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ABSTRACT

Computer-aided 3D ICs layout design requires efficient search of large and discontinuous spaces and
no deterministic algorithms are able to perform such a task. The paper presents a new framework for
visual kind of intelligent layout design. In the proposed approach a shape grammar generates possible
design solutions while intelligent algorithms control the direction of the solution space exploration.
Although the method is not limited to a particular design assignment, the paper focuses on a 3D ICs

layout problem to demonstrate its potential.
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1. INTRODUCTION

The problem of appropriate spatial distribution of
components, also called packing, is one of the most
basic engineering design tasks. It requires efficient
search of large and discontinuous spaces which con-
sist of components, objectives and constraints. It is
important not only for practical and scientific reasons
but for entertainment, like virtual reality modeling, as
well. The generation of a sophisticated 3D environ-
ment sometimes requires several years of work by a
team of specialists, which is both very expensive and
time consuming. That is why, the automatic genera-
tion of three-dimensional (3D) layout design solutions
gains more and more attention, especially in the field
of floorplanning of integrated circuits design [22] and
architectural design [20].

3D integrated circuits (3D IC) enhance perfor-
mance improvements by overcoming the boundaries
in interconnect scaling. A 3D IC consists of multiple
device layers which are stacked together with direct
vertical interconnects through them (Through Silicon
Vias, TSV). Therefore, it drastically reduces the global
interconnect length compared with two-dimensional
(2D) chip design. There are also other profits from the
third dimension such as:

e Higher: packing density, performance, memory
bandwidth,

e Lower interconnect power consumption,

e Smaller footprint,

e Mixed-technology chips support [10].
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Floor planning is the earliest and the most critical
phase in integrated circuits design. The task is to
pack all the given circuit elements in a chip without
violating design rules, so that the circuit performs
well and the production yield is high. All the circuits
elements are rectangular modules of fixed orienta-
tion, height and width. They cannot overlap. The
minimum bounding box of a packing is called the
chip [21]. The problem of integrated circuits layout
design in two-dimensional spaces has been solved
effectively, however the proposed algorithms cannot
be easily transformed to introduce the third dimen-
sion. What is more, the problem in 3D is much more
difficult in terms of computational complexity than
in 2D, and no deterministic algorithms are able to
perform such a task effectively and stochastic meth-
ods are needed to obtain a globally near-optimal
solution.

Existing CAD systems are excellent to hold graphi-
cal and geometric information. However, in order to
automatically generate plausible designs, they have
to register semantic layer information as well. The
most desirable solution is to entirely separate these
two design representations, namely the graphical and
the semantic one [9]. In this manner, not only the
method of graphical presentation of a design can be
freely replaced with another, but also the layout prob-
lem definition can be easily changed without affecting
the presentation layer. This kind of approach is very
generic but may suffer from limited robustness in
real-world design tasks. On the other hand, dedicated
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systems that solve particular design problem are too
specific to use for other domains without significant
reengineering.

The technologies for two-dimensional (2D) IC chip
layout have advanced significantly and many dedi-
cated commercial CAD tools are available. Generally,
floor plans are divided into two categories: the slic-
ing and the non-slicing structure. A slicing floor plan
is obtained by recursively bisecting a rectangle using
a horizontal and/or vertical line [22]. The solution
space is much smaller than in a non-slicing case
which implies simpler data structures representation
and faster runtime. A non-slicing structure is more
general and suitable for most of the real design exam-
ples and floor planning algorithms are usually based
on simulated annealing technique [8]. Different non-
slicing floor plan representations has been proposed
like sequence pair (SP) [21], bounded sliceline grid
(BSG) [23], O-tree [13], B*-tree [6], corner block list
(CBL) [16], and transitive closure graph (TCG) [18].

While considering the 3D floor planning represen-
tations, two groups can be identified: the true-3D and
the quasi-3D ones [8]. The true 3D approach is to
extend the existing 2D representation by the third
dimension, like sequence triple [28], 3D TCG [2] or 3D
slicing tree [7]. However, the today’s 3D IC technology
has some important limitations such as a restricted
number of device layers and a fixed height of the
inter-layer. Thus true-3D representations for the
z-axis generates too much redundancy, which is not
efficient in both time and space dimension. The quasi-
3D floorplanning solutions make use of an array of 2D
representations for different device layers, e.g. BSG [9]
or TCG [8].

