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ABSTRACT

We introduce an efficient algorithm for computing C2 approximations of a set of planar curvilinear
profiles by means of uniform cubic B-splines. The resulting approximations are guaranteed to lie
within a user-specified tolerance of the input profiles, with asymmetric and even one-sided tolerances
being supported by our algorithm. Furthermore the input topology is reflected by our approximation.
The input profiles may consist of straight-line segments and circular arcs.

Extensive experiments with synthetic and real-world data sets show that our algorithm works very
nicely in practice. In particular, it supports the approximation of profiles with up to 10000 input
segments and arcs in less than ten seconds on a standard PC. We use a top-down fitting scheme to
generate a (hopefully) small number of B-spline segments. This allows our approximation algorithm
to run in O(nlog n) time and O(n) space, where n denotes the number of input segments and arcs that

form the profiles.
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1. INTRODUCTION

1.1. Motivation and Prior Work

Smooth approximations of planar curvilinear profiles
that consist of straight-line segments and circular
arcs are useful both from a theoretical and a practi-
cal point of view. Our goal is to represent one or more
open or closed profiles by a comparatively small num-
ber of higher-order primitives within a user-specified
tolerance, thereby achieving C? continuity. Applica-
tions like the simplification of geographic entities
(such as islands within a lake or river) in a geographic
information system also require us to maintain the
topology of the input. That is, the approximation
curves generated are not allowed to self-intersect
or to intersect each other, and if a profile P; lies
within another closed profile P, then the approxi-
mation of P; shall also lie within the approximation
of P,. (Actually, in VLSI applications we may even
be asked to guarantee a minimum clearance among
the approximation curves in order to prevent unde-
sired connectivity.) For certain applications like the
approximation of a tool path the user may wish to
specify a tolerance that is non-symmetric or even
one-sided [11].

However, we are not aware of algorithms that allow
the simultaneous approximation of a set of planar
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profiles by C? curves such that the user has full con-
trol over the approximation tolerance and such that
the input topology is preserved. Of course, many algo-
rithms for the G2- or C2?-approximation of one curve
with limited control over the tolerance are known.
For instance, Behar et al. [2] present an algorithm
for a G?-smoothing of an open polygon by cubic A-
splines. Curvature-continuous approximations of an
offset curve are described in [1,3].

If one forfeits G° continuity then the work by
Heimlich and Held [6] is applicable: It allows the
approximation of multiple closed polygons by G!
curves consisting of either biarcs or cubic Bézier
curves such that the input topology is preserved,
while retaining full control over the approximation
tolerance. Recent algorithms by Drysdale et al. [5]
and Mayer and Pisinger [12] allow the approximation
of one polygon by the minimum number of tangent-
continuous circular arcs within a tolerance region,
which needs to be present as part of the input. Neither
of these latter two approach seems to be extensible to
G? continuity, though.

1.2. Results Achieved

We describe an algorithm to compute C? approxi-
mations of a set of planar curvilinear profiles that
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consist of straight-line segments and circular arcs. As
in [6], the algorithmic vehicle for guaranteeing a user-
specified maximum (Hausdorff) distance between the
input profiles and the approximation curves, for
achieving the simplicity of the approximation curves,
and for maintaining the input topology is the use
of a tolerance zone: Every profile (and its approxi-
mation curve) is contained in its own portion of the
tolerance zone whose width is chosen such that the
user-specified bound on the Hausdorff distance is
obeyed. To this goal we extend the definition of a tol-
erance zone of [6] to open curves. To compute the
boundary of the tolerance zone, we use traditional
(Voronoi-based) offsetting.

We employ uniform cubic B-splines as approx-
imation primitives to achieve C? continuity. Cubic
B-spline segments are defined upon four control ver-
tices each. Our B-spline curves use so-called approx-
imation nodes ("a-nodes") as control vertices. These
a-nodes are generated within the tolerance zone and
placed on its medial line. De Boor’s subdivision
algorithm [4] is used for approximate (but conserva-
tive) tests for containment of a B-spline segment in
the tolerance zone.

Since consecutive B-spline segments share a com-
mon set of control vertices rather than only one
a-node , standard greedy-like schemes [6,9] for fitting
"long"primitives to the input cannot be adapted easily
to B-splines. To overcome this problem we propose
a top-down approach that refines an initially coarse
approximation: We start with one coarse B-spline and
refine it by successively adding new a-nodes if the B-
spline is not contained entirely in the tolerance zone,
thus splitting the coarse B-spline into smaller ones
which, together, provide a better fit to the input.

We implemented our algorithm in C++, based on
the Voronoi package VRONI/ArcVRONI [7,10]. Exten-
sive experiments with synthetic and real-world data
sets show that our algorithm works very nicely in
practice. Our top-down approach yields a smaller
number of B-spline segments than the standard
greedy-like fitting schemes. It is also significantly
faster, processing profiles with up to 10000 input
segments and arcs in less than ten seconds on a
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standard PC. From a theoretical point of view, our
approximation algorithm runs in O(nlog n) time and
requires O(n) space, where n denotes the total num-
ber of straight-line segments and circular arcs that
form the input profiles. Due to the use of Voronoi-
based computations, our approximation algorithm is
completely immune to input noise: As the approxima-
tion tolerance is gradually increased, the number of
B-spline segments used decreases gradually.

