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ABSTRACT

In performing finite element (FE) analysis for an engineered design, a symmetric model is usually
reduced to a symmetry cell, a minimal part of the model from which the whole model can be restored
from its symmetry pattern. The mesh of the symmetry cell is then generated separately after the cell
extraction. Exploitation of such symmetry properties helps reduce the computational complexity of
downstream tasks of mesh generation and engineering analysis, and saves memory usage. However,
due to the separation of the symmetry cell extraction and the mesh generation, the mesh generated
following such a procedure is usually not optimal in the sense that their element number is not
minimal at certain quality requirements, and thus is not very computationally efficient. In order to
resolve this issue, a novel approach is proposed in this paper to construct an optimal symmetry
cell mesh (in its mesh element number) for a rotationally symmetric CAD model. The optimality is
mainly achieved by simultaneously extracting the symmetry cell and generating its associated mesh
form using an approach of symmetry-constrained local Delaunay refinement. In such way, the global
symmetry information of the whole model is maximally used for mesh quality, and the mesh is only
generated for the symmetry cell, instead of the whole model, and thus is very efficient.

Keywords: optimal rotational symmetry cell, Delaunay refinement, FE analysis.

1. INTRODUCTION

Symmetry widely exists in natural and man-made
objects. In the finite element analysis of symmetric
models, with the aid of symmetry reduction tech-
niques, the symmetry cell instead of the full model is
used to obtain the solution, so as to shorten the com-
putation time and to improve the analysis accuracy
[1]. However, a rotationally symmetric model can have
multiple symmetry cells, whose mesh sizes (number
of elements or nodes) may vary vastly. Figure 1 shows
two different manually extracted symmetry cells for a
3-fold rotationally symmetric model, where the differ-
ence of their node numbers reaches 36% for the larger
one. In order to reduce the degree of freedoms for
downstream task of finite element analysis, a symme-
try cell mesh with minimal elements is very necessary
to achieve maximal computational efficiency.

Currently symmetric models are prepared for
FE analysis usually in a two-stage manner. First, a
symmetry cell is extracted from the original full
model. Second, a mesh is generated for the extracted

symmetry cell. There are mainly three disadvan-
tages with such methods. First, optimal (in the sense
that will be explained later soon) symmetry cells
can be hardly generated, because it is not easy to
explicitly describe the relationship between a shape
and its mesh size (element number) in a reason-
able and quantitative way. Second, the introduction
of the fixed symmetry boundaries may lead to more
mesh nodes. Third, the extraction of symmetry cells
involves tedious Boolean operations which are hard to
automate in a robust way for complex models.

To resolve the above mentioned issues, an auto-
mated method based on Delaunay refinement is pro-
posed in this paper to simultaneously construct sym-
metry cells and their meshes for rotationally symmet-
ric models. The constructed 2D symmetry cell meshes
are size optimal. Following previous work [2], a sym-
metry cell mesh of a rotationally symmetric model
is size-optimal, or optimal for simplicity, if a size
optimal mesh of the global model can be trivially
produced by performing the rotation transformation
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Fig. 1: Different symmetry cells lead to meshes of
different node numbers. Example: (a) Symmetry cell
mesh with 42839 nodes, (b) Symmetry cell mesh with
27416 nodes.

on it. This is proved under the same framework as
that of Delaunay refinement mesh generation. This
nice property, however, is not guaranteed in 3D cases
although experimental results show that their ele-
ment numbers are very close to a fraction of the
element numbers of the full meshes.

2. RELATED WORK

Suresh considered the problem of automated sym-
metry cell construction and proposed a method to
construct symmetry cells of 2-D solids [4]. In his
method, symmetry cells are constructed by cutting
the original solid by two carefully selected symmetric
lines which originate from the centroid and terminate
at the boundary. Heuristics for selecting ‘locally opti-
mal’ cutting lines were also given. But coarse meshes
have to be generated for each candidate symmetry cell
in order to ultimately determine the best choice.

