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ABSTRACT

We introduce a geometric heuristic for decomposing an arbitrarily complex pocket with or without
islands into simpler sub-pockets that are better suited for efficient spiral high-speed machining. Within
every sub-pocket we apply a second heuristic for selecting a “good” start point of the spiral tool path.
Several machining parameters such as the step-over distance and the engagement angle are consid-
ered as measures and indicators for a good tool path. Our heuristics are based on the Voronoi diagram
of the pocket contours, and we can handle contours consisting of straight-line segments and circu-
lar arcs. The resulting new algorithm for high-speed spiral pocket machining was implemented and
tested successfully on real-world data. Our experiments provide strong evidence that our heuristics
reduce the total length of the tool path, while also reducing the variation of the curvature and of the
engagement angle over the entire tool path, and decreasing the ratio between the maximum and the
minimum step-over distance.
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1. INTRODUCTION

1.1. High-Speed Pocket Machining

Pocket machining is a manufacturing operation which
arises frequently in the CAD/CAM industry. In this
operation, a numerically controlled milling machine
(NC machine) is used to cut a cavity out of a solid
material a layer at a time by moving the tool along
a path. Most cutting moves are constrained to planes
parallel to two coordinate axes, e.g., parallel to the xy-
plane, thus rendering the computation of tool paths
for pocketing a geometric problem in two dimensions
(2D): The tool can be regarded as a circular disk, and
computing a tool path means finding a path in 2D
such that the swept volume of the disk covers the 2D
shape that models the pocket.

An inwards (or interior) offset with offset distance
ρ of a pocket is the set of curves traced out by the
center of a disk with radius ρ that rolls along the
boundary of the pocket in its interior. Similarly, an
outwards (or exterior) offset is traced out if a disk
with radius rolls along the boundary of the pocket
in its exterior. A conventional contour-parallel tool
path consists of portions of inwards offset curves
that are linked together in order to form one path.
(See, e.g., [9].) These tool paths tend to contain many

sharp corners which are “inherited” from the pocket’s
boundary.

When using high-speed machining (HSM), the spin-
dle rotation speed and the feed rate are higher than
for conventional milling in order to minimize the
manufacturing time without a decrease of the part
quality [10]. The high rotation speeds and feed rates
of HSM impose new constraints on the tool path: A
sharp corner requires the tool to slow down, change
its direction and accelerate again until the desired
maximum speed is regained again. Also, when cut-
ting hard material, a rapidly changing tool load may
result in an increased tool wear. Since sharp corners
or, more generally, points of high curvature of the tool
path often also result in a rapid change of the tool
load it is obvious that they should be avoided for HSM
tool paths.

1.2. Prior Work

Interestingly, little is known on the generation of
high-quality HSM tool paths. One possibility to avoid
sharp corners in a contour-parallel tool path is
to replace the corners with arcs, loops, or other
curves (e.g., [11,17,18]). Wang et al. [14] start with

Computer-Aided Design & Applications, 11(3), 2013, 346–357, http://dx.doi.org/10.1080/16864360.2014.863508
c© 2013 CAD Solutions, LLC, http://www.cadanda.com



347

a contour-parallel path, place control points onto
the offset curves, and slightly move these points to
improve the value of a self-defined metric. Machin-
ing along maximal circles (e.g., [3]) provides tool
paths with minimum curvature but with a high vari-
ation of the tool load: Roughly 50% of the tool path
corresponds to non-cutting moves.

Bieterman and Sandstrom [1] realized that a spiral-
out tool path is most suitable for general-purpose
HSM. They use the solution of an elliptic partial dif-
ferential equation (PDE) boundary value problem to
morph a point - the center point of the pocket - to the
boundary of the pocket. Level curves are combined to
a smooth spiral tool path by means of a radial inter-
polation around the center point. They also suggest
to subdivide general pockets prior to the generation
of the spiral tool-path, but give no details. While one
may assume that their method works nicely for sim-
ple “nearly convex” pockets, our own tests indicated
that it is difficult to apply to more general pockets.