Figure 1 shows a sample input together with its
Voronoi diagram (in green) and the boundary curves
of the tolerance zone (in blue and magenta); the actual
B-spline approximation computed by our algorithm is
shown in orange.

Since  VRONI/ArcVRONI was developed and is
being maintained by the first author’s research
group, it was natural to base our implementation
on VRONI/ArcVRONIL We note, though, that we do
not exploit any specific feature of VRONI/ArcVRONI
besides its capability to compute Voronoi diagrams
and offset curves. Thus, any code for computing
Voronoi diagrams of straight-line segments and cir-
cular arcs would do for replicating our work.

2. TOLERANCE ZONE

2.1. Review of Basics

The input P for our algorithm is formed by a set
of curvilinear profiles, where each profile is a planar
curve formed by a sequence of primitives such that
the (i+ 1)-st primitive starts in the end point of the
i-th primitive. We allow straight-line segments and
circular arcs as input primitives. All profiles need to
be simple curves that are pairwise disjoint. (A curve
is “simple” if it has no self-intersections.) In order
to support a consistent notion of (local) sidedness
we require the orientation of the line segments and
circular arcs to be consistent.

The straight-line segments, circular arcs and ver-
tices of P are called “sites” of P. As in [6] we make
extensive use of the Voronoi diagram, VD(P), of P.
Very roughly, the Voronoi diagram of P partitions
the plane into cells, so-called Voronoi cells, such that

()

Fig. 1: From left to right: (a) The input consists of the outline of the letter "a", described by two polygons, (b) the
Voronoi diagram (green) of the input, (c) the tolerance zone boundaries (blue, magenta) and the approximation

(orange) within the tolerance zone.
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Fig. 2: Left: Voronoi diagram (in green) and the Voronoi cell of one straight-line segment (shaded in light grey);

Right: Family of offset curves (in red).

each cell is defined by a site of P and consists of
all points of the plane closer to that site than to any
other site. See Fig. 2, which depicts (a finite portion of)
the Voronoi diagram (in green of a polygon (in black);
the Voronoi cell of one straight-line segment of P is
shaded in light grey. We denote the Voronoi cell of a
site s of P by VC(P, s).

Every Voronoi cell is bounded by Voronoi edges.
Points on Voronoi edges are equidistant to two sites
of P. Voronoi nodes, which are formed by the inter-
section of Voronoi edges, are equidistant to three (or
more) sites. A Voronoi edge defined by two straight-
line segments of P lies on the angular bisector of
these two line segments. (Every Voronoi edge is a por-
tion of a conic, i.e., a straight-line segment, parabolic
arc, hyperbolic arc, or elliptic arc.) The theory of
Voronoi diagrams tells us the Voronoi diagram VD(P)
is a planar graph that consist of O(n) edges and nodes
if P is formed by n line segments and circular arcs.

The Voronoi diagram of a set of n (non-
intersecting) straight-line segments and circular arcs
can be computed in O(nlogn) time and O(n) space,
both in the worst case [14] and in the expected
case [10]: Yap [14] employs a divide-and-conquer
algorithm, while [10] relies on a randomized incre-
mental construction of the Voronoi diagram. That is,
Held and Huber [10] start with a (trivial) Voronoi dia-
gram of two sites and then insert sites, one after the
other and in a randomized order, and appropriately
update the Voronoi diagram for each site inserted.
Reference is given to [8] for an up-to-date survey on
the computation and application of Voronoi diagrams
of straight-line segments and circular arcs.

An offset with offset distance d of P is the set of
curves traced out by the center of a disk with radius
d that rolls along P. (For oriented curves it is also
common to distinguish between left and right offset.)
Once VD(P) is known, a family of offset curves of
‘P can be computed easily. The relation between the
Voronoi diagram and offset curves of P can be rec-
ognized by observing how the offset curves change
when the offset distance is modified: Imagine that
one starts with offset distance d = 0 and continuously
increases d. Then the endpoints of the (moving) offset
primitives trace out the Voronoi diagram, see Fig. 2.

Thus, by intersecting offset primitives with bisectors
of the appropriate Voronoi cell one can compute all
offset curves of P for a specific offset distance d
in O(n) time. We refer to [8] for an explanation of
Voronoi-based offsetting.

2.2. Definition of the Tolerance Zone

Heimlich and Held [6] define a signed distance dg(P, p)
between the input P and a query point p that depends
on the nesting level of the polygons. (Recall that
their algorithm is restricted to closed polygons.) That
signed distance is used to define the tolerance zone
of P as the set of points p whose signed distance to P
is lower-bounded by the left tolerance d; and upper-
bounded by the right tolerance d,. Heimlich and Held
then go on to select individual tolerance bands within
the tolerance zone.