As a necessary background, basic steps of the
Delaunay refinement algorithms in 2D case are intro-
duced here. Delaunay refinement algorithms for mesh
generation operate by maintaining a Delaunay trian-
gulation or a CDT (constrained Delaunay triangula-
tion), which is refined by inserting carefully placed
vertices (called Steiner points) until the mesh meets
constraints on element quality and size [3]. A Delau-
nay triangulation for a set P of points in a plane is a
triangulation DT(P) such that no point in P is inside
the circumcircle of any triangle in DT(P). A CDT can
be defined for a PSLG (planar straight line graph) [2],
where every input segment appears as an edge of the
triangulation.

Two types of Steiner points are inserted [2]. The
first type consists of midpoints of encroached sub-
segments, which are used to recover boundaries of
the input model and prevent bad quality triangles
at the boundaries. The second type consists of cir-
cumcenters of skinny triangles, which are used to
eliminate small angles and improve mesh quality.
Off-centers [7] can replace circumcenters as another
choice of Steiner points.

Incremental insertion algorithms like Lawson’s
edge flipping algorithm or the Bowyer/Watson

algorithm are usually used to update the Delaunay
triangulation [3]. In Lawson’s algorithm, when a ver-
tex is inserted, the triangle that contains it is found,
and three new edges are inserted to attach the new
vertex to the vertices of the containing triangle. (If
the new vertex falls upon an edge of the triangula-
tion, that edge is deleted, and four new edges are
inserted to attach the new vertex to the vertices
of the containing quadrilateral.) Next, a recursive
procedure tests whether the new vertex lies within
the circumcircles of any neighboring triangles; each
affirmative test triggers an edge flip that removes
a locally non-Delaunay edge. Each edge flip reveals
two additional edges that must be tested. When
there are no longer any locally non-Delaunay edges
opposite the new vertex, the triangulation is globally
Delaunay.

Ruppert [2] defines the local feature size function
for shapes in Euclid space which relates a geometric
shape to vertex density of its triangulation. Using this
tool he proves that triangulations generated by his
Delaunay refinement method are size optimal, mean-
ing that the number of triangles is within a constant
factor of the minimum number possible.

Due to the ignorance of consideration of global
symmetric constraints and accumulation of numeri-
cal errors, traditional Delaunay refinement algorithms
cannot preserve symmetry of the mesh. Zeng pro-
posed an orbit insertion technique to preserve sym-
metry for symmetric regions [8] by inserting a group
of symmetric Steiner points in each refining step.

3. METHOD OVERVIEW

A novel approach is proposed in this paper to simul-
taneously construct the symmetry cell and its corre-
sponding mesh. In this approach, no additional fixed
boundaries are introduced and only one symmetry
cell mesh needs to be constructed. The main idea
is to directly generate the symmetry cell mesh by
symmetrizing and localizing basic operations of the
global meshing process. Delaunay refinement algo-
rithms are adopted as the mesh generation method
considering its theoretical merits.

Symmetry cell meshes are constructed by a newly
introduced symmetry constrained local Delaunay
refinement algorithm. The algorithm operates by
maintaining a symmetry cell mesh (local mesh for
short) of the full model. The full mesh restored from
the local mesh by rotational transformations is a
Delaunay mesh. The local mesh is iteratively refined
by inserting Steiner points until all triangles meet
specified quality criteria. Unlike meshing some pre-
defined symmetry cells, symmetry boundaries of the
local mesh in the proposed method are not fixed. They
are allowed to change during the refining process,
leading to evolving symmetry boundaries. The finally
resulted local mesh after refinement is taken as the
desired symmetry cell mesh.
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Fig. 2: Symmetry cell mesh construction.

Figure 2 illustrates the process of the symmetry
cell mesh construction in 2D. The input to the method
is a rotationally symmetric model represented by
PSLG. The output is a quality symmetry cell mesh
of the input model. The overall process is similar
to classical Delaunay refinement algorithms, with the
following four major differences: (1) some symmetry
cell of the initial CDT instead of the CDT itself is taken
as the basis of refinement; (2) symmetry transforma-
tions are used to determine the proper Steiner point
and its enclosing triangle in the point location step;
(3) not only the Steiner point but also its symmet-
ric points are used to find encroached sub-segments;
(4) symmetry edges are allowed to be flipped in mesh
update.