Yao and Joneja [15] propose to use a combination
of Archimedean and clothoid spirals, but it remains
unclear how material left over close to the pocket
boundary is removed efficiently and whether their
approach is applicable to complex pockets. Chuang
and Yang [2] also employ a spiral tool path, based on
a Laplace (re-)parameterization. Since the isoparamet-
rics obtained via the Laplace PDE tend to be unevenly
distributed if the pocket has bottlenecks, fairly non-
steady tool loads may occur along their tool paths.
Also, sharp corners of the pocket boundary are clearly
reflected by their tool paths.

In [8] we presented an algorithm for generating
spiral-out tool paths for HSM. Our algorithm ensures
that the step-over distance is bounded above by a
user-specified value. The tool path generation tries to
maximize the curvature radius and to hold the step-
over as stable as possible. The tool paths of [8] are
G1-continuous, but can be boosted to C2-continuity
by means of an error-controlled approximation by
uniform cubic B-spline curves [7].

1.3. Results Achieved

In this paper we present geometric optimization
heuristics that can be applied as pre-processing
heuristics to improve the suitability of spiral tools
paths for HSM. While our heuristics have been built
upon our own prior work [8], they are rather gen-
eral in nature and, thus, are meaningful also for other
(future) approaches as long as the spiral paths gen-
erated are similar to those of [8], no matter whether
up-cut or down-cut milling is used. That is, our
optimization heuristics could be used as a higher-
order machining strategy, while the actual spiral tool
path is computed by an algorithm other than the
one in [8].

It is obvious that the shape of the pocket has a
great influence on the suitability of a spiral tool path
for HSM: If the pocket is long but very narrow or con-
tains bottlenecks then one spiral path may be less
than ideal, and it might be better to find a decomposi-
tion of the pocket and to machine the resulting parts
by separate spirals. It is also obvious that the choice
of the starting point of the spiral ought to be chosen
deliberately, leaving room for a second improvement.

Therefore, we introduce heuristics for decompos-
ing a complex pocket bounded by straight-line seg-
ments and circular arcs into sub-pockets that are
better suited for HSM, and for choosing a start point
of the spiral tool path within such a sub-pocket. See
Fig. 1 for a sample pocket, machined with one spiral
path and two different starting points, and alter-
natively split up into two sub-pockets that can be
machined more efficiently. The tool path in Fig. 1(b)
reduces the path length to 64% of the length of the
path depicted in Fig. 1(a) and the number of laps
from 30 to 20. The sum of the tool path lengths
in Fig. 1(c) is only 63% of the length of the tool
path in Fig. 1(b). We emphasize that all paths respect
the same maximum step-over distance. Our pocket
decomposition can also be applied if the pocket is
multiply-connected, i.e., if the pocket is bounded by
one outer contour and one or more island contours.

(a) (b) (c)

Fig. 1: Three possible tool paths for machining a non-convex pocket. (a) Machining with one spiral path [8]. (b)
Machining with one spiral path which has an optimized start point. (c) Adequate splitting and machining with
two spiral paths. In each sub-figure the dashed curve represents the outermost offset curve ∂S which is traversed
by the tool at the end of the machining.
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Whether or not there is freedom to choose the
start point of P deliberately depends on the specific
machining application. E.g., for the 2.5D machining of
a mold the machining is carried out within successive
parallel layers. If the tool cannot plunge directly into
the material then one has to pre-drill holes. In this
case there is an obvious trade-off between the time
spent on drilling multiple holes, one for each layer,
and the time saved by optimized start points of the
spiral paths within the individual layers. Similar con-
siderations apply to replacing one spiral path by sev-
eral paths, after a decomposition of the pocket into
sub-pockets that can be machined more efficiently.

In this paper we do not argue for or against the
applicability of either optimization to some specific
machining application. Rather, in Sec. 3 we focus on
the geometric reasoning that allows to carry out these
optimizations. The experiments with our optimiza-
tion heuristics are discussed in Sec. 4. The results
reported show clearly that, in general, our heuristics
improve several machining parameters while hardly
any parameter changes for the worse. Thus, if applica-
ble to a specific machining situation, a spiral tool path
is likely to improve if our optimization heuristics are
employed.