Clearly, their approach does not extend to our
setting as our profiles need not form closed curves.
Thus, we lack the notion of a nesting level. In order
to retain the benefits of their approach we base our
tolerance zones on signed distances to the individual
sites. Specifying the meaning of “left” and “right” rel-
ative to an individual line segment or circular arc is a
bit tricky for points that are far away from that site.
Fortunately, we can restrict our attention to the cone
of influence of a site. The cone of influence, CI(s), of

e a straight-line segment s is the closure of the
strip bounded by the normals through its end-
points;

e a circular arc s is the closure of the cone
bounded by the pair of rays originating in the
arc’s center and extending through its end-
points;

e a point s is the entire plane.

Then, the signed distance dg(s, p) of a point p € CI(s)
to an oriented straight-line segment s of P is given by
the standard (Euclidean) distance of p to I, multiplied
by —1 if p is on the left side of the supporting line
of s, see Fig. 3. The signed distance of a point p to
a circular arc s of P is defined analogously. For the
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82 ds(s,p) >0

Fig. 3: Signed distances to a straight-line segment, circular arc, and a vertex; the cones of influence of the line

segment and the arc are indicated by light grey.

distance of a point p to a vertex s of P we take the
standard distance between p and s, and multiply it by
—1 if the ray from s to p is locally on the left side of
s; and sy, where s; and s are the sites of P that share
s as a common vertex.

We are now ready to define the tolerance zone of a
site s of P, see Fig. 4:

T Zsite(S, P, dj, dy) := {p € VC(P, s) : dj < ds(s,p) < dy).

We note 7T Zgjo(S, P, d}, dr) is well-defined since the
Voronoi cell of every site of P is contained in its cone
of influence [19] and, thus, our definition of a signed
distance is applicable. For open profiles we take only
inner vertices into account. That is, we omit the half-
disk caps around the start and end vertices that occur
in traditional offset curves. The resulting tolerance
zones of vertices form disk sectors or ring sectors,
depending on whether the tolerances are one-sided
and disjoint from the input. The tolerance zone of P
is defined as the union of all tolerance zones of all
sites:

TZ(P,dp, dr) := | T Zsite (s, P, d, dr).
seP

Fig. 4: The tolerance zone of a straight line segment
(left) and a vertex (right).

2.3. Algorithms to Compute the Tolerance Zone
Boundary

Our algorithm for computing the boundary of the tol-
erance zone 7 Z(P,d,, dy) runs in three stages and
returns a list of vertices that define the tolerance

zone. We presuppose the existence of the Voronoi dia-
gram of the input profiles P, which we compute using
VRONI/ArcVRONI [7,10].

The clearance radius of a point p relative to P
is the radius of the largest disk centered at p that
does not contain any site of P in its interior. We take
advantage of the fact that VRONI/ArcVRONI assigns a
clearance-based parameterization f : [tmin, tmax] — R?
to every Voronoi edge e, where tyj, is the minimum
and tmax is the maximum clearance of points of e.
Hence, the coordinates of a point p of e with clearance
t can be obtained by evaluating f: We have p = f(t),
and the minimum distance of p from P is given by t.
(VRONI/ArcVRONI splits every conic Voronoi arc at its
apex, such that the clearance is guaranteed to increase
or decrease strictly when traversing a Voronoi edge.)

Although the actual approximation algorithm pro-
cesses the input profiles sequentially one after the
other, the computation of the Voronoi diagram needs
to be carried out on the entire input P. (Otherwise,
we could not guarantee the disjointness of the tol-
erance zones of individual profiles!) The following
three stages compute one side of the boundary of the
tolerance zone for a profile P of P.

Stage 1: Collect Nodes of Voronoi Cells. In the
first stage we add all nodes of Voronoi cells defined
by sites of the current profile P to a list. We start in the
first input vertex of P and its corresponding Voronoi
cell and run along the Voronoi edges in the appro-
priate direction, adding one node after another to a
list until we return to a node located directly on P.
Such nodes can be identified by their clearance param-
eters, as nodes located directly on P are guaranteed
to have a clearance equal to zero. We continue this
procedure with the next Voronoi cell until we reach
the last vertex of P. The resulting list forms a path
given by consecutive nodes over the Voronoi diagram
starting in the first and ending in the last vertex of
P. (Of course, for a closed profile this means that we
have returned to the vertex from which we started.)
The manner in which we constructed this list implies
that every pair of consecutive nodes in this list is
connected by a Voronoi edge.

This algorithm is detailed in pseudo-code in Alg. 1.
It takes the list of profile vertices and a flag indi-
cating the side for the computation with respect to
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output: list of Voronoi nodes

repeat

until edge starts in p, and edge is on the side Ir;
for i < 1 to length(p) do

repeat

add start node of edge to output;

until edge ends in p;;
reverse orientation of e;

repeat

add start node of edge to output;

edge + next edge in Voronoi cell of p;;
until edge ends in p;;
reverse orientation of e;

end if

end for

Alg. 1: Collect nodes

input : list of vertices p of a profile, side ir ("left" or "right")

edge < getVoronoiDiagramEdge (site(po,p1)) ; // use VRONI to obtain a pointer to VD-cell of edge

edge < next edge in Voronoi cell of site(po,p1);

edge « next edge in Voronoi cell of site(p;—1,p:);

if p; has tolerance zone on side Ir and i < length(p) — 1 then

i
\

S I '

