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ABSTRACT

This paper describes a novel method for extracting surface-feature lines, which are curves on sur-
faces and become C1 boundary curves as fillet edges and boundaries between convex and concave
regions as well as sharp edges as C0 boundaries, on meshes. By detecting them, we can proceed high-
quality mesh geometry processing such as feature-preserving mesh denoising and simplification, and
underlying surface extraction (i.e., segmentation) required for the reverse engineering. Our method is
based on the normal tensor framework, and detects both C0 and C1 boundary vertices according to
a change of curvature values along the principal directions. Furthermore, our method can be applied
to noisy scanned data by performing anisotropic smoothing for the normal tensor. We demonstrate
effectiveness of our method by applying it to some CAD models and real-world scanned data.

Keywords: surface-feature line, fillet edge, normal tensor, tensor smoothing.

1. INTRODUCTION

Surface-feature lines are curves on surfaces, which are
important for characterizing their shapes. They are
lines which become C1 boundary curves as fillet edges
and boundaries between convex and concave regions
as well as sharp edges as C0 boundaries. In geome-
try processing as mesh denoising or simplification,
feature lines should be preserved and may become
a part of region boundaries in mesh segmentation.
Various studies as [7,10,17,23,26] and also references
therein have proposed to extract the feature lines
which correspond to ridges/valleys (also called crest
lines) defined on a smooth surface as the locus of
points where the maximum/minimum principal cur-
vatures take a positive-maximum/ negative-minimum
along its curvature direction [6].

Crest line becomes useful in various applications
such as CG models and 3-D medical imaging, but
it is insufficient for characterizing a shape in the
industrial/mechanical objects as shown in Fig. 1(left).
In those models, the high-curvature region is usu-
ally composed of smooth transition surface between
two underlying surfaces, and the feature lines are the
boundaries of this transition surface (called fillet) that
should be extracted as shown in Fig. 1(right).

Detecting the surface-feature lines, we can get
high-quality mesh segmentation in which each
region has a similar geometrical property such as

monotonically varying curvature. Várady et al. [22]
discussed the extraction of fillets from scanned
meshes for the purpose of reverse engineering [21] in
detail. First, they divide the mesh into highly curved
and relatively flat parts with Morse complex segmen-
tation. In this stage, the boundaries of highly curved
region pass through the middle of fillet, then thicken-
ing the boundary curves, they obtain a pair of bound-
ary curves as fillet edges. Although our objectives are
almost the same as their studies, their approach is
strongly affected by the quality of the Morse complex
processing, in which some small fine structures may
be extinguished.

In this paper, using the normal-voting tensor
[15,18] (simply normal tensor below) whose eigen-
value analysis is a powerful tool for classifying fea-
ture saliencies: surface, crease, and corner, and its
eigenvector is used to determine the ridge direction,
we address the problem of extracting the surface-
feature lines on meshes even when they include noise,
because satisfactory solutions to them have not be
obtained although its importance in reverse engineer-
ing is widely recognized.

1.1. Related Works

Although there exist many studies on extracting the
feature lines using such methods as geometric snakes
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Fig. 1: Industrial/mechanical object. In the right
figure, surface-feature lines are colored in red (convex
fillet edges), blue (concave ones), and green (bound-
aries between convex and concave regions).

(or active contour) [1,3,13], Morse theory [19,22], topo-
logical method [24] in addition to the crest line, we
focus on the methods based on the normal tensor
framework. The reasons are as follows: this frame-
work is more effective to detect sharp features than
the above methods, provides important geometry
information such as surface normals and principal
directions, and executes geometry processing as mesh
denoising [20] in the same framework, but there exist
only a few studies as Kim et al. [9] and Jiao and
Bayyana [8] which apply it to surface-feature lines
extraction. We show their details below.