2. SPIRAL TOOL PATH GENERATION

Let S denote the planar shape inside of a pocket
within which the center of the tool’s cross section
is allowed to travel. We assume S to be connected
and simply-connected. That is, S has no islands and
is bounded by one simple curve ∂S. (A curve is “sim-
ple” if it has no self-intersections.) Typically, ∂S will
be obtained by inwards offsetting of a pocket by
a distance that is equal to the radius of the tool
T . We assume that ∂S consists of straight-line seg-
ments and circular arcs. The spiral tool path, P , starts
somewhere inside S at a point r and loops counter-
clockwise outwards until the boundary ∂S is met. (Of
course, our heuristics can also be adapted to clock-
wise spiraling.) The machining of the original pocket
can be finished by machining along ∂S. In the follow-
ing we will often regard P as partitioned into laps,
where one lap corresponds to one full move of the
tool around r .

2.1. Tool Engagement and Cutting Force

The cutting force is the force that has to be applied
for the cutting. It is influenced by a variety of tech-
nical parameters, such as the feed rate, the rotation
speed of the spindle, chip geometry, tool diameter
and by the engagement angle. The engagement angle
α at a particular point in time is the angle which spans
the part of the tool surface that performs the cutting,
see Fig. 2.

The engagement angle has a direct influence on
the cutting force [13]: The greater the engagement

Fig. 2: The engagement angle α at a straight and
curved segment of the tool path, and the step-over
s. The disk depicts the tool.

angle is, the greater is the cutting force, because more
material (volume) has to be removed per time. To pre-
vent the tool from chipping it is favorable to keep
the cutting force as stable as possible. Since keeping
the engagement angle constant over the whole tool
path seems impossible for general (non-convex) pock-
ets, our goal is to avoid sharp increases or decreases
of the engagement angle, and we attempt to keep
its variation as small as possible along the entire
tool path.

Controlling the engagement angle mathematically
is difficult because it is influenced not only by the cur-
rent location and direction of the tool movement, but
also by the previous movement of the tool. Thus, we
do not attempt a global optimization that minimizes
the maximum or average engagement angle. Rather,
we focus on the step-over distance which is easier to
control mathematically. The step-over at a point p on
lap li+1 of P is the shortest (Euclidean) distance to the
next inner lap li , see Fig. 2. We denote by smax the max-
imum step-over and by smin the minimum step-over
that occurs along P , and take the ratio smax�smin as
step-over variation. We will demonstrate experimen-
tally that a low step-over variation tends to imply a
low variation of the engagement angle.

2.2. The Medial Axis Tree

As in [8] we use the Voronoi diagram and the medial
axis of ∂S as algorithmic tool for our tool path opti-
mization. Very roughly, the Voronoi diagram of ∂S
(inside S) partitions S into cells (“Voronoi cells”) such
that each cell is defined by a “site” - straight-line seg-
ment, circular arc or (reflex) vertex of ∂S - and consists
of all points of S closer to that site than to any other
site. The medial axis is a subset of the Voronoi dia-
gram of ∂S and it can be derived easily from the
Voronoi diagram by removing all Voronoi edges inci-
dent at reflex vertices of ∂S. The red structure in
Fig. 3(a) depicts the medial axis of ∂S for the sam-
ple pocket shown in Fig. 1(a); together with the blue
arcs it forms its Voronoi diagram (within S).

Both the Voronoi diagram and the medial axis of
∂S consist of O(n) edges and nodes if ∂S is formed by
n line segments and circular arcs; they can be com-
puted in in O(n log n) time and O(n) space, both in
the worst case [16] and in the expected case [6]. Ref-
erence is given to [5] for an up-to-date survey on the
computation and application of Voronoi diagrams of
straight-line segments and circular arcs.
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Fig. 3: (a) Voronoi diagram and medial axis of the sample pocket of Fig. 1(a), (b) large step-over variation and (c)
small step-over variation.

