reserved pre-
viously by another client. Data conflict between a
feature and itself does not occur because all other
users without the reservation will be rejected from
editing the reserved feature. It is shown that since the
time interval for set E in eqn. (3.3) exists at the server
instead of the clients, the time it takes to send the
message is not included in the editing time interval
in eqn. (3.4). Assuming that network latency is always
less than edit time, Axiom 1 holds true because the

Computer-Aided Design & Applications, 11(2), 2013, 141–152, http://dx.doi.org/10.1080/16864360.2014.846070
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



147

edit operation does not truly begin until it reaches
and is authorized by the server. Therefore the edit
time interval is the time it is reserved on the server
and is the same as in eqn. (3.4). Current research is
focused on developing methods to maintain consis-
tency even when latency is greater than edit time,
however unlikely this case may be.

The combination of the client blocking method
with the server reservation method provides the ben-
efits of both approaches. The client blocking method
provides that most clients will not even attempt
to edit the feature because it is blocked for them
both visually and interactively. The server reserva-
tion method provides for a safety net in the slight
chance that multiple users edit a feature at approx-
imately the same time. These methods provide that
only one user is allowed to edit a feature at a time,
thus avoiding data consistency problems for a feature
with itself.

3.4. On Demand Reservation Removal

Besides the ability to reserve and remove reservation
of a feature automatically, it is important to have the
ability to remove a reservation on demand if a user is
taking an inordinate amount of time editing a feature.
For example, if a user is out to lunch while he is in a
feature edit, a second user may need to edit that fea-
ture and should not have to wait until the first user
returns from lunch to do so. One method to do this
is to control on demand reservation removal based
on user roles. For example, managers or team leads
could have the authority to remove reservations. The
problem with this approach is that users must find
someone with the authority to remove the reservation
or else they can’t perform the necessary operation.
This approach is not very agile because it adds addi-
tional steps to the process. Alternately, all users could
be allowed to remove reservations at any time. The
problem with this approach is that users may actu-
ally be in an edit when the reservation is removed and
their work would be interrupted.

In order to maximize modeling agility and min-
imize modeling interruption, the following method
is presented for on demand reservation removal. All
users are allowed to request reservation removal on
any feature that is currently reserved. When a user
reservation removal request is initiated, a message
is sent to the owner of the feature reservation noti-
fying them that another user would like to remove
the feature reservation. The owner has the option to
accept or reject the request. If the request is rejected,
the reservation remains with the owner and a mes-
sage is sent to the requester stating that the request
is denied. If the request is accepted, the owner is
automatically ejected from the edit dialog and the
reservation is removed. Alternatively, the owner may
choose to ignore the message and continue his edit
but is given a limited amount of time to respond to

the request. If the owner fails to respond to a request
within the allotted time, he is automatically ejected
from the edit dialog and the reservation is removed.

This method maximizes modeling agility. All users
may request any feature reservation to be removed
at any time. Feature reservation removal does not
need to involve an authorized user (i.e. manager). On
demand reservation removal also minimizes model-
ing interruption. A user performing an edit is not
automatically ejected from their edit. He is notified
that a relinquishment request is made, but he retains
control of the feature until his time limit to respond
expires. Fig. 10 shows a complete flow chart of the
combined client blocking, server reservation and on
demand reservation removal methods.

4. IMPLEMENTATION IN NXCONNECT

The automated feature conflict avoidance and on
demand removal methods have been implemented
into a multi-user CAD system being developed at
BYU called NXConnect. The development of this soft-
ware involves utilizing the Siemens NX application
programming interface (API) to extend the current
single user functionality of NX to be a simultaneous
multi-user application. NXConnect uses a client-server
architecture with a thin server and thick client which
requires an instance of an NX session running on
each client. Each client that is participating in a given
model has an identical copy of the NX part that stays
in sync with all other clients in that same model.
Data consistency between clients is achieved by prop-
agating model changes to the server and then onto
other clients. When clients receive data pertaining to
an operation on another client, the NX API function
to perform that operation is called on the clients’
session so the clients all get changes performed by
other users. The data to perform that operation, as
well as any geometry reference data, is recorded in a
database for future retrieval [13,15,16,20].