1.1.1. Clustering Method

Kim et al. [9] obtained the feature lines similar to
Fig. 2 by clustering the eigenvalues of normal tensor
using the K-means algorithm. But their results are lack
of (C) in Fig. 2, which is due to the small difference
of eigenvalues in the neighborhood. Similar to [9],
Lavoué et al. [11] used the discrete curvature values
instead of the normal tensor eigenvalues. In both
cases, the results strongly depend on the number of

Fig. 2: C0/C1 boundaries (our results). C0/C1 bound-
aries are colored in red/yellow.

clusters K . In order to detect fine features in this
approach, we have to use large K , but a high-quality
merging process for the over-segmentation problem
is instead needed [11,12]. Their issue is summarized
as follows:

• In the clustering-based methods, processing
equivalent to high-quality segmentation is
required in order to extract the surface-feature
lines.

1.1.2. Dihedral Angle vs. Curvature

As a direct method to extract the lines without clus-
tering process, Jiao and Bayyana [8] treated the detec-
tion of C1 boundary edges based on their normal
tensor with several angle parameters and ridge direc-
tion given by the eigenvector corresponding to the
smallest eigenvalue. But their method requires the
small dihedral angle θ = 1 degree for detecting the
C1 boundary edges while 10 degree is sufficient for
the sharp features as their default setting. Their basic
idea is to first extract sharp edges and then iden-
tify the C1 continuity point in the edge curves, and
traverse the boundary edge from the detected point.
Therefore, it is difficult to apply their method to the
models which have no sharp edge as shown in Fig. 1.
In their result, the line (A) in Fig. 2 is not shown in [8].

A fundamental characteristics of the angle-based
method is as follows:

• It depends on the mesh size, i.e., the dihedral
angle θ at Vn tends to become large in a coarse
mesh and small in a fine mesh irrespective of
constant curvature radius R shown in the figure
below.

Tab. 1 summarizes issues in the existing studies
mentioned above from some viewpoints.

Yamakawa and Shimada [25] used both the dihe-
dral angle and curvature gap across the boundary
between two adjacent regions in their polygon crawl-
ing method. The gap is defined by the ratio of two cur-
vatures, and their default threshold value is 2, while
dihedral angle is set to 5 degree. The above two meth-
ods [8,25] have the following common problem:

• It is difficult to apply their methods to noisy
scanned data, since the threshold of dihedral
angle is too small.

Computer-Aided Design & Applications, 11(2), 2013, 172–181, http://dx.doi.org/10.1080/16864360.2014.846088
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



174

Feature detection
Vertex clustering

Method & region growing (A) (B) (C)

Kim [9] necessary O ? X
Lavoué [11] necessary O ? No data
Jiao [8] Not necessary X O No data
Ours Not necessary O O O

Tab. 1: Issues of the existing methods. The symbols: O, X, and ?,
indicate “detected”, “not detected”, and “not shown in the paper”,
respectively.

1.2. Contributions

Contributions of our method for extracting the
surface-feature lines on meshes are as follows:

• based on the normal tensor framework, we
directly detect both C0 and C1 boundary ver-
tices according to a change of curvature values
and the principal directions without clustering
process as [9] and without using some critical
angular values as [8];
• in order to be able to apply our method to

noisy scanned data, we perform an anisotropic
smoothing for the normal tensor. Hence, we
can estimate the principal directions and their
curvature values robustly to noises.

The rest of the paper is organized as follows: the
principle of normal tensor is explained in Section 2. In
Section 3, we introduce our method, and our results
are shown in Section 4, and finally we conclude the
paper in Section 5.

2. NORMAL TENSOR FRAMEFORK

2.1. Normal Tensor

We construct normal tensor An as a weighted sum of a

covariance matrix of the facet normals N f
n′ (n

′ ∈ �f (n))

where �f (n) indicates facet indices connecting to a

vertex Vn : An =
∑

n′∈�f (n) wn′N
f
n′ N

f
n′

T . Here we use
the Nelson Max’s weighting method [14] for wn. We
let σ1 ≥ σ2 ≥ σ3(≥ 0) be the eigenvalues of An, and
E i (i = 1, 2, 3) be the corresponding eigenvectors (see
Fig. 3(left)). Then, An can be factored as the produc-
tion of a rotation matrix R and a diagonal scaling
matrix � as follows:

An = R � RT

= (E1 E2 E3)