The paper presents the essential features of a new
framework for visual kind of intelligent computer-
aided 3D ICs layout design that on the one hand
remains generic, while on the other hand makes use of
the domain-specific knowledge. The framework com-
prises a shape grammar generative engine and an
intelligent derivation controller. Since, the fundamen-
tal assumption for the framework was to separate the
presentation layer from the semantic one, both the
optimization technique and the shape grammar geo-
metric representation are problem independent while
goals and constraints vary for different problems. The
proposed optimization search algorithm takes the
problem formulation and identifies promising solu-
tions by evaluating design alternatives and evolving
designs states. To verify the suggested approach, a
dedicated application PerfectShape has been devel-
oped which architecture is based on the established
framework. All the examples presented in this paper
are generated with a use of the original software.

2. DESIGN KNOWLEDGE AND SHAPE GRAMMARS

Design environment includes a variety of elements
such as goals and constraints, and the current state
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of a design is dynamically changing. A lot of effort is
made in computational design to build a framework
that will take the advantage of the dynamic design
context during solving a design problem. Further-
more, the design visualization and the way of seeing
it is being explored as an indispensable part of the
design process and the design thinking [19].

The elaborated framework fits perfectly into these
tendencies. The reach design context is moderated by
a designer, a shape grammar, design knowledge and
a derivation controller. A designer defines a startup
design context: a shape grammar production sys-
tem, design knowledge in the form of constraints
and goals and derivation controller parameters. A
shape grammar plays a role of a generative engine.
It is used by a derivation controller which directs
the course of generation according to the specified
design knowledge. A designer perceiving the ongo-
ing visual execution can moderate it by tuning all the
available context elements, including a shape gram-
mar specification. In particular, new grammar rules
using emergent shapes may be introduced. Emer-
gence is acknowledged as a significant cognitive phe-
nomenon of visual reasoning [21]. We call emergent
those shapes which are not explicitly represented but
emerge from a design structure. As we demonstrate
later, shape grammar rules using those elements may
drastically discriminate a search space for the 3D
layout problem.

The shape grammar theory [27] and applications
[18] are well documented and represented in the
literature. Shape grammars are generative systems
dedicated to specific needs of designers and there
are applications of the formalism in the field of art,
architecture or engineering design. However, since
the formalism suffers from the computational com-
plexity and inferring grammar rules generating only
valid designs is in general impossible, it is regarded
as being impractical. Notwithstanding, there is an
example of a successful application of a shape gram-
mar in industry. It is used at Boeing to route sys-
tem tubing through an airplane [14]. The fruitful
adaptation of this method in industry is of partic-
ular importance to motivate development of engi-
neering shape grammars like the one proposed in
this paper.

One of the fundamental issues that has to be
solved while defining engineering shape grammars
is how to connect a grammar and design goals. On
the one hand, we may create a knowledge intensive
grammar which acts as a sophisticated expert sys-
tem and generates feasible and functional designs.
On the other hand, we may prefer a simple grammar
that generates topologically valid but not necessar-
ily feasible solutions and use some external directed
search mechanisms [4]. There is a recent trend to
implement the second approach and integrate a sim-
ple grammar with other methodologies to drive the
execution. Among them, the most popular are script-
ing languages [20] that require programming skills
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which are non common for designers. There are also
some machine learning attempts to overcome the
main weakness of the formalism by replacing the
manual design of grammar rules with the automated
one [11].

In our approach we also propose to use a sim-
ple grammar accompanied by stochastic optimization
algorithms which are able to navigate nonlinear and
multi-modal spaces. After [27], we define a shape
grammar (SG) as a 4-tuple (V1, Vu, R, I) where:

1. V1 # ¢ is a finite set of shapes (terminals),

2. Vy # ¢ is a finite set of shapes (nonterminals,
markers) such that Vi NnVy = ¢

3. Rc (VT UV x (VT UVN)* is a finite set of
rules,

4. Ie VT UVy- is an initial shape configuration
(axiom).

Strictly speaking, a shape grammar is a production
rule-based system. It derives designs by incremental
application of shape transformation rules to some
evolving shape configuration. Since all the circuits
elements are rectangular modules of fixed orienta-
tion, height and width, the only transformation we
are interested in is translation. The example of such a
simple shape grammar is presented in Fig. 1.
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Fig. 1: (a) Sample shape grammar with two rules, (b)
10-step generation example.