The feature reservation and blocking methods
have been implemented in NXConnect as follows: the
server has an up-to-date reservation list which con-
tains all the reservations held by users in each part.
When a user attempts to edit a feature or features,
an event for that feature is activated, which triggers
a message to the server requesting access to edit that
feature. The server handles the message by checking
the reservation list to see whether the specific fea-
ture has already been reserved by another user. If
the feature is not reserved, the reservation is added
to the reservation list to prevent other users from
editing the feature. Access is implicitly granted to
the requester by not sending a message back. Since
the reservation messages are asynchronous, a user
does not need to wait for a message back from the
server to begin editing a feature. Therefore, if he
does not receive a rejection message, he is safe to
continue editing. However, if the feature is already

Computer-Aided Design & Applications, 11(2), 2013, 141–152, http://dx.doi.org/10.1080/16864360.2014.846070
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



148

Fig. 10: Flow chart of combined client blocking, server reservation and on demand reservation removal methods.

reserved, a message is sent to the requester indicat-
ing the feature is reserved by another user. When this
message is received, the edit dialog is automatically
exited to prevent the user from editing the feature.
Therefore feature reservation is handled even when
multiple users request a reservation at nearly the
same time. This is implemented in such a way that
reservation can be made for multiple feature edits as
well.

When access is granted to edit a feature, a mes-
sage is sent to all other clients blocking that particular
NX feature. When a feature is blocked on the client, it
is colored with a color users are trained to recognize
as blocked. If the blocked feature is a solid body, all
the faces of that body are colored. If the blocked fea-
ture is a sketch or curve, the curves are assigned the
blocking color. All other features and curves are left
to the default color. This communicates that the fea-
ture is reserved and not available for editing, while all
other features (of the default color) are still available.
Figures 11 and 12 show the NXConnect reservation

implementation: the circle extrusion feature is edited
on User 1’s session and is reserved for editing in User
2’s session (shown in red in Fig. 12).

In addition to coloring the feature, the feature is
blocked on the client to prevent users from editing
the reserved feature. A client-side status flag, associ-
ated with each feature on a given client, keeps track of
whether a feature is “reserved by another user” (RBA),
“reserved by me” (RBM) or “not reserved” (NR). The
default is set to NR. When the user reserves a feature,
the status is set to RBM. It is important to know that a
given feature is reserved by the user because when he
releases a reservation after an edit, he needs to know
which features were reserved in order to remove the
reservation. When a reservation message is received
from the server, the status flag is set to RBA. When-
ever a user attempts to edit a feature, the client first
checks to see whether the client-side feature status
flag is set to RBA. If this is the case, the edit operation
will automatically be canceled, thus preventing users
from editing a feature reserved by another user.

Computer-Aided Design & Applications, 11(2), 2013, 141–152, http://dx.doi.org/10.1080/16864360.2014.846070
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



149

Fig. 11: User 1 editing extrusion of circle.

Fig. 12: User 2 has the circle extrusion reserved (red).

Since feature reservations only remain for the dura-
tion of the feature edit operation, reservations are
removed automatically once the operation is com-
plete. When a user finishes editing a feature, a mes-
sage is sent to the server requesting the reservation be
removed for all features which are set to RBM. When
the server receives this message it will remove the
reserved feature from the reservation list and send
a message to all clients telling them to remove the
client block. The clients each handle the message by
changing the reservation status to NR and changing
the color of the feature back to the default color. In
this way the feature becomes available to edit and the
client block is removed.

When a user opens a part in which users already
have features reserved, it is essential that the client

receive all existing reservations in the part. Addition-
ally, when a user logs out or exits a part, all the
reservations they have in place must be removed. This
is done as follows: when a user loads a given part, the
reservation list is queried for all feature reservations
in that part. Reservation messages are sent to the
user for each feature reservation in the part and the
features are blocked according to the client blocking
method. When a user logs out or exits a part, mes-
sages are sent requesting removal of all reservations
for that client. In this way reservations are added
and removed by clients who join or exit a modeling
session.