Key features of the proposed method are pre-
sented in section 4 with 2D examples. Issues spe-
cific to 3D cases are discussed in section 5. The
optimality of the 2D symmetry cell mesh is proved
in section 6.

4. SYMMETRY CONSTRAINED LOCAL DELAUNAY
REFINEMENT IN 2D

The first key step of the algorithm is the construction
of the initial local mesh. In this paper the symmetry
cell of the CDT of the input model is taken as the ini-
tial local mesh. Denote CDT of the input model X as
CDT(X ). As X is symmetric, so does CDT(X ). Theoreti-
cally, any connected symmetry cells of CDT(X ) can be
taken as the initial local mesh because they all lead
to the same result. But, symmetry cells with fewer

symmetry edges are preferred as they will reduce the
frequency of moving triangles and result in fewer ver-
tices. The initial local mesh is constructed by cutting
the CDT of X with two symmetric edge paths, which
are found using shortest path algorithms (Fig. 3).

There are three kinds of edges in the local mesh.
Symmetry edges are boundary edges that do not
belong to X . Fixed edges are boundary edges that
belong to X . Interior edges are edges that totally lie
within the local mesh. There are two groups of sym-
metry edges, respectively form the lower symmetry
bound and the higher symmetry bound. Symmetry
edges on the lower bound can be rotated counter-
clockwise θ degrees about the centroid of X to coin-
cide with symmetry edges on the higher bound, where
θ is the symmetry angle. Reversely, the higher bound
can be rotated counterclockwise (360-θ ) degrees to
meet the lower bound.

If a skinny triangle exists, a Steiner point should be
inserted to remove this triangle. Before insertion, the
triangle enclosing the Steiner point should be located
first. If the point lies outside of the local mesh but one
of its symmetric point lies inside of the local mesh,
the Steiner point should be replaced with the symmet-
ric point (Fig. 4.). If any sub-segments are encroached
by the Steiner point or any of its symmetric points,
the Steiner point should not be inserted.

After inserting a Steiner point, triangles enclos-
ing the point are split, and the mesh is updated by
edge flipping. Symmetry edges are also allowed to be
flipped, simply turn them into interior edges by mov-
ing corresponding triangles (Fig. 5.). Suppose e is a
symmetry edge, e’ is the symmetric edge of e, t is

Fig. 3: Construction of initial local mesh (from left to right): (a) input model; (b) CDT; (c) initial local mesh.

Computer-Aided Design & Applications, 11(3), 2013, 326–334, http://dx.doi.org/10.1080/16864360.2014.863505
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



329

Fig. 4: Steiner point location: (a) Steiner point outside of the local mesh; (b) symmetric point inside of the local
mesh; (c) insert symmetric point and split triangle.

Fig. 5: Flip of symmetry edge: (a) symmetry edge to be flipped; (b) turn the symmetry edge into an interior edge
by moving triangle; (c) the edge is flipped.

the adjoining triangle of e, and t ′ is the adjoining tri-
angle of e′. Compute the rotational transformation T
around the centroid of X , which transforms e’ to e. e
should be flipped if the circumcircle of t’ transformed
by T contains the vertex of t opposed to e. If e should
be flipped, e and e’ are merged into one interior edge
by transforming vertices of t’ by T and moving t ′ onto
e. Adjacency relations of the moved triangle are also
adjusted and new symmetry edges are formed.

The symmetry boundary changes as triangles on
symmetry edges are moved. The lower bound and the
higher bound always keep consistent. The local mesh
after the refinement may have bad shaped symme-
try boundary, which is adjusted by moving triangles
having more than one symmetry edge.

5. SYMMETRY CONSTRAINED LOCAL DELAUNAY
REFINEMENT IN 3D

The algorithm in 3D proceeds basically in the same
way as its 2D case, but with more complexity. As it

is difficult to find smallest symmetry bounds which
split the tetrahedron apart, approaches constructing
such symmetry bounds have to be developed. More-
over, moving of tetrahedrons is more likely to cause
invalid topologies, which should be handled with care.
Details are elaborated below.