Knowledge usually improve the efficiency of the
search but in the same time reduce diversity which
may be considered as a drawback when novel or
unexpected solutions are desirable. Our concept is to
encrypt a low level of knowledge in a grammar itself
and represent explicit design requirements as goals
and constraints [25]. A single constraint is a pred-
icate that applied to a shape returns true or false.
A generation step can be performed if and only if a
derived design meets all the given constraints. That
is why, constraints cannot be mutually exclusive. If
the constraints are met, all the goals are indepen-
dently evaluated. A single goal is also a predicate but
opposite of a constraint it can be satisfied to some
extent. The explicit impact factor of a single goal to a
design evaluation score is moderated by a derivation
controller.
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2.1. 3D ICs Layout Design Constraints and Goals

As we have mentioned before, the 3D ICs layout
design problem is a kind of the box packing task,
where the given set of cuboid modules of fixed ori-
entation have to be placed without overlap in a
given area. Of course, this is just the background of
the floorplanning task where many other functional
and production requirements must be met. In our
research we are going to concentrate on one of the
biggest advantage of the 3D chips technology which
is a wirelength reduction, and on one of the major
challenges, which is effective cooling.

For the time being, we are focusing on summariz-
ing those constraints which are geometrical in nature
and does not need any additional semantic represen-
tation. Fortunately, while investigating the problem it
turned out that a lot of them fit into this category
(Tab. 1).

Constraint Description

a) Area constraint verifies whether a shape is
included in a specified
area

verifies whether a shape
does not intersect other
shapes in the current
design

¢) Glue shape constraint assures that a generated
solution is consistent

verifies whether a shape
of a selected type is the
only one of the type in a
specified neighborhood
range

verifies whether a shape
is in a right layer of the
current design, like the
boundary layer

verifies whether neighbor-
ing faces of adjoining
shapes are of the same
type

b) No intersection
constraint

d) Selected neighbor
constraint

e) In layer constraint

f) Selected face
constraint

Tab. 1: Constraints for the 3D ICs layout problem.

In the first place, all the circuit modules must
be placed on a given chip (area constraint) with-
out overlap (no intersection constraint). Taking into
account the fact that the bounding box of the chip
has to be minimized, a valid layout has to be con-
sistent (glue shape constraint). Let us now consider
a wirelength reduction requirement. The condition
is fulfilled if and only if the chip elements that are
connected are as close to each other as possible. It
would be best to place them side by side if possi-
ble so that relevant faces are adjacent (selected face
constraint). Thermal management on the contrary,
requests separating selected modules to minimize a
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Fig. 2: Designs generated by a simple grammar with constraints: (x) chip modules, (y) rule examples; (a)-(c)
designs violating constraints (a)-(c) from Tab. 1, respectively; (d)-(e) designs satisfying constraints (d)-(e) from

Tab. 1, respectively.

hot spot problem (selected neighbor constraint). Cool-
ing of 3D assemblies also requires settling the most
heating components in the outermost layer (in layer
constraint).

The Fig. 2 presents the constraints from (a) to (e)
from Tab. 1. Let us assume that we have to design a
3D layout configuration from the given set of com-
ponents (x). The example shape grammar rules may
look like (y). The design indicated by (a) violates the
area constraint and is beyond the scope of the given
region. The second example design (b) brakes the no
intersection constraint and some of the chip modules
intersect one another. The third layout is no consis-
tent and as such does not conform to the glue shape
constraint.

The last two designs are the examples of layout
designs that meet given requirements. For the layout
marked with (d), the selected neighbor constraint was
defined and the yellow components where selected as
the one that are forbidden to be immediately adjacent.
In the latter layout (e), the yellow components were
expected in the boundary layer.

In order to better visualize, the selected face con-
straint is presented one at a time in Fig. 3. In this
example components generated by a simple grammar
have colorful faces (a), namely white, blue and yel-
low. The shape grammar rules are defined in such a
way that when imposing a restriction on the grammar
that only faces in the same color may be adjacent,
there is only one possible design solution (b). When
abandoning this limitation, different designs may be
generated (c).

(b) ©)

(a)m . CE

B

Fig. 3: (a) Simple grammar with two rules, (b) design
satisfying a selected face constraint, (c) design violat-
ing it.

When all the constraints are met by a generated
layout design, goals evaluation is performed. Like in
the case of constraints, at this stage of our research,
we focus mainly on the goals which are geometrical in
nature (Tab. 2).

Goal Description

calculates the area
occupied by a current
design in relation to
the expected minimal
area

evaluates whether
components are
generated in the
expected layers (e.g.
boundary layer)

evaluates whether
components are
arranged in an
expected way (e.g.
aligned vertically)

a) Minimal space goal

b) Layer goal

¢) Spatial relation goal

Tab. 2: Goals for the 3D ICs layout problem.