On demand feature reservation removal is imple-
mented in NXConnect as well. A user requests reser-
vation removal by double clicking on a feature that is
blocked on the client. He receives a message notify-
ing him that the feature is reserved and asks him if
he would like to request removal of the reservation.
If he clicks yes, a request is sent to the owner via
the message server. The reservation owner receives
the request message and has 30 seconds to respond,
during which time the user may continue to edit the
feature. He may also choose to reject the request
which allows him to continue editing the feature until
another request is received. It also sends a message
to the requester notifying him that the request is
denied. Conversely, if the reservation owner accepts
the removal request, he is automatically ejected from
the edit dialog and the reservation is removed. Addi-
tionally, if he fails to respond to the message within
the 30 second period, he is ejected from the edit dia-
log and the reservation is removed. Fig. 13 shows
the message received when User 1 tries to edit a
feature. He decides to request a reservation removal
and User 2, who owns the reservation, receives the
message as seen in Fig. 14. This message explains
that User 2 can either accept or reject the reserva-
tion removal request and that he must respond in
30 seconds; otherwise the reservation is automat-
ically revoked and he is ejected from the feature
edit.

Fig. 13: User 1 requests a reservation removal.

Computer-Aided Design & Applications, 11(2), 2013, 141–152, http://dx.doi.org/10.1080/16864360.2014.846070
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



150

Fig. 14: User 2 receives a reservation removal
request.

5. RESULTS

To show the validity of the automated feature reser-
vation method for preventing feature/self conflicts,
two test cases were performed in NXConnect. Both
of these tests are performed on a simple angle iron
model where two users try to edit the extrusion length
at the same time. To simulate simultaneous edits,
two users purposely click on the feature edit com-
mand at the same time. The first case is performed
with the feature reservation methods in place and
primarily tests the implementation of the client block-
ing method. The second case is performed with an
added 2.5 second latency on the network to pro-
vide enough latency to test the implementation of the
server reservation method.

The first test case has two users try to edit the
extrusion length at the same time. The result of this
test case is that the first user (User 2) to click on the
edit feature operation is able to perform the edit. The
second user (User 1) is not allowed to edit the feature
because the block is already in place by the time the
user clicks (see Fig. 15). This is due to the fact that
network latency is typically less than human reaction

time. The chances that two users will send reservation
requests within typical message round trip time (RTT)
is very small. However, the second test is in place to
verify that if this happened, the feature reservation
system still remains robust.

The second test case has two users try to edit the
extrusion length at the same time, but has an added
2.5 second latency on the network. This provides suf-
ficient time for both users to send a request message
to the server before one receives the reserve message.
The result of the second test case is that the first
user to click on the edit feature operation is able to
perform the edit (User 1 in Fig. 16). The second user
seems to be allowed to edit the feature but is ejected
from the feature edit in less than 2.5 seconds (User 2
in Fig. 16).

The upper two images in Fig. 16 shows two users
being able to simultaneously edit the extrusion for a
limited time. However, shortly after, User 2 is ejected
from the edit dialog and the feature is blocked on
his client (see lower two images in Fig. 16). This hap-
pens because User 1’s reservation request arrived to
the server first. When User 2’s request was received
by the server, it is rejected because the feature was
already reserved by User 1. Once he receives a mes-
sage from the server rejecting his request, he is
automatically ejected from the dialog and the fea-
ture turns red signifying a feature block. Assuming
network latency is always less than edit time, the
user whose request is rejected will never be able to
complete the edit before he is ejected from the edit
dialog.

The results from these two tests show that this
methodology prevents the data inconsistency that
results from feature/self conflicts as seen in Fig. 7.
Latency is not only the limiting factor in performance
of the system, but it tends to create many cases that
can cause data inconsistency between two clients.
Maintaining data consistency for a distributed system
in a wide-area network is challenging, but this system
lays the groundwork for doing so with many users
and typical latency [9].