] [ v

’ 1 1 - Al

Fig. 5: The Voronoi edges traversed after Alg. 1 are shown in solid; all nodes of the Voronoi cells on one side of

the profile get lined up in a list.

the profile’s orientation as input. We assume that
when traversing the boundary of a Voronoi cell, every
Voronoi edge is oriented with respect to its start and
end nodes according to the current traversal. That
is, a traversal of a Voronoi cell of a site s with ver-
tices p and g will begin with a Voronoi edge that
starts in p, traverse one half of the the Voronoi cell
until a Voronoi edge ending in g is encountered, con-
tinue with a Voronoi edge (on the other side of ) that
starts in g, traverse the second half of the Voronoi
cell of s, until reaching back to p. This orientation
does not reflect the edge orientation as given by
VRONI/ArcVRONI, but the particular orientation can
be extracted easily from the context. Figure 5 shows
the Voronoi edges traversed after Alg. 1 on the left of
our sample profile.

Stage 2: Skip Nodes Outside of Tolerance Zone.
In the next stage we make use of the clearance param-
eters of the nodes in the list to skip all those nodes
that leave the conventional offset d, defined as either
|d;| or |dy| depending on the side of the profile we

are interested in. We run through the list until we
find a pair of consecutive nodes n;, n;;; with clear-
ances clr(n;) < d < clr(n;;1). We conclude that node n;
lies within the tolerance zone while n;, lies outside.
Since every two consecutive nodes in the list are con-
nected by a Voronoi edge, we use VRONI/ArcVRONI to
compute the exact center p of the clearance disk with
radius d on the Voronoi edge between n; and n;, ;. The
resulting point p lies exactly on the boundary of the
tolerance zone and is inserted into the list between
nodes n; and n;, ;. Since we are currently outside of
the tolerance zone we raise a boolean flag outside.

We continue in the list and remove all nodes from
the list until we find a pair of consecutive nodes n;
and nj, with clearances clr(nj) > d and clr(nj;1) < d.
Again, we evaluate the Voronoi edge data and com-
pute the position of the point g that lies exactly on
the boundary of the tolerance zone. The point g is
inserted into the list and we drop the boolean flag
outside to indicate that we have returned into the
tolerance zone.
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input : list of nodes, tolerance d
output: filtered list of nodes

outside < false;
for v € input do
t <+ clr(v) ;
if outside then
if t < d then
outside « false;
insert (node with clearance d);
else
| delete(v);
end if
else
if ¢t > d then
outside <+ true;
insert (node with clearance d);
delete(v);
end if
end if
end for

Alg. 2: Skip nodes

// use VRONI

// returning into tolerance zone

// leaving the tolerance zone

\

1
1
'
1
1
'
'

Fig. 6: The list after Alg. 2. Nodes that exceed the maximum distance to the profile are skipped.

We continue this procedure until we reach the end
of the list. We now know that d(n;, P) < d holds for
every node n; in the resulting list of nodes. Note that
in Alg. 2 the nodes added to the list in lines marked
1 and 2 do not necessarily coincide with nodes of the
Voronoi diagram, but rather lie on the edge defined
by the previous and the current node in the list. The
result of this stage for our sample profile is shown in
Fig. 6.

Stage 3: Removing Trees Within the Tolerance
Zone. In the second stage we used the clearance
parameters of the Voronoi nodes to remove all nodes
of Voronoi cells that leave the tolerance zone of the
profile. The result is the boundary of the tolerance
zone with additional Voronoi edges attached to it in
its interior. In the third stage we discard all those
nodes that do not define the boundary of the toler-
ance zone. These structures attached to the boundary
form trees. Hence, we can iterate over the list and

remove all leaves as we pass by, ultimately removing
all trees.

The manner in which we constructed the list
of nodes implies that leaves correspond to triples
(nj, nj 1, ni,2) of nodes such that n; = n;,», i.e., the
first and the third node have the same position. Thus,
we scan for such constellations of consecutive nodes
and remove them from the list. If our current set of
three nodes does not allow any deletion, we move on.
This algorithm is summarized in Alg. 3, and the result
for our sample profile is shown in Fig. 7. The spikes
(shown in red) ensure that the symmetric Hausdorff
distance is not exceeded.

After the tolerance zone on one side of a profile
has been constructed, we turn our attention to the
other side and repeat the three stages outlined above
in order to compute the second boundary of the tol-
erance zone of P. (Note that this may actually mean
computing a second boundary on the same side of
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input : list of nodes

for i + 1 to length(input)—2 do
if node;—1 = node; then
delete(node;);
| i 1i—1;
end if
if node;—; = node;;+; then
delete(node;);
P i—1;
end if
end for

Alg. 3: Remove trees

output: final list of boundary nodes of tolerance zone

// remove coinciding nodes

// remove leaves

N

\

’
’
’

M
N
LN
'
'
'
'
'
I
i
'
'
'

I
1
1
'
'
, '
'
I
I
1

Fig. 7: After Alg. 3 all Voronoi edges that belong to trees within the tolerance zone have been removed.

the profile if a one-sided tolerance was requested by
the user.)