As stated before, we are looking for the mini-
mum bounding box of a packing (minimal space goal).
Unlike constraints, which are either true or false,
goals are less strict and do not reject imperfect solu-
tions but rather direct our search towards better ones.
For example, instead of demanding placing a compo-
nent in the boundary layer we may prefer to put it
as close to the boundary layer as possible, the closer
the better (layer goal). Defining this goal for the yel-
low module, the layout design in Fig. 4(a) will have
a higher evaluation value than the one in Fig. 4(b).
Similarly, rather than require aligning some elements
vertically, we may align as many of them as possi-
ble, the more are aligned the better solution we obtain
(spatial relation goal). And likewise previously, having
this goal for the yellow module, the layout design in
Fig. 4(c) will be better rated than the one in Fig. 4(d).
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(b)

Fig. 4: The goal is to place the yellow modules in the boundary layer: the layout (a) is better than (b). The goal is
to align the yellow modules vertically: the layout (c) is better than (d).

3. OPTIMIZATION AND DERIVATION
CONTROLLER

Optimization plays a vital role in the design
and usability of many engineering products. How-
ever, shape grammars were originally presented for
architectural design where optimization is usually
neglected. The prerequisite for building engineering
shape grammars is a directed search techniques selec-
tion. There are several approaches for the 3D layout
problem, like genetic algorithms, simulated anneal-
ing and a hybrid approach using a combination of
simulated annealing and expert systems [9].

As already mentioned, a shape grammar is a
production rule-based system successively applying
shape transformation rules to some evolving shape
configuration. Every generation step requires four
actions to be made: select a rule, select an embedding,
apply a rule and finally decide whether to approve
or to reject this step. Usually, the rule is selected
randomly, but it may also involve some functional
decomposition [1] or machine learning techniques
[12,25]. The embedding selection is hardly ever men-
tioned in the literature. The generation step is com-
mitted if the evaluation value of a design increases.
Otherwise, the generation step is rollback or decision
is left to some computational intelligence method like
simulated annealing [3].

In our approach, we propose to select a rule
according to some assigned probability which is adap-
tively changing during the course of derivations. The
dynamic rules probabilities values modification is the
responsibility of a derivation controller and is highly
dependent on design knowledge. For the ICs layout
problem we have adopted a functional decomposition
and identified two main stages of the task: generating
all the required components and rearranging them to
obtain the best possible solution. Following this plan
of actions, we divide all grammar rules into two main
functional groups. The first group contains additive
rules which introduce new chip elements (e.g. a core)
and the second one contains the rules which translate
already generated components. In accordance with
this strategy, the probabilities of rules generating new
circuit elements decrease in direct proportion to the
number of elements already generated. The imple-
mented rule selection mechanism is based on a well
known, in the field of evolutionary computations (EC),
roulette wheel selection. We assign some startup rules
weights (corresponding to probabilities), equivalent to

a fitness function value in EC, to both groups of rules
and decrease them appropriately when new modules
are generated. In this way, we not only have some rule
selection controlling mechanism, but we reach a goal
of generating all the required components as well.

Having a rule selected, we have to decide where to
embed it. In other words, we have to indicate a part of
the current design we are going to apply the rule to.
We have established four different methods of a rule
embedding (Tab. 3).

Embedding Description

a) Execute first admissible  a rule is applied to the
first admissible shape
configuration, if one is
recognized

a rule is tried to being
applied to the part of
the design which came
into being during the
last execution step

a rule is applied to
randomly selected
one from the all
admissible shape
configurations

a rule is applied to
all admissible shape
configurations

b) Execute last

c) Execute random

d) Execute all

Tab. 3: Rule embedding methods.

As we can see in Fig. 5, the rule embedding method
has an essential influence on the final design. Even
though we use a single simple grammar (a) and always
a 10 step generation, the achieved results are quite
different (b)-(e). The result of the first admissible
embedding method is highly dependent on the order
in which design elements are stored. In the presented
example, the generated shapes are inserted at the end
of the shape collection. That is why, we can observe
such a difference between the execute first admissi-
ble (b) and the execute last (c) routine. In the first
case, generated design are much more compact and
in the second one more expanded. It is worth noting,
that the execute all (e) method may be especially use-
ful while generating a fractal like designs like Menger
sponge. Depending on a design task, a single method
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of embedding for all rules may be preferred (like in
Fig. 5) or it can vary for different rules, or even for
different stages of a single design solution generation.
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Fig. 5: Ten step generation design solutions for a
simple grammar (a) with different embedding meth-
ods: (b) execute first admissible, (c) execute last, (d)
execute random, (e) execute all.