Fig. 15: Both users tried to edit the feature at the same time and User 2 get to the server first so User 1 receives
the block notification from the server.

Computer-Aided Design & Applications, 11(2), 2013, 141–152, http://dx.doi.org/10.1080/16864360.2014.846070
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



151

Fig. 16: Both users are allowed in the edit until one has received a rejection message and then blocked from the
feature edit.

6. CONCLUSIONS

An automated feature conflict avoidance method-
ology is presented which prevents multiple users
from simultaneously editing the same feature. This
approach automatically reserves a feature for the
duration of an edit with priority given to the first
client to request the reservation. A method is also
presented for agile on demand reservation removal.
Methods are presented that create an asynchronous
feature reservation on the server and a block on the
client. Client blocks have a visual cue to communi-
cate the reservation status and forcibly prevent users
from editing a reserved feature. Server reservations
are in place to prevent feature conflicts when mul-
tiple users edit the same feature at nearly the same
time. It is shown how this method fulfills Axiom 1
to preserve the atomicity of a single user and feature
pair for the duration of a feature edit, assuming that
network latency is less than edit time.

This approach shows the ability and functionality
of automated feature reservation to prevent conflicts,
thus helping to enable an agile collaborative environ-
ment for concurrent engineering. This approach has
less overhead than other approaches because users
do not need to manually manage or merge conflicts,
as is the case with other approaches. The user is not
required to intelligently manage conflicts on their own
(potentially allowing inconsistencies); rather, the CAD
system handles them automatically with limited user
interruption. Reservation information is communi-
cated to users via non-intrusive visual cues. Addition-
ally, users are not constrained by artificial boundaries
that may prevent them from contributing where they
are needed. This approach preserves the agility of
a truly parallel design workflow while still eliminat-
ing feature/self conflicts. Current research at the NSF

Center for e-Design, BYU site is focused on developing
methods to maintain consistency for any latency and
applying rules-based methods to manage parent/child
and child/child conflicts.

ACKNOWLEDGEMENTS

Special thanks to The Boeing Company for funding
this research.

REFERENCES

[1] Agustina, A.; F. Liu; S. Xia; H. Shen; C. Sun:
CoMaya: incorporating advanced collaboration
capabilities into 3d digital media design tools,
Proceedings of the 2008 ACM Conference on
Computer Supported Cooperative Work, 2008,
5–8.

[2] Bidarra, R.; E. van den Berg; W. F. Bronsvoort:
A Collaborative Feature Modeling System, Jour-
nal of Computing and Information Science in
Engineering, 2(3), 2002, 192, http://dx.doi.org/
10.1115/1.1521435.

[3] Bu, J.; B. Jiang; C. Chen: Maintaining semantic
consistency in real-time collaborative graphics
editing systems, IJCSNS, 6(4), 2006, 57.

[4] Cannon, L.; Nysetvold, T.; Phelps, G.; Winn, J.;
Jensen C. G.: How Can NX Advanced Simulation
Support Multi-User Design?, Computer-Aided
Design and Applications, PACE Vol. 2, 2012,
21–32.

[5] Cera, C.; I. Braude; I. Comer; T. Kim; J. Han;
W. Regli: Hierarchical Role-Based Viewing for
Secure Collaborative CAD, in Proceedings of
the 2003 ASME International Design Engineer-
ing Technical Conferences & The Computer

Computer-Aided Design & Applications, 11(2), 2013, 141–152, http://dx.doi.org/10.1080/16864360.2014.846070
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1115/1.1521435
http://dx.doi.org/10.1115/1.1521435


152

and Information in Engineering Conference
(DETC/CIE2003), 2003, 10.

[6] Chan, S.; M. Wong; V. Ng: Collaborative solid
modeling on the WWW, Proceedings of the
1999 ACM symposium on Applied computing -
SAC ’99, 1999, 598–602, 10.1145/298151.
298487.

[7] Chen, L; Song, Zhijie; Feng, L.: Internet-enabled
real-time collaborative assembly modeling via
an e-Assembly system: status and promise,
Computer-Aided Design, 36(9), 2004, 835–847,
http://dx.doi.org/10.1016/j.cad.2003.09.010.