⎛
⎝σ1 0 0

0 σ2 0
0 0 σ3

⎞
⎠ (E1 E2 E3)T . (1)

2.2. Vertex Classification for its Feature Saliency

Medioni et al. [15] defined saliency maps from the
eigenvalues of normal tensor: SSu = σ1 − σ2 (surface),
SCr = σ2 − σ3 (crease), and SCo = σ3 (corner). There-
after, Page et al. [18] suggested the maximum of
these three saliencies determines how we classify the
feature saliency at a vertex Vn as follows:

max {SSu, εSCr, εSCo}

=

⎧⎪⎨
⎪⎩

SSu : surface, normal Nn = E1,

εSCr : crease, tangent Tn = E3,

εSCo : no orientation

(2)

where ε ≥ 0 is a constant parameter which controls
the relative significance of the feature saliencies as
shown in Fig. 3(right). This parameter should be fixed
considering a level of noise. As a rule of thumb,
Page et al. [18] proposed the formula to design for
a specific crease angle φ (see Fig. 3(right)):

φ = 2 arctan
(
(ε + 1)−1/2

)
. (3)

For example, ε ≈ 100 is correspondent to having
set a crease angle to 10 degrees, and Fig. 4 shows
the crease and corner vertices corresponding to three
different angular values.

3. OUR PROPOSAL

Based on the normal tensor framework, we develop a
method to detect the surface-feature lines according
to a change of curvature values and enhance the nor-
mal tensor framework against noise. First, we intro-
duce a principal curvature equation in Section 3.1.
Next, we explain our method to detect points on the
lines in Section 3.2 and to create the lines robustly
against noisy data in Section 3.3.

3.1. Principal Curvatures Estimation

We introduce a principal curvature equation in the
normal tensor framework. The curvatures are very
important descriptors of surface-feature and play an
important role in constructing our algorithm below.
Our method can robustly estimate the principal
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Fig. 3: Visualization of eigenvectors (left) and classification of feature saliencies (right).

(a) (b) (c) (d)

shading         φ =45deg φ =10deg φ =3deg

Fig. 4: Angle dependency for feature detection. Convex and concave crease, and corner vertices are colored in
red, blue, and green, respectively.

curvatures via the surface normal filtering, whereas
discrete approximations of the second order deriva-
tives such as cotangent formula for mean curvature
and angle deficit method for Gaussian curvature [16]
are very error-sensitive.

The principal curvatures are given by the eigen-
values of 2× 2 shape operator matrix [5]: S =
(T B)T (∇NT) (T B), where ∇ denotes the gradient, N
and (T B) are surface normal and any two orthogo-
nal basis to N , respectively. On the other hand, as
shown in Fig. 3(left), the eigenvectors E i (i = 1, 2, 3)

of the normal tensor An are mutually orthogonal and
E1 indicates the surface normal, E2/E3 are the direc-
tions of the principal curvatures kmax/kmin. Hence,
using these eigenvectors, we obtain the following
shape operator matrix whose eigenvalues denote the
principal curvatures:

S = (E2 E3)T (∇ET
1 ) (E2 E3). (4)

In our study, the gradient of the normal vector at Vn
is calculated by ∇NT

n = RW T (WW T )−1 proposed in
[4], where R and W are the matrix form of the nor-
malized difference vector Vn′ − Vn projected on the
tangent space at Vn and Nn′ −Nn including additional
condition, respectively. (See [4] for details.)

Here we note that Eq. (4) is governed by the nor-
mal tensor eigenvectors. Therefore, we can obtain
the principal curvatures robustly to large noise in
scanned meshes via S by smoothing the normal ten-
sor which includes information of not only normal
vectors but also curvature values and principal direc-
tions. Furthermore, we can obtain the normal tensor
corresponding to shape features by the anisotropic

smoothing [20]:

A(t+1)
n ← A(t)

n +
1∑

n′∈�(n) wA
nn′

∑
n′∈�(n)

wA
nn′(A

(t)
n′ −A(t)

n ).