For the 3D ICs layout problem application we
apply a selected rule using the execute random
method for specified number of tries. After all tries,
the application with the highest evaluation value is
chosen. If the resulting new evaluation value is higher
than the one before the execution, the generation step
is committed. If not, we have to decide whether to
accept or to reject it. In the meanwhile, we use the
simulated annealing to support the decision process.
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However, in the future work we would like to incor-
porate some multiagent environment like in [12]. We
look for a design solution until stop criteria are met.

Carrying out experiments, we have acknowledged
a necessity for implementing a chain of translation
moves instead of a single one. Let us consider the
example in Fig. 6. Suppose that our goal is to create
a minimal space design from the given components
configuration (a). We can achieve the goal by properly
moving one of the cube. One of such a possible three
moves sequence is presented by the configurations
(b)-(d).

In a chain of translation moves, a randomly
selected embedding undergoes a sequence of trans-
formations and the subsequence with the highest
design evaluation value is taken into further consid-
eration. This routine does not guarantee finding the
optimal design solution, but increases the likelihood
of success.

Even more indispensable seems the need for intro-
ducing emergent elements into the course of visual
computations. Let us again consider the example in
Fig. 6. Encountering such a shape configuration, a
human-being applying a single swap transformation
obtains the solution with the minimal bounding box.
She/he easily perceives an emergent cube hole in the
design and fills it with the appropriate element. In fur-
ther research we are going to use this phenomenon
extensively to drastically reduce the total search time.

Finally, let us present some preliminary results for
a very simple floor planning design task. In Fig. 7 four
example design solutions are presented. The task was
to spatially arrange given 10 elements to minimize the
total volume of the chip. In the first two examples (a)-
(b) the additional constraint (in layer constraint) was
to place all the purple modules in the boundary layer,
and in the second example (c)-(d) all the yellow ones.

(a) i (o) ; () (d)

Fig. 6: Startup layout with emergent void (a) and a chain of three translation moves (b)-(d).

(a)

Fig. 7: Example ICs layout design solutions.
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Fig. 8: Example ICs layout design solutions without voids.

In both cases, the required constraint is met, however
achieved solutions are too far from being optimal.
Such a huge space of possible designs forces the use
of more directed search. We strongly believe, that the
recognition of emergent holes is the answer. Eliminat-
ing all the identified voids from the presented layout
design will greatly improve their quality. Their proba-
ble versions after applying such a procedure may look
as in Fig. 8.

4. SUMMARY AND FUTURE WORK

The aim of the presented research is to build a flexi-
ble software architecture framework which will enable
solving the 3D layout problem for different engineer-
ing design assignments. The proposed solution has to
be both methodologically advanced and easily recon-
figurable. There are many reasons why the approach
is applied to the 3D ICs layout design. First of all,
the 3D ICs floor planning effective computer-aided
design is not only up-to-date but very challenging one
as well. Secondly, the available on the market elec-
tronic design automation (EDA) tools are dedicated
solutions adjusted to present technology limitations.
Most of them are not fully 3D aware but rather adapt
2D algorithms and change only some stages in a
design flow (2.5D IC design flow) [26]. And finally,
the selected problem design space contains so vari-
ous goals and constraints that successful application
in this domain will confirm the general usefulness of
the elaborated framework.

Taking into consideration the floor planning prob-
lem statement it appeared that many constraints and
goals are geometrical in nature and some of them may
be verified visually. This was the reason why we have
decided to adopt shape grammars and visual compu-
tations to solve the problem. The approach enables
us to take the advantage of the diagrams not only
in communication but in the cognition process as
well. The proposed approach is being verified with
a use of a dedicated application PerfectShape. Even
though we are at the conceptual stage of our stud-
ies, the achieved results are highly promising and we
strongly belief that it is worth pursuing. Having the
core generating engine developed, now we will con-
centrate on optimally directed derivations. We intend
to involve emergent structures and multiagent envi-
ronment to support the decision making process.
Furthermore, we plan to introduce a semantic layer

representation to facilitate wirelength reduction and
thermal management in 3D chips. Since the frame-
work deliberately and entirely separates the graphical
and the semantic design representations, it may take
the advantage of any from the 3D floor planning
representations reported in the literature.
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