[8] Ellis, C.A.; Gibbs, S.J.: Concurrency control
in groupware systems. ACM SIGMOD Record
18 (2), 1989, 399–407

[9] Federal Communication Commission: A Report
on Consumer Wireline Broadband Performance
in the U.S, http://www.fcc.gov/measuring-
broadband-america/2012/july#Findings. 2012

[10] Jing, S.; F. He; S. Han; X. Cai; H. J. Liu: A method
for topological entity correspondence in a
replicated collaborative CAD system, Comput-
ers in Industry, 60(7), 2009, 467–475, http://
dx.doi.org/10.1016/j.compind.2009.02.005.

[11] Li, W. D.; J. Y. H. Fuh; Y. S. Wong: An
Internet- enabled integrated system for co-
design and concurrent engineering, Comput-
ers in Industry, 55(1), 2004, 87–103, http://dx.
doi.org/10.1016/j.compind.2003.10.010.

[12] Lin, K.; D. Chen; C. Sun; G. Dromey: Maintaining
constraints in collaborative graphic systems:
the CoGSE approach, in ECSCW 2005, (Septem-
ber), 2005, 185–204.

[13] Marshall, F.: Model Decomposition and Con-
straints to Parametrically Partition Design
Space in a Collaborative CAx Environment,
Brigham Young University, 2011.

[14] Moncur, R.; Jensen, C.; Teng, C.; Red, E.:
Data Consistency and Conflict Avoidance in
a Multi-User CAx Environment, 10(5), 2013,
727–744.

[15] Red, E.; Jensen, C.; Holyoak, V.; Marshall, F.;
Xu, Y.: v-Cax: A Research Agenda for Collabora-
tive Computer-Aided Applications, 7(3), 2010,
387–404.

[16] Red, E.; Jensen, C.; French, D.; Weerakoon,
P.: Multi-User Architectures for Computer-
Aided Engineering Collaboration, International
Conference on Concurrent Enterprising, 2011.

[17] Saito, Y.; Shapiro, M.: Optimistic Replication,
ACM Computing Surveys, 37 (1), 2005, 42–81.

[18] Shen, L; Hao, Y; Li, M; Zhao, W; Zheng, J.:
A Synchronous Collaborative Environment for
Engineering Design Education, International
Conference on Computer Supported Coopera-
tive Work in Design, 11th, 2007: 298–303.

[19] Sun, C.; Xia, S.; Sun, D.; Chen, D.; Shen, H.;
Cai, W.: Transparent Adaptation of Single-User
Applications for Multi-User Real-Time Collabo-
ration, ACM Transactions on Computer-Human
Interaction, Vol. 13, No. 4, December 2006,
531–582.

[20] Xu, Y; Edward Red, E.; Jensen, C.: A Flexi-
ble Context Architecture for a Multi-User GUI,
Computer-Aided Design & Applications, 8(4),
2011, 479–497.

Computer-Aided Design & Applications, 11(2), 2013, 141–152, http://dx.doi.org/10.1080/16864360.2014.846070
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1016/j.cad.2003.09.010
http://www.fcc.gov/measuring-broadband-america/2012/july{#}Findings
http://www.fcc.gov/measuring-broadband-america/2012/july{#}Findings
http://dx.doi.org/10.1016/j.compind.2009.02.005
http://dx.doi.org/10.1016/j.compind.2009.02.005
http://dx.doi.org/10.1016/j.compind.2003.10.010
http://dx.doi.org/10.1016/j.compind.2003.10.010

	INTRODUCTION
	BACKGROUND
	Turn Based
	Model Decomposition
	On Demand Locking
	Rules Based
	Background Summary

	CONFLICT MANAGEMENT METHODS
	Types of Conflicts in Feature Based CAD
	Multi-user CAD Architecture
	Feature Conflict Avoidance
	On Demand Reservation Removal

	IMPLEMENTATION IN NXCONNECT
	RESULTS
	CONCLUSIONS
	Acknowledgements
	References