For clarity, tetrahedron faces in the local mesh are
classified into three categories: fixed faces (bound-
ary faces that belong to the input model), symme-
try faces (boundary faces that do not belong to the
input model) and interior faces. Fixed faces can-
not be flipped, while other faces can be flipped.
Edges/vertices on symmetry faces are symmetry
edges/vertices.

5.1. Construct Initial Symmetry Cell Mesh

The key to the construction of the initial local mesh is
to find a pair of symmetry bounds with as fewer faces
as possible. The procedure FindSymmetryBounds is
used to find such symmetry bounds.

FindSymmetryBounds(X , M )
//X is the input model, M is the CDT of X

1. Let O be the centorid of X , A be the rotational axis of X , and L be one of the perpendicular axis of A
2. Create cylindrical coordinate system (O,A,L)

//O is the origin, A is the polar axis, L is the longitudinal axis
3. Compute the cylindrical coordinates (ρ, ϕ, z) for each point of M
4. Create half-planes P1(ϕ = 0) and P2(ϕ = θ )
5. Find groups of tetrahedrons intersected with P1 and P2, denoted G1 and G2
6. Mark adjacent faces between tetrahedrons in G1 and tetrahedrons lie totally on the forward side of

P1 as the lower symmetry bound
7. Mark adjacent faces between tetrahedrons in G2 and tetrahedrons lie totally on the forward side of

P2 as the higher symmetry bound
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Each symmetry face on the lower bound is related
to its symmetric face on the higher bound. Two
faces are symmetric if their vertices are symmetric.
Two vertices are symmetric if they have the same
radial coordinates and height, and the difference of
their angular coordinates equals the symmetry angle.
Tetrahedrons between the lower and higher symmetry
boundaries form the initial local mesh. Fig. 6 shows
the CDT of a rotationally symmetric model and its
initial local mesh. The lower symmetry bound are
painted in red and the higher symmetry bound are
painted in blue.

Fig. 6: Construction of 3D initial local mesh: (a) CDT
in front view with lower bound in red and higher
bound in blue, (b) initial local mesh.

5.2. Move Tetrahedrons

Sometimes, the mesh becomes topologically invalid
after a tetrahedron is moved: one exterior edge
connected with more than two exterior faces
(Fig. 7(a)); one exterior vertex connected with more
than one exterior face caps (Fig. 7(b)); even discon-
nected tetrahedrons. Normally, faces are connected
by edges, and tetrahedrons are connected by faces.
Faces connected only by vertices and tetrahedrons
connected only by vertices or edges are all invalid
topologies. Invalid meshes will hinder following up
refining operations. These potential invalid topolo-
gies must be identified and repaired. The procedure
FindMoveTets is used to find and fix potential invalid
move.

Information about faces around boundary edges
and vertices are used to identify invalid topologies
in this paper. Faces that separate tetrahedrons to be
moved and the remaining tetrahedrons are called split
faces. Denote the group of tetrahedrons to be moved
as G. Denote e a boundary edge and v a boundary ver-
tex in G. Six types of invalid topologies are identified
according to the following rules. (1) If there are two
split faces adjacent to e, then e will become invalid
after move (Fig. 8(a)). (2) If e is a symmetry edge,
but none of its adjacent symmetry faces belongs to
G, then the symmetric edge of e will become invalid
after move. (3) If split faces around v form a closed
cap, then v will become an invalid vertex after move

Fig. 7: Invalid topology: (a) invalid edge connection, (b) invalid vertex connection.

FindMoveTets(M , G)
//M is the mesh, G is the group of tetrahedrons to be moved

1. Let b= IsValidMove(G)
2. While b!=VALIDMOVE
3. If b==INVALIDFACE
4. FixInvalidFace(M ,G)
5. b=IsValidMove(G)
6. EndIf
7. If b==INVALIDEDGE
8. FixInvalidEdge(M , G)
9. b=IsValidMove(G)
10. EndIf
11. If b==INVALIDVERTEX
12. FixInvalidVertex(M ,G)
13. b=IsValidMove(G)
14. EndIf
15. EndWhile
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(Fig. 8(b)). (4) If spit faces around v fall into at least
two groups of edge-connected face patches, then v

will become invalid after move. (5) If v is a symme-
try vertex, but none of its adjacent symmetry faces
belongs to G, then the symmetric vertex of v will
become invalid after move. (6) If split faces of G fall
into at least two disconnected patches, then G will be
split into several disconnected parts.