(5)

Here, A(t)
n is the normal tensor at vertex Vn in the t-th

step and wA
nn′ is the anisotropic weight:

wA
nn′ =

lnn′ l⊥nn

lAnn′
, lAnn′ ≡

√
(Vn′ − Vn)T

An′ +An

2
(Vn′ − Vn),

where lnn′ = |Vn′ − Vn| and l⊥nn′ is the projected dis-
tance of the edge VnVn′ on the tangent plane at
Vn.

In our experiments with noisy data, we performed
the normal tensor smoothing by 10 times iterations in
2-ring neighborhood as default parameters. Through
the experiments we have studied that 2-ring neigh-
borhood should be taken for robust estimations such
as local surface fitting and mesh smoothing against
noises and that the number of iterations is enough
for the error convergence for all the data.

3.2. Detection of Points on Surface-feature Lines

Once we have obtained the principal curvature kmax
by the maximum eigenvalue of Eq. (4) and the prin-
cipal directions E2 and E3 by the eigenvectors of
smoothed normal tensor Eq. (5) for noisy data, we can
extract the surface-feature lines whose control points
are interpolated by the vertices having the following
properties: a vertex Vn is the point if
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C0) its feature saliency defined by Eq. (2) is not
surface saliency, SSu;

C1) the gap of the curvature kmax exists in its prin-
cipal direction E2 in the neighborhood of Vn.
For example, the vertices on the yellow lines
(A) in the below figure satisfy this condition;

C2) the principal directions in non-flat regions dif-
fer (mutually orthogonal) as shown in (B);

C3) the sign of curvature changes in the direction
E2 as shown in (C).

Note that condition C0) is mainly used for detecting
the C0 boundary vertices, and the other conditions,
especially C1), is designed for extracting C1 boundary
ones as shown in Fig. 5(left). We explain the details
below.

First, owing to the condition C0), we detect the ver-
tices on sharp edges and corners. In our study, we
set the angle parameter φ = 45 degree in Eq. (3). We
denote this function by IsSharpVtx(Vn).

Second, in condition C1), we define the curvature
gap as follows: given two vertices Vn and its neighbor
vertex Vn′ ,∣∣∣∣ kmax at Vn

kmax at Vn′

∣∣∣∣ > e or

∣∣∣∣ kmax at Vn

kmax at Vn′

∣∣∣∣ <
1
e

,

where e is a threshold value and is set to 2 as a default
in our experiments. Our default parameters e = 2 and
φ = 45 degree in C1) are the same with those in poly-
gon crawling method [25]. Then, at first, we verify

the gaps of curvature at Vn for two adjacent vertices
Vn,F and Vn,B , which are the nearest neighbor vertices
of Vn in the direction E2 and −E2 respectively (see
Fig. 5 right). If there exists the gap at least in one side
and there exists no curvature gap for the next vertex
along the direction, then Vn is regarded as the point
on surface-feature lines. We denote C1) function by
HasCurvatureGap(Vn).

C2) and C3) are also easily formulated in a similar
manner, and we denote them as the Boolean func-
tions: IsOrthogonal(Vn) and IsConvexConcave(Vn),
respectively.

Finally, in order to avoid erroneous decision due
to some irregularities and small noises in meshes,
we check the vertices Vn,R or Vn,L, which are the
nearest neighbor vertices of Vn in the direction
E3and −E3 respectively, also satisfy the conditions
from C0) to C3).

3.3. Creation of Surface-feature Lines for
Noisy Data

Different from CAD models, there exist mesh irregu-
larities in scanned data accompanied by noises, and
mesh edges are not arranged along the feature lines
as shown in the dashed line of Fig. 6(a). In those data,
we search adjacent vertices Vn,F , Vn,B , Vn,R, and Vn,L
in 2-ring neighborhood. We can robustly obtain the
principal directions if normal tensor is smoothed for
2-ring neighborhood.

Once we obtained the characteristic points as
shown in Fig. 6(b), then we select the representative
points, each of which is the projected point of the cen-
troid of its 2- or 3-ring neighborhood points onto the
mesh, trace the representative points in the direction
of E3 as shown in Fig. 6(c), and finally create a line by
interpolating them.