2.4. Properties of the Tolerance Zone

Suppose that we constrain the approximation curve
of every profile P of P to the interior of the tolerance
zone of P. Our Voronoi-based construction ensures
that the tolerance zones of every pair of profiles do
not intersect in their relative interiors. (Actually, if
required by a particular application, we can even guar-
antee a minimum clearance distance between pairs of
tolerance zones.)

Let us denote the set of approximation curves of P
by A. The construction of 7 Z(P, dj, dy) ensures that

e for an approximation A of P < P the signed
distances of (all points of) A from P are lower-
bounded by d; and upper-bounded by d,, thus
respecting the tolerances imposed by the user,

e all curves of A are disjoint, and that

e the topology of P is preserved: If a profile P; is
contained inside of some other profile P, then
the approximation A; of P; is contained inside
of the approximation A, of P,.

We note that for symmetric tolerances d:= —d; =
dy > 0 the relation Ac 7Z(P,—d,d) can also be
expressed in terms of the directed Hausdorff distance
from A to P:

ACTZ(P,—d,d) = h(A,P) < dwhere h(A,P) :

=maxmind(a, p).
ac A peP (@p)

Thus,
ACTZP,—-d,d) AP CTZ(A,-d,d = HA,P) <d,

where H(A, P) denotes the (symmetric) Hausdorff dis-
tance between A and P. If the second condition P cC
TZ(A,—d,d) or, more generally, P c 7T Z(A, —dy, —d))
is omitted then the approximation curves are not con-
strained to pass through disc sectors with radii d
(respectively —d,;, dy) centered at the vertices of the
profiles of P. This may result in a poor approxima-
tion if P contains sharp corners or circular arcs whose
radii are tiny relative to (the absolute values of) the
approximation tolerances.

How can we ensure P C 7 Z(A, —dy, —dp) if this is
requested by the user? We resort to the concept of
offset spikes introduced by Heimlich and Held [6] to
guarantee that no input vertex is further away than
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d; (or dy) from the boundary of its tolerance zone.
Roughly, this means generating spikes that emanate
at the vertices of the tolerance zone and grow along
the Voronoi diagram towards the vertices of P in
order to constrain the approximation curves closer
to the input vertices; see the red nodes and edges in
Fig. 7. We refer to [6] for details on the construction
of the offset spikes.

3. APPROXIMATION ALGORITHM

3.1.

We use uniform cubic B-splines as approximation
primitives in order to achieve a C2 continuous approx-
imation. A cubic B-spline is a parametric curve com-
posed of a linear combination of B-spline basis func-
tions of degree three, where the form of the linear
combination is governed by the position of the so-
called control points. Each spline segment is defined
by four vertices of the B-splines control polygon, and
consecutive spline segments share three common ver-
tices, see Fig. 8. For uniform B-splines the B-spline
basis functions are simply shifted copies of each
other. We note that each segment of a cubic B-spline is
contained in the convex hull of its four control points.
We refer to textbooks on spline modeling (e.g., [13])
for an introduction to B-splines.

In our approximation algorithm we will have to
check frequently whether a cubic B-spline is contained
in the tolerance zone. In order to facilitate this task
we replace all circular arcs of the boundary of the
tolerance zone by straight-line segments, with a con-
stant number of line segments per circular arc. (This
approximation is carried out in such a way that those
line segments stay inside of the tolerance zone.) If
we know that the start point of a cubic B-spline lies
within the tolerance zone, it suffices to check whether
the cubic B-spline intersects the boundary of the tol-
erance zone in order to check for containment within
the tolerance zone.

Approximation Primitive

o P4

.pl
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For such a segment/spline intersection test we
use de Boor’s subdivision algorithm [4]. De Boor’s
algorithm is a fast and numerically stable algorithm
for the evaluation of B-spline curves: It computes
a point u that splits a B-spline segment into
two sub-segments, and replaces a control polygon
(1, P2, b3, P4) by the two polygons (g1, g2, g3, q4) and
(G2, 493,494, qs), see Fig. 9. The new control polygon is
related to the old control polygon by the so-called
splitting matrix:

q21161051
q3:§0440p2 (1)
Qs 01 6 1 3
gs 11 4 4] W4

Repeated insertions of control points can be used
to obtain a refinement of the original control polygon
while leaving the curve defined by the control points
unchanged. (Actually, one can show that the sequence
of control polygons obtained by de Boor’s subdivision
algorithm converges to the B-spline curve defined by
these.)

In order to check whether a uniform cubic B-spline
uchs intersects a straight-line segment ¢ of the border
of the tolerance zone, we check whether ¢ intersects
the convex hull of uchs. If ¢ does not intersect the
convex hull of ucbhs then ¢ cannot intersect uchs.
Otherwise, we use de Boor’s algorithm to subdivide
ucbs, and recurse on the two halves. If the maximum
intersection tolerance is reached then we report an
intersection. (Hence, we err on the safe side.)