Fig. 8: Configurations leading to invalid topology: (a)
two split faces around a boundary edge, (b) split faces
form a cap at a boundary vertex.

Potential invalid topologies are repaired by
expanding the tetrahedron group. For case (1), G is
expanded by including minimal adjacent tetrahedrons
of e from one split face to one boundary face. For
case (2), G is expanded by including minimal adjacent
tetrahedrons of e from one split face to one symmetry
face. For case (3), G is expanded by including min-
imal adjacent tetrahedrons of v from one split face
to one boundary face. For case (4), remaining tetra-
hedrons at v are separated into several disconnected
groups. All groups except the largest one are added
into G. For case (5), G is expanded by including mini-
mal adjacent tetrahedrons of v from one split face to
one symmetry face. For case (6), the remaining tetra-
hedrons are separated by the split faces into several
disconnected groups. All groups except the one con-
taining the docking faces are included into G. Docking
faces are object symmetry faces where tetrahedrons
in G will be moved to. There may be multiple choices
for the combination of split face and symmetry face
or split face and boundary face. In such case, the
combination which leads to minimal number of new
symmetry faces is chosen.

6. SIZE OPTIMALITY

In this paper, the 2D symmetry cell mesh constructed
by the proposed method is proved to be size optimal.
A symmetry cell mesh is said to be size optimal if the
full mesh restored from the symmetry pattern is size
optimal, which means that the number of elements of
the full mesh is within a constant factor of the min-
imum number under fixed quality specification. The
proof procedure consists of two major steps. The first
step is to prove that the full mesh recovered from

the symmetry cell mesh can be generated by the orbit
insertion method in [8]. The second step is to prove
that the mesh generated by the orbit insertion method
is size optimal.

Suppose the rotational symmetry fold of an input
PSLG X is n, and the symmetry angle is θ (θ = 360◦/n).
Denote the centroid of X as o. If o lies inside of X , then
it is also included in the PSLG. The symmetry group of
X is Cn = {R0, R1, . . . , Rn−1}, where Ri(i ∈ N, 0 ≤ i ≤ n)

is a rotational transformation of i*θ degrees about o.
lfs() is a function associated with X and defined on
the plane of X [2]. For any two points p and q on the
plane, lfs(q) ≤ lfs(p) + |pq|.

Construct symmetric mesh T and symmetry cell
mesh PT synchronously in the following way: (1)
Compute initial full mesh T0 = CDT(X ) and initial
symmetry cell mesh PT0. (2) Refine both meshes by
inserting Steiner points. Denote Ti the full mesh and
PTi the symmetry cell mesh after the ith refinement.
(3) Denote p the Steiner point of PTi−1 in the ith
refinement. Apply transformations in Cn to p to get
n symmetric points. Insert these points into Ti−1.
Update both meshes. (4) If all triangles in PTi sat-
isfy the required quality criterion, stop refinement.
Let PT = PTi and T = Ti .

Theorem 1 PT is a symmetry cell of T .

Proof This theorem is proved by induction. (a) By
construction, PT0 is a symmetry cell of T0. (b) If PTi
is a symmetry cell of Ti , then PTi+1 is a symmetry

cell of Ti+1. Let T ′ =
n⋃

k=0
Rk(PTi+1). Firstly, according

to the point insertion rule for Ti+1, T ′ and Ti+1 have
the same set of points. Secondly, transformed PTi+1
only intersect at symmetry edges. Thirdly, every edge
of T ′ is locally Delaunay, so T ′ is Delaunay. Therefore,
T ′ = Ti+1, PTi+1 is a symmetry cell of Ti+1. (c) By (a)
and (b), the theorem holds. �

Lemma 1 Let p and q be two of the n symmetric
Steiner points inserted into some Ti, and q = R1(p).
Denote the radius of the largest vertex free circle at
p as r. If |pq| < r, then θ < 60◦, and |pq| > 2r sin θ

2 .