Fig. 5: C0 and C1 boundary vertex [12] (left) and vertex neighborhood (right).

Fig. 6: Line creation process for noisy data. (a) indicates a part of wheel arch (= typical character-line of auto-
mobile as shown in Fig. 12), and dashed line colored in red is the ground-truth of feature line. (b) shows the
characteristic points extracted by our method. (c) and (d) explain the process of line creation.
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4. RESULTS

We have implemented our proposed algorithm
described in Section 3 using MSVC++ 2012 on mobile
Intel/Core i7 3520M (2.9GHz) CPU computer. All
meshes are rendered with flat shading to show
faceting. To demonstrate the capabilities of our
method, we conducted some experiments for both
CAD models and real-world scanned data.

4.1. Curvature Estimation

Using torus data, we show the accuracy and robust-
ness of our curvature estimation compared with a rep-
resentative method by Meyer et al. [16], in which the
mean curvature vector K(Vn) and Gaussian curvature
κG(Vn) are formulated by the following equations:

K(Vn) = 1
2Amixed

∑
n′∈�(n)

(cot αnn′ + cot βnn′)(Vn − Vn′),

κG(Vn) = 1
Amixed

(2π −
∑

f∈�f (n)

θf ),

where Amixed is a facet area in the neighborhood of
Vn, and �(n)/�f (n) are the vertex/facet indices in one-
neighborhood. (See [16] for details.)

First, in the case of clean mesh created from CAD
surface, two methods have small errors as shown

in the left side of Tab. 2, in which each value indi-
cates the maximum values of relative errors defined
as follows:

max

{
|xn − x̃n|

|max {x̃n}Nn=1|

}N

n=1

, (6)

where xn is the curvatures (mean or Gaussian), and x̃n
is the correct value calculated by the CAD data. Here,
we set the denominator to the absolute maximum
curvature value of the CAD data.

Next, in the case of noisy mesh, which is created
by adding random noise with maximum length 0.1ê (ê
is the average length of mesh edges), our result has
less error, while the representative method produces
erroneous result.

In our method, smoothing the normal tensor by
Eq. (5), we have obtained correct normal vectors along
with the principal directions from its eigenvectors.
Fig. 7(c) shows the validity of the normal vectors by
replacing the ones in noisy mesh shown in Fig 7(b)
with the eigenvector E1 of normal tensor without
vertex relocation, and shows the correctness of the
estimation of the principal directions. Note that in
Fig. 7(c), we make the appearance smooth by changing
normal vectors in noisy data, whereas bump map [2]
in CG area makes it noisy by changing them. Since our
method is not accompanied by the vertex relocation,
we can efficiently estimate the normals and curvature
values.

Fig. 8 shows the influence of different parame-
ters with respect to the number of iterations and
neighborhoods in normal tensor smoothing by Eq. (5).

Clean mesh Noisy Mesh

Mean Gaussian Mean Gaussian
curvature curvature curvature curvature

Meyer et al. [16] 0.0318 0.147 9.539 57.15
Ours 0.0572 0.359 0.585 1.267

Tab. 2: Comparison of the relative errors defined by Eq. (6) of cur-
vature values for clean and noisy meshes. Clean mesh is created from
CAD surface (Fig. 7(a)) and random noise with maximum length 0.1ê
(ê is the average length of mesh edges) are added to clean mesh in
noisy one (Fig. 7(b)).

CAD surface noisy mesh and principal directions modified normal vectors, and E
2
/ E

3

(c)(b)(a)

Fig. 7: Torus data and their appearances. In figure (c), only normal vectors are replaced with the eigenvector of
smoothed normal tensor in noisy mesh (b). Furthermore, the principal directions are shown by red (E2, kmax) and
green (E3, kmin) lines, respectively, in the same as Fig. 3(left).
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Fig. 8: Influence of the number of iterations and neighborhoods in normal tensor smoothing by Eq. (5).

sharp edge, corner curvature gap orthogonal flow  merged points final result

(a) (b) (c) (d) (e)

Fig. 9: Result for Fandisk model. In the figures (d) and (e), red and blue colors express the features which exist
on the convex and concave parts, respectively.