The validity of this intersection check follows from
the fact that every curve segment of a B-spline is con-
tained within the convex hull of its four control points
[13], see Fig. 8. This intersection check is summarized
in pseudo-code in Alg. 4.

We note that we may have to check one B-spline
curve ucbs for intersection with several straight-line
segments of the tolerance zone. Since the subdivision
of a B-spline curve follows a regular pattern that does

® Ps

" P9

P1o

Fig. 8: A uniform cubic B-spline that consist of seven segments. The convex hull of the first four control points

(of the red segment) is shaded in light grey.
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Fig. 9: TIllustration of de Boor’s subdivision process of a cubic B-spline.

constants: intersection tolerance
function intersect( pi, p2, p3, pa, £)

if ¢ intersects CH({p1,p2,p3,pa}) then

l return true;
else

(2 4 4 0 0

@ 16 1 o) (™

@ | Llo 4 a of |2
@ 016 1]\

as 11 4 4/ \P*

end if
else

| return false;
end if

intersection.

input : Control points p1, p2, p3, pa, straight-line segment ¢
output : false if an intersection can be ruled out, true otherwise

if ||p1 — p4|| < intersection tolerance then

return intersect( qi, g2, g3, q4, £) OF intersect( g2, g3, q4, q5, £);

Alg. 4: The function intersect uses the convex hull of the control points of the cubic B-spline to
either rule out an intersection or to split the B-spline into two halves and recursively check for an

not depend on external parameters, we might end up
computing the same control vertices over and over
again. We can refine algorithm:intersection and save
computational time by storing the control vertices in
a binary tree 7, where each node of 7 corresponds
to one subdivision. During an intersection check of
ucbs with a line segment we start at the root of 7
and descend 7 in the same way as we recurse on
portions of uchs. If a particular intersection check
requires a subdivision whose corresponding control
vertices are not stored in 7 then we compute the ver-
tices by means of Eqgn. (1). Of course, we also store
them appropriately in a new node of 7 in order to
make them available for future intersection checks.
Thus, the binary tree 7 reflects all subdivisions of the
same B-spline curve carried out within the individual
intersection tests.

3.2. Computing an Approximation

We adopt the approach by Heimlich and Held [6] and
compute a set of points within the tolerance zone that
will become the "support"for our approximation prim-
itives. (In [6], "support"means start point or end point

of a biarc that is used for the approximation.) These
so-called approximation nodes ("a-nodes") are placed
on the Voronoi diagram of the tolerance zone. More
precisely, the a-nodes are placed on the medial line of
the Voronoi diagram of the tolerance zone: An edge of
the Voronoi diagram of the tolerance zone (restricted
to the interior of the tolerance zone) belongs to the
medial line if and only if it is defined by one edge of
the left boundary and one edge of the right boundary
of the tolerance zone, see Fig. 10.

Fig. 10: The approximation nodes are sampled on
the medial line of the tolerance zone.
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We would prefer to sample every edge of the
medial line by uniformly spaced a-nodes such that
the distance between two neighboring a-nodes is only
a fraction of the width d, — d,; of the tolerance zone.
However, such a sampling scheme does not allow to
bound the number of a-nodes in terms of the num-
ber n of input sites. Hence, in order to avoid that
the complexity of the actual approximation algorithm
grows unboundedly, we allow only a total of c¢-n a-
nodes, for some constant c. (E.g., ¢ := 10 turned out
to be a decent choice in our tests.) This total num-
ber of a-nodes is assigned to the nodes and edges of
the medial lines in a uniform way. That is, long edges
get more a-nodes than short edges, and a very short
edge might have no a-node assigned to its relative
interior at all.

Once the a-nodes have been fixed, the goal is to
find a small number of primitives that stay within the
tolerance zone and use a subset of the a-nodes as sup-
port. Naturally, this leads to some form of a greedy-
like approach, where one tries to find long primitives
that span as many as a-nodes as possible. Note that [6]
does not use a length comparison based on the actual
curve length but, for complexity reasons, uses the
number of passed a-nodes as a measure of distance.
The results reported in [6] indicate that, for approxi-
mations by biarcs or straight-line segments, the best
performance is achieved by a doubling-and-bisection
strategy [9]: An exponential growth phase is followed
by a binary search to obtain the next approximation
primitive.

These methods have been proven to generate reli-
able results when used with approximation primitives
that are defined upon exactly two a-nodes. Since con-
secutive B-spline segments share a common set of
control vertices rather than only one a-node, there
is no obvious way how a greedy scheme is adapted
best to our needs. We observed that when choosing
the a-node for which the current primitive passes the
maximum number of a-nodes, chances are good that
the next primitive will manage to pass only a rather
small number of a-nodes. In particular, stretching the
distance between two control vertices may distort the
following spline segments such that no further valid
primitives can be found.

To overcome this problem we propose a top-down
approach that refines an initially coarse approxima-
tion recursively: For every profile of P we compute an
initial B-spline curve that consists of a small number
of segments. This initial approximation curve is then
refined by subsequently adding a-nodes as new con-
trol vertices until we obtain an approximation curve
that fits through the tolerance zone.