It is well-known that the medial axis of ∂S forms a
tree, T . As usual, a path in T between two nodes u and
v of T is a sequence of edges of T that share common
nodes such that all edges are distinct. If a path shall
start (or end) at a point p which lies on an edge e of
T but which is no node of T then we imagine that a
temporary dummy node is positioned at p such that e
is temporarily split into two sub-edges.

We take the arc length of the curve that models
a Voronoi edge e as length (or weight) of e. Follow-
ing standard terminology for edge-weighted graphs,
the length of a path P in T is given by the sum of
the lengths of its edges. The distance dT (u, v) of two
nodes u and v of T is given by the length of the path
in T between u and v. (Recall that every such path is
unique since T forms a tree.)

We call a straight-line segment that connects a
point p within S with one of its closest points on ∂S
a clearance line. By the definition of the medial axis,
if p lies on T then there exist at least two different
clearance lines at p (with equal length). The (bound-
ary) clearance of p on T , denoted by clr(p), is given
by the length of a clearance line of p.

Suppose that we are given a point r in S which is
to form the start point of the spiral tool path P . If
r lies on an edge e of T but does not coincide with
a Voronoi node then we split e at r and introduce a
new (degree-two) Voronoi node at r . If r lies in the
interior of the Voronoi cell of a site s of ∂S then we
extend the clearance line through r towards T until it
intersects the boundary of the Voronoi cell of s. The
start and end points of this straight-line segment and
r itself become new Voronoi nodes, thus adding three
Voronoi nodes and two Voronoi edges. In any case, we
can modify T (and ∂S) such that the point r becomes
a Voronoi node.

We now regard T as a tree rooted at r and call
it medial axis tree. As usual, a node v of T is called
descendant of a node u, with u �= v, if the path from
the root to v contains u. If that path consists only
of the edge (u, v) then v is a child of u. The node u
and all its descendants, together with the appropriate
edges of T , form the subtree of T that is rooted at u.
A leaf is a node without descendants, and a node v is
a descendant leaf of a node u if v is a leaf of T and a
descendant of u.

We define the (Euclidean) height hT ,r (u) of a node
u of T rooted at r as follows: If u is a leaf then
hT ,r (u) := clr(u). Otherwise,

hT ,r (u) := max{dT (u, v) + clr(v) :

v is descendant leaf of u}.
We emphasize that the Euclidean height of a node
depends on the choice of the root r of T , since the
set of descendants changes if r changes.

3. OPTIMIZATION HEURISTICS

3.1. Finding a Good Root of a Spiral Tool Path

Suppose that we have the freedom to choose the start
point r of a spiral tool path P within S. Intuition
tells us that it makes no sense to place r close to ∂S,
since in this case the laps would become rather dense
between r and its closest point on ∂S. Rather, r should
be on or close to the medial axis of ∂S. But where on
T should we choose r?

Let s� be the maximum step-over specified by the
user. A point pi on lap i around r is at a distance of
at most s� from a point pi−1 on lap i − 1, which is
at a distance of at most s� from a point pi−2 on lap
i − 2, and so on. Thus, by repeated application of the
triangle inequality, we conclude that the center of the
tool is at most at a distance s� · i from r during the
i-th lap. (If each point of P were always precisely at
distance s� from the next inner lap then P would form
an involute of a circle.)

Now consider a rectangularly shaped pocket S and
suppose that its length l is much larger than its width
w. The medial axis of S is given by a long central line
segment c of length l − w and two pairs of short line
segments attached to the start and end of c. Suppose
that we place r on c, at a distance x from the short
side of S. The upper bound on the distance that the
tool center can be away from r during the i-th lap
implies that we need approximately

⌈
max

{
x
s�

,
l − x

s�

}⌉

laps to machine that pocket such that the step-
over does never exceed s�. Since s� is constant and
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the ceiling function �.� is monotonically increasing,
the number of laps is minimized if x = l�2. That
is, for a rectangular pocket we may expect a close-
to-minimum number of laps if the root is chosen
“in the middle” of T , where “middle” needs to be
defined in terms of distance along T rather than by a
purely combinatorial measure (such as the number of
nodes of T ).