Proof In Fig. 9, the two circles in solid lines are
vertex free circles of p and q respectively. A vertex
free circle is a circle that does not enclose any ver-
tices of Ti . Because Ti is rotationally symmetric, hence
the two circles are congruent. As o lies in the out-
side of both circles, therefore β ≥ θ . When |pq| < r ,
|pq| = 2r sin β

2 ≥ 2r sin θ
2 , which gives |pq| > 2r sin θ

2 ,
and θ < 60◦. �

Lemma 2 For fixed constants CT and CS, the following
statements hold:

(1) For each vertex p in T0, the distance to its
nearest neighbor vertex is at least lfs(p).
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Fig. 9: Two symmetric Steiner points and their vertex
free circles.

(2) When an interior vertex p is added to Ti, the dis-
tance to the nearest neighbor vertex is at least
lfs(p)
CT

.
(3) When a boundary vertex p is added to Ti, the

distance to the nearest neighbor vertex is at
least lfs(p)

CS
.

Proof Case (1) holds by definition of the lfs() func-
tion. When θ ≥ 60◦, the lemma can be proved using
arguments in [2]. When θ < 60◦, the nearest neighbor
vertex of p may be its symmetric vertices, in which
case CT and CS take different values. Denote such a
symmetric vertex as q.

(1) p is the circumcenter of a skinny triangle.
The radius of the circumcircle is r . According to the
derivation in [2], when CS ≥ CT ≥ 1, inequality r ≥

lfs(p)
(1+2Cs sin α)

holds, where α is the specified minimum
angle bound. When |pq| ≥ r , nearest neighbors of p
are vertices of the skinny triangle, at a distance of r .
When |pq| < r , nearest neighbors of p are its symme-
try vertices, at a distance of |pq|. By Lemma 1, |pq| >

2r sin( θ
2 ) ≥ 2 sin( θ

2 )lfs(p)

(1+2Cs sin α)
. Therefore, case (2) holds when

CT ≥ (1+2CS sin α)

2sin( θ
2 )

.

(2) p is the midpoint of an encroached sub-
segment whose length is 2r . According to the deriva-
tion in [2], when CS ≥ (1 + √

2CT ), inequality r ≥
lfs(p)

(1+√
2+2

√
2CS sin α)

holds. When |pq| ≥ r , nearest neigh-

bors of p are vertices of the encroached sub-segment,

at a distance of r . When |pq| < r , nearest neighbors of
p are its symmetry vertices, at a distance of |pq|. By

Lemma 1, |pq| > 2r sin θ
2 ≥ 2 sin θ

2 lfs(p)

(1+√
2+2

√
2CS sin α)

. There-

fore, case (3) holds when CS ≥ (1+√
2+2

√
2CS sin α)

2 sin θ
2

.

When sin α <
√

2
2 sin θ

2 , the boxed conditions
can be simultaneously satisfied by choosing CS =

1+√
2

2 sin θ
2 −2

√
2 sin α

, CT = 1+2CS sin α

2 sin θ
2

.

Lemma 3 For each vertex p of T, its nearest neighbor
vertex q is at a distance at least of lfs(p)

CS+1 .

Proof If p is added after q, or p and q are added at
the same time, by Lemma 2, |pq| ≥ lfs(p)

CS
. If p is added

before q, then |pq| ≥ lfs(q)
CS

, by Lipschitiz condition,

|pq| ≥ lfs(p)−|pq|
CS

, therefore, |pq| ≥ lfs(p)
CS+1 . �

Theorem 2 T is size optimal.

Proof According to arguments in [2], if Lemma 3
holds for T , then the size of T is no larger than C
times the size of any triangulation of X which has
the same radius-edge ratio bound, where C = O((CS +
1)2A), where A is the radius-edge ratio bound of T .
Thus, T is size optimal. �

Theorem 3 PT is an optimal symmetry cell mesh of X .

Proof This theorem holds by Theorem1 and
Theorem 2. �

7. RESULTS

The proposed approach is implemented with the open
source library Triangle [6] and Tetgen [5], and its
performance is tested both on 2D and 3D examples.