The algorithm summarized in pseudo-code in
Alg. 5 requires a vector of a-nodes and a descrip-
tion of the left and right boundary of the tolerance
zone of the profile to be approximated. It is essential
that the data type for the a-nodes allows constant-
time random access. Also, every a-node has a pointer
to the corresponding segments of the left and right
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tolerance zone boundary. Thus, we can test for con-
tainment in the tolerance zone locally by enumerating
the relevant boundary segments and carrying out
individual intersection tests between these segments
and the B-spline under construction.

input : vector of a-nodes a, boundary of tolerance zone
output: list of approximation primitives »
data :empty list of node indices n

fori«+ 1to3do

pushFront (0) into n;

pushBack(length(a) —1) into n;

end for

c+0;

while ¢ + 3 < length(n) do

if Primitive (ne, Net1, Net2, Nets) 1S invalid then
insert (| (nc + ne+1)/2]) at position ¢ + 1 into n;
insert (| (net+1 + net2)/2]) at position ¢ + 3 into n;
insert (| (nes2 + net3)/2]) at position ¢+ 5 into n;

else

| c+c+1;
end if
end while

Alg. 5: Top-down approach (for an open input chain)

The initial approximation curve is obtained as fol-
lows for an open profile: One can show analytically
that the start point of a B-spline is bound to coincide
with a point u if its first three control points are iden-
tical to u. Analogously, a B-spline ends in v if its last
three control points coincide with v. Hence, to approx-
imate an open profile we add the start and end point
of the profile three times each as the first and the
last a-nodes, thus obtaining the initial approximation.
Then the approximation proceeds as summarized in
Alg. 5: When a segment of the B-spline is invalid since
it does not fit into the tolerance zone then we add
three new control points.

The algorithm as given in Alg. 5 does not rely
on recursion but rather uses the resulting list of
indices to iteratively refine the approximation prim-
itives. This algorithm can easily be extended to sup-
port closed profiles. We use a circular iterator on the
a-nodes that allows a traversal from the end of the
vector back to the start. With an appropriate choice
of the starting nodes and properly adapted loop
conditions, the algorithm for closed profiles follows.

3.3. Runtime Complexity

In a preprocessing phase, all profiles of P are scanned
for degeneracies: Collinear and co-circular vertices as
well as zero-length segments and arcs are removed.
Of course, O(n) time suffices for the preprocessing,
where n denotes the total number of segments and
arcs of P.

The computation of the tolerance zone boundary
relies on the Voronoi diagram of P , and the place-
ment of the a-nodes requires knowing all medial lines,
which are subsets of the Voronoi diagram of the tol-
erance zone. The theory of Voronoi diagrams tells
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us that the Voronoi diagram of a set of m (non-
intersecting) straight-line segments and circular arcs
can be computed in O(mlog m) time and O(m) space,
both in the worst case [14] and in the expected case
[10]. Since the number of edges and vertices of the tol-
erance zone is linear in n, the total complexity of both
Voronoi computations is O(nlog n). The computation
of the tolerance zone runs in O(n) time, as does the
computation of the a-nodes.

For the top-down approach, every split step
requires a containment test that can involve a lin-
ear number of intersection checks of the B-spline
curve with edges of the boundary of the tolerance
zone. The merge step can be done in constant time
by simply joining two lists of consecutive control
vertices together. Note that every edge/spline inter-
section check involves one or more steps of de Boor’s
subdivision, where the number of steps depends on
an intersection tolerance rather than on n. Our exper-
iments indicate that a small number of subdivision
steps suffices for every intersection check.

If we regard one such intersection check as a
constant-time operation then the total runtime com-
plexity of the top-down approximation is O(nlog n),
requiring linear O(n) space. Finally, these complexi-
ties sum up to an overall O(nlog n) runtime complex-
ity and O(n) space.

4. EXPERIMENTAL EVALUATION

We implemented this approximation algorithm in
C++, based on the Voronoi code VRONI/ArcVRONI
[7,10]. We ran an extensive series of tests on 22124
individual input files. Our input files comprise both
contrived and real-world data, with one or more poly-
gons or open/closed curvilinear profiles per file. Our
real-world data sets include cross-sections of CAD
parts, tool paths, fonts, maps and outlines of coun-
tries, and road and river networks.

In order set up tests that can be run automatically
and repeatedly in a consistent way, we used half of
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the mean segment/arc length as an automatically cho-
sen symmetric approximation tolerance. (Using one
fixed approximation tolerance for all polygons does
not make sense since it may be far too large for one
profile and, thus, cause a drastic data compression,
while it may be far too small for another polygon
and, thus, effectively disable any approximation.) In
all tests the approximation curve was also required to
lie within a tolerance zone of the original input. (That
is, our algorithm had to generate offset spikes.)

We ran our tests on a machine equipped with an
INTEL Core i7-2600 processor with four cores backed
by 16 GB of memory. Our test machine runs Ubuntu
10.4 LTS with the Linux 3.0.0 x64 kernel as a 64 bit
operating system. Since our implementation does not
benefit from hyper-threading we simultaneously exe-
cuted four instances of our implementation to fully
utilize all cores available.