We formalize this idea as follows: We call the root r
of the medial axis tree T height-balanced if hT ,r (r) =
dT (r ,u) + clr(u) = dT (r ,v) + clr(v) for two leaves u and
v that belong to disjoint subtrees of T rooted at r .
(Recall that we allow to split an edge e of T by placing
the root r in the relative interior of e.) A path from
r to a leaf u with hT ,r (r) = dT (r ,u) + clr(u) is called a
longest branch of T .

Let r be a height-balanced root of T . We now prove
that

hT ,r (r ′) < hT ,r (r) < hT ,r ′(r ′) for all nodes r �= r ′ of T .
(1)

Let u, v be two leaves of T rooted at r that
define longest branches of T within disjoint subtrees
of T . Hence, hT ,r (r) = dT (r , u) + clr(u) = dT (r , v) +
clr(v). Let r ′ be a node of T that is different from r .
Hence, dT (r , r ′) > 0.

Case: The node r ′ is on the path from u to v, i.e., on
one of the paths from r to u or from r to v. W.l.o.g., r ′
is on the path from r to u. Then

hT ,r (r ′) = dT (r ′, u) + clr(u)

< dT (r ′, u) + clr(u) + dT (r , r ′)

= dT (r , u) + clr(u) = hT ,r (r),

and

hT ,r ′(r ′) = dT (r ′, v) + clr(v)

= dT (r , r ′) + dT (r , v) + clr(v)

= dT (r , r ′) + hT ,r (r) > hT ,r (r).

Case: The node r ′ does not belong to the path from
u to v. Hence, r ′ is in a different subtree of T than both
u and v, and hT ,r (r ′) is not given by the distance of r ′
to either u or v. We get

hT ,r (r ′) < hT ,r (r ′) + dT (r , r ′) ≤ hT ,r (r),

and

hT ,r (r) < hT ,r (r) + dT (r , r ′) ≤ hT ,r ′(r).

Thus, the inequalities (1) are correct. This allows us
to conclude that the height-balanced root of T is
uniquely determined.

So, how can we compute the height-balanced root
of T ? Structural induction on T immediately reveals
the following recursive formula for hT ,r (u) for every
node u of T which is not a leaf if T is rooted at r :

hT ,r (u) = max{hT ,r (v) + dT (u, v) : v is child of u}. (2)

We now declare an arbitrary non-leaf node of T to
be the root r of T . Equation (2) tells us that a simple

recursive procedure suffices to compute the height of
every node of T rooted at r in O(n) time. In particular,
the recursion yields

hT ,r (r) = max{hT ,r (v) + dT (r , v) : v is child of r}.

By comparing δ(v) := hT ,r (v) + dT (r , v) for all chil-
dren v of r to hT ,r (r) we can check whether r is
already height-balanced. If r is not height-balanced
then we pick the unique child r ′ of r such that δ(v)

is maximum for r ′ among all children v of r . The node
r ′ lies on the paths from r to all leaves u of T for
which hT ,r (r) = dT (r , u) + clr(u).

Which heights would we obtain if we had rooted T
at r ′ rather than r? We get

hT ,r ′(r ′) = max{hT ,r (r ′), hT ,r (r) + dT (r , r ′)}.

If hT ,r ′ (r ′) < hT ,r (r) then the height-balanced root of
T lies in the subtree T ′ of T rooted at r which contains
r ′. In this case we declare r ′ as new root. Note that
hT ,r ′ (u) = hT ,r (u) for all nodes u of T ′ other than r ′.
Hence, we do not need to recompute the height values
and can apply the same scheme to r ′ instead of r , with
T now being rooted at r ′.

Since there is only a finite number of nodes in
T , this scheme terminates once either r ′ is a height-
balanced root of T or hT ,r ′(r ′) ≥ hT ,r (r). In the latter
case we know that we have gone too far, and that the