Two 2D rotationally symmetric models are tested.
For each model, the full mesh and the symmetry
cell mesh are generated respectively using traditional
Delaunay refinement method and method proposed
in this paper. A minimum angle bound of 35 degrees
is imposed. Comparative results are shown in Fig. 10
and Tab. 1. It can be seen that the quality of the sym-
metry cell meshes approaches the quality of the full

Fig. 10: Symmetry cell meshes for 2D rotationally symmetric models: from left to right, C6 full mesh, C6 cell
mesh, C3 full mesh, C3 cell mesh.
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Statistics C6 full mesh C6 symmetry cell C3 full mesh C3 symmetry cell

Mesh triangles 647 90 1095 332
Smallest angle 35.02 35.272 35.005 35.048
Largest angle 109.82 108.49 109.37 106.2

Tab. 1: Mesh statistics for model C6 and C3

Fig. 11: Symmetry cell meshes for a 3D rotationally symmetric model: from left column to right column, input
model, mesh for predefined symmetry cell M1, symmetry cell mesh M2.

meshes, while element numbers of the cell meshes are
slightly smaller than 1/n of the element numbers of
the full meshes.

Fig. 11 shows two symmetry cell meshes of an 3D
rotationally symmetric model. The first column is the
input model. The middle column is the mesh gener-
ated by Tetgen with periodic boundary condition for
a predefined symmetry cell. The rightmost column
is the symmetry cell mesh generated using the pro-
posed method. A radius edge ratio of 1.414 and a
volume constraint of 10 are imposed. Fig. 12 shows
the higher and lower symmetry bounds of our mesh,
which are highlighted in red and blue colors respec-
tively. Other information on mesh qualities is listed
in Tab. 2, where a tetrahedron’s aspect ratio (AR) is
its longest edge length divided by its smallest side
height.

Fig. 12: Symmetry bounds of M2.

Modal analysis is conducted for the two meshes
in Fig. 12. Mesh M3 is a mesh generated by the
commercial software ANSYS Workbench for the same
predefined symmetry cell as M2. M3 has 12461

Mesh AR AR AR AR AR AR AR AR
Mesh tetrahedra (<1.5) (1.5-2) (2-2.5) (2.5-3) (3-4) (4-6) (6-10) (10-15)

M1 1162 36 359 422 170 114 44 16 1
(3.10%) (30.90%) (36.32%) (14.63%) (9.81%) (3.79%) (1.38%) (0.09%)

M2 1115 34 421 329 152 101 47 27 4
(3.05%) (37.76%) (29.51%) (13.63%) (9.06%) (4.21%) (2.42%) (0.36%)

Tab. 2: Mesh statistics for model in Fig. 12.
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Time Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
Mesh (sec) Freq. Freq. Freq. Freq. Freq. Freq. Accuracy

M1 2.10 0 6.3077e-6 18.974 25.786 33.175 42.230 81.5%
M2 2.10 0 2.1228e-6 18.822 25.745 32.726 41.575 82.7%
M3 143.25 9.5928e-7 6.0285e-6 16.366 21.673 26.642 36.913

Tab. 3: Comparison of analysis time and accuracy.

elements. Frequencies of the first six modes are
computed. Analysis results are listed in Tab. 3. For
brevity, only frequencies of the first harmonic index
are given.

Results for 3D models show that the symmetry cell
mesh generated by the proposed method has fewer
elements than the mesh of the predefined symmetry
cell. The analysis takes the same seconds for both
meshes. But the accuracy of M2 is slightly higher
than M1.

8. CONCLUSIONS

An automated method for constructing symmetry cell
meshes of rotationally symmetric models is proposed
in this paper. The proposed method has the following
advantages: (1) It can lead to as fewer mesh elements
as possible without lowering specified mesh quality.
(2) Efficiency is achieved by only maintaining neces-
sary minimal meshes. (3) The generated meshes can
be taken directly as input to the downstream finite
element procedure.

The future work includes: (1) dealing with models
with curved boundaries; (2) proof of optimality in 3D;
(3) enforcing symmetry constraints for other mesh-
ing methods; (4) efficiency comparison with previous
automated symmetry cell mesh generation methods.
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