Figure 11 collects the results of our statistics on
the runtime and on the memory consumption of our
approximation code. Both plots indicate that the code
performs as predicted by the theoretical analysis.
No significant difference in the results was observed
between tests of synthetic and real-world input data.
Hence, we do not bother to present essentially the
same plots twice.

We also compared our new top-down approach
with the doubling-and-bisection algorithm proposed
by Held and Eibl [9]. Our tests use the same auto-
matic setup of tolerances and a-nodes for both types
of approximation algorithms. The y-axes of the plots
in Fig. 12 show ratios of the form

Result(Top — Down)
Result(Doubling — and — Bisection)

for approximations of profiles by straight-line seg-
ments (top row), biarcs (middle row), and uniform
cubic B-splines (bottom row). The left column of plots
shows the runtime ratios, whereas the right column
shows the ratios of the number of output primitives.
The strips highlighted represent the 2o-environment

1e+07
1e+06

100000

Memory Usage [KB]

10000 ¢

1000 sl il
18402 1e+03  1e+04  1e+05
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Fig. 11: Runtime plot (left) and memory consumption (right) of our implementation. Each point in these plots

represents one test run on one specific input file.
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Fig. 12: Comparison of output and runtime for top-down and doubling-and-bisection methods.

around u, where o is the standard deviation from the
mean u.

The plots indicate that for approximations by
line segments and biarcs the top-down approach is
about 25% faster than doubling-and-bisection but gen-
erates about 60% more primitives for the approxi-
mation curves. Thus, from a user’s perspective the
top-down approach is likely to be regarded as inferior
to doubling-and-bisection. The situation is quite dif-
ferent for approximations by uniform cubic B-splines:
Our new top-down approach is both significantly
faster and generates fewer primitives than doubling-
and-bisection.

Recall that we used half of the mean segment/arc
length as an automatically chosen symmetric approx-
imation tolerance for our tests. Let rt(¢) denote the

runtime for some specific input relative to a symmet-
ric tolerance ¢. The left plot in Fig. 13 depicts ratios
rt(10 - A)/rt(A), where A denotes the default toler-
ance chosen automatically for an input, and the right
plot of Fig. 13 depicts ratios rt(A)/rt(0.1-A). The
plots indicate that, on average, increasing or decreas-
ing the approximation tolerance by a factor of 10
tends to result in a multiplication of the runtime by a
constant factor, albeit with a noticeable variation for
complex inputs.

5. DISCUSSION AND CONCLUSION

We present a new algorithm for approximating a set
of open and closed curvilinear profiles by means
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Fig. 13:

of uniform cubic B-splines, i.e., by C? continuous
primitives. The algorithm was implemented in C++,
based on the Voronoi package VRONI/ArcVRONI [7,
10]. Extensive tests run on 22124 synthetic and real-
world data sets indicate that our approach is reliable
and robust enough for practical applications.

An analysis of the runtime complexity and mem-
ory consumption shows that our algorithm runs in
O(nlogn) time and has a linear memory footprint.
We compared our top-down fitting scheme to previ-
ously published greedy methods and conclude that
our new approach, although slightly faster, tends to
produce more output when used for approximations
with biarcs and straight-line segments. However, our
approach is both faster and more efficient in terms
of smaller output size when used for approximations
with uniform cubic B-splines.

Our algorithm is a genuine extension of the work
by Heimlich and Held [6] to CZ-approximations of
open and closed profiles since it retains its pros:
A set of simple profiles is approximated by a set
of simple uniform cubic B-splines, thereby main-
taining the topology of the input. Asymmetric and
one-sided tolerances are supported. Due to the use
of Voronoi computations and Voronoi-based offset-
ting, our algorithm is completely immune to input
noise: As the approximation tolerance is gradually
increased, the number of approximation primitives
used decreases gradually. Thus, our algorithm can be
used for obtaining a data compression that maintains
important characteristics of the input.

The single biggest drawback of our approach is
the use and placement of a-nodes as control points
for the B-splines. There is little justification for plac-
ing a-nodes on the medial line of a tolerance zone
besides stating that this works decently in practice
and admitting that no one has any insights in a bet-
ter approach. A very recent algorithm by Maier and
Pisinger [12] allows to approximate a closed poly-
gon by a minimum number of circular arcs and line
segments without relying on a-nodes, but it seems
very difficult to extend their scheme to approxima-
tions with B-splines.

Runtime Quotient
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Impact of the approximation tolerance on the runtime.

However, a poor distribution of the a-nodes may
result in a large number of approximation primitives
that could have been avoided with a better placement
of the a-nodes. Figure 14 shows a sample tolerance
zone of a polygon with n vertices that could have been
approximated by using only four line segments (red
square), while a poor placement of the a-nodes results
in a wiggly approximation that consumes O(n) line
segments (orange polygon). It is obvious that one can
modify this example such that similar results occur
for an approximation with B-splines. Thus, devising
a refined strategy for the placement of the a-nodes
constitutes an important task for future work.

Fig. 14: An inappropriate placement of the a-nodes
may cause the number of approximation primitives
to sky-rocket.
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