(a)

(d) (e) (f) (g)

(b) (c)

Fig. 10: Result for Casting model. In the figures (f) and (g), red and blue colors express the features which exist
on the convex and concave parts, respectively.

Fig. 11: Result for a typical automobile mechanical part (center pillar). Surface-feature lines on convex parts are
colored in red and in blue on concave ones.

10 iterations are enough for convergence and 2-ring
neighborhood gives a more accurate result than 1-ring
one.

4.2. Experiment in CAD Models

First, we show the results of each function in our
algorithm using Fandisk shown in Fig. 9. Fig. 9(a)
shows the result with the function IsSharpVtx() only.
The functions HasCurvatureGap() and IsOrthogonal()

do extract the boundary vertices, which are not
extracted as the sharp features, as shown in Fig. 9(b),
(c). Fig. 9(d) is the result which is the union of (a), (b)
and (c), and is distinguished by different colors; the
vertices in convex part are colored in red and concave
in blue. Fig. 9(e) shows the final surface-feature lines
whose control points are interpolated by the charac-
teristic points in Fig. 9(d), and shows effectiveness of
our method. This is the same in the Casting model
shown in Fig. 10.
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As we mentioned in Section 1 using Fig. 2 and
Tab. 1, our results shown in Fig. 9(e) and Fig. 10(g)
have well extracted surface-feature lines in both mod-
els compared with the existing methods [8,9].

Second, Fig. 11 shows another example of our
results, and many fillet edges are well extracted.
Furthermore, the surface-feature lines represent the

underlying surface very well, which is important for
mesh segmentation.

4.3. Experiment in Scanned data

In order to demonstrate effectiveness of our proposed
method accompanied by normal tensor smoothing

Fig. 12: Result for scanned data of clay model. In figures (b) and (e), red and blue colors express the features
which exist on the convex and concave parts, respectively. In figure (d), only normal vectors are replaced with the
eigenvector of smoothed normal tensor in the raw data (c).

Fig. 13: Result for scanned data of a car in the market. (a) and (b) show the flat shading of the model, and our
extraction of surface-feature lines colored in red (convex parts) and blue (concave ones), respectively, (c) shows
mean curvature map for raw data whose noise level can be seen in (d).
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Details of run-time [sec]

Tensor Run-time Smoothing / Points Line
Model Facets Smoothing [sec] Curvature calc. detection creation

Fig. 9 FanDisk 12,946 No 0.17 0.078 0.047 0.047
Fig. 10 Casting 10,224 No 0.18 0.078 0.047 0.062
Fig. 11 C-Pillar 121,080 No 1.12 0.54 0.32 0.26
Fig. 12 Exterior1 2,386,918 Yes 106 45 14 47
Fig. 13 Exterior2 2,164,666 Yes 95 43 12 40

Tab. 3: Model size, parameters and run-time in our method. Run-time is measured on the mobile
Intel/Core i7 3520M (2.9GHz) CPU computer. Tensor smoothing was done by Eq. (5).

given by Eq. (5), we show two examples which were
scanned from industrial style-design objects; a clay
model and a car in the market.

First, Fig. 12 shows the result for the clay model.
In Fig. 12(b), the important character-lines shown
in Fig. 12(a) are well extracted. Fig. 12(c) indicates
the enlarged detail of (a) and shows two geometri-
cal shapes: one is a convex-fillet and the other is a
sharp edge. In our result shown in Fig. 12(e), both
shapes are detected as surface-feature lines colored
in red and blue, respectively as well as the extraction
of important character-lines in car-styling design. In
this experiment, using our normal tensor smoothing
by Eq. (5) the same as the noisy torus case mentioned
above, we have obtained correct normal vectors as
shown in Fig. 12(d). We can see that our tensor
smoothing technique makes data smooth preserving
the sharp edges well.

Next, Fig. 13 shows the result for another auto-
mobile exterior model. Compared with Fig. 12, there
exist a lot of important character-lines in this data
accompanied by parting-lines in door parts, which are
formed by concave grooves or lacking the data since
this model was measured on a car in the market. In
our experiment, we have detected these character-
lines, and region boundaries indicated by blue lines
(A) and (B).

4.4. Performance

Tab. 3 lists the model size, run-time and its details to
create surface-feature lines for each data.

The great portion of our total processing time
for scanned data is spent on smoothing of normal
tensor in order to estimate the principal curvatures
and their directions robustly against noises and on
creating the feature lines. Hence the processing time
that detects feature points based on the local and
non-iterative operations is faster than non-local or
iterative approaches.

5. CONCLUSION

Compared with the existing results shown in [8,9],
our method have extracted complete surface-feature

lines as shown in (A), (B), and (C) of Fig. 2. Further-
more, owing to our anisotropic smoothing of normal
tensor without vertex relocation, we have obtained
the smoothed surface normal and principal directions
robustly and efficiently, and have estimated the prin-
cipal curvatures. Then, we have extracted the lines as
shown in Fig. 12 and 13, which become an impor-
tant clue to realizing a high-quality mesh segmenta-
tion which is our main objectives. Consequently, our
method can extract surface-feature lines without rely-
ing on critical values of dihedral angles [8] and vertex
clustering [9].

Future research includes applying our method to
mesh segmentation, reconstruction, and so on.

ACKNOWLEDGEMENTS

The Casting model shown in Fig. 2 and Fig. 10 is
courtesy of the AIM@SHAPE Shape Repository, and
the scanned data shown in Fig. 12 and Fig. 13 are
provided by Daihatsu Motor Co., Ltd.

REFERENCES

[1] Bischoff, S.; Weyand, T.; Kobbelt, L.: Snakes
on Triangle Meshes, Bildverarbeitung für die
Medizin, 2005, 208–212

[2] Blinn, J. F.: Simulation of wrinkled surfaces,
Computer Graphics, 12(3), 1978, 286–292.

[3] Clements, A.; Zhang, H.: Minimum Ratio Con-
tours on Surface Meshes, Proceedings of the
IEEE International Conference on Shape Model-
ing and Applications 2006, 26–37.

[4] Grana, C.; Cucchiara, R.: Performance of the
mpeg-7 shape spectrum descriptor for 3d
objects retrieval, in: Proceedings of the Second
Italian Research Conference on Digital Library
Management Systems (IRCDL 2006), Padova,
Italy, 2006, 11–14.

[5] Hadwiger, M.; Sigg, C.; Scharsach, H.; Bühler, K.;
Gross, M.: Realtime ray-casting and advanced
shading of discrete isosurfaces, Computer
Graphics Forum, 24(3), 2005, 303–312.

[6] Higashi, M.; Saitoh, T.; Watanabe, Y.; Watanabe,
Y.: Analysis of aesthetic free-form surfaces by

Computer-Aided Design & Applications, 11(2), 2013, 172–181, http://dx.doi.org/10.1080/16864360.2014.846088
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



181

surface edges, Proceedings of the Third Pacific
Conference on Computer Graphics and Appli-
cations, 1995, 294–305.

[7] Hildebrandt, K.; Polthier, K.; Wardetzky, M.:
Smooth feature lines on surface meshes, Euro-
graphics Symposium on Geometry Processing,
2005, 85–90.

[8] Jiao, X.; Bayyana, N. R.: Identification of C1 and
C2 discontinuities for surface meshes in cad,
Computer-Aided Design, 40(2), 2008, 160–175.

[9] Kim, H. S.; Choi, H. K.; Lee, K. H.: Feature
detection of triangular meshes based on tensor
voting theory, Computer-Aided Design, 41(1),
2009, 47–58.

[10] Kim, S.-K.; Kim, C.-H.: Finding ridges and val-
leys in a discrete surface using a modified
mls approximation, Computer-Aided Design,
37(14), 2005, 1533–1542.

[11] Lavoué, G.; Dupont, F.; Baskurt, A.: Constant
curvature region decomposition of 3d-meshes
by a mixed approach vertex-triangle, Journal of
WSCG 12(2), 2004, 245–252.

[12] Lavoué, G.; Dupont, F.; Baskurt, A.: A new CAD
mesh segmentation method based on curva-
ture tensor analysis, Computer-Aided Design,
37(10), 2005, 975–987.

[13] Lee, Y.; Lee, S.; Geometric Snakes for Triangu-
lar Meshes, Computer Graphics Forum, 21(3),
2002, 229-238

[14] Max, N.: Weighs for computing vertex normals
from facet normals, Journal of Graphics Tools,
4(2), 1999, 1–6.

[15] Medioni, G.; Lee, M.-S.; Tang, C.-K.: A Com-
putatinal Framework for Segmentaion and
Grouping, Elsevier, Amsterdam, 2000.

[16] Meyer, M; Desbrun, M; Schröder, P.; Barr, A.H.:
Discrete Differential-Geometry Operators for
Triangulated 2-Manifolds, Proceedings of Visu-
alization and Mathematics, 2003, 35–57.

[17] Ohtake, Y.; Belyaev, A.; Seidel, H.-P.: Ridge-
valley lines on meshes via implicit surface

fitting, ACM Transactions on Graphics (Proc. of
ACM SIGGRAPH 2004), 23(3), 2004, 609–612.

[18] Page, D. L.; Koschan, A. F.; Sun, Y.; Paik, J. K.;
Abidi, M. A.: Robust crease detection and cur-
vature estimation of piecewise smooth surfaces
from triangle mesh approximations using nor-
mal voting, Proceedings of the International
Conference on Computer Vision and Pattern
Recognition, 1, 2001, 162–167.

[19] Sahner, J.; Weber, B.; Prohaska, S.; Lamecker, H.:
Extraction of feature lines on surface meshes
based on discrete Morse theory, Computer
Graphics Forum, 27(3), 2008, 735–742.

[20] Tsuchie, S.; Higashi, M.: Surface mesh denois-
ing with normal tensor framework, Graphical
Models, 74(4), 2012, 130–139.

[21] Várady, T.; Martin, R.: Reverse Engineering,
chapter 26, 651–681, North-Holland, 2002.

[22] Várady, T.; Facello, M. A.; Ter’ek, Z.: Automatic
extraction of surface structures in digital shape
reconstruction, Computer-Aided Design, 39(5),
2007, 379–388.

[23] Vidal, V.; Wolf, C.; Dupont, F.: Robust fea-
ture line extraction on CAD triangular meshes,
Proceedings of the International Conference on
Computer Graphics Theory and Application,
2011, 106-122.

[24] Weinkauf, T.; Günther, D.: Separatrix Persis-
tence: Extraction of salient edges on surfaces
using topological methods, Computer Graphics
Forum, 28(5), 2009, 1519-1528

[25] Yamakawa, S.; Shimada, K.: Polygon crawling:
Feature-edge extraction from a general polygo-
nal surface for mesh generation, Proceedings of
14th International Meshing Roundtable, 2005,
257–274.

[26] Yoshizawa, S.; Belyaev, A.; Yokota, H.; Seidel,
H.-P.: Fast and faithful geometric algorithm for
detecting crest lines on meshes, Paciffic Confer-
ence on Computer Graphics and Applications,
2007, 232–237.

Computer-Aided Design & Applications, 11(2), 2013, 172–181, http://dx.doi.org/10.1080/16864360.2014.846088
c© 2013 CAD Solutions, LLC, http://www.cadanda.com


	Introduction
	Related Works
	Clustering Method
	Dihedral Angle vs. Curvature

	Contributions

	Normal Tensor Framefork
	Normal Tensor
	Vertex Classification for its Feature Saliency

	Our Proposal
	Principal Curvatures Estimation
	Detection of Points on Surface-feature Lines
	Creation of Surface-feature Lines forNoisy Data

	Results
	Curvature Estimation
	Experiment in CAD Models
	Experiment in Scanned data
	Performance

	Conclusion
	Acknowledgements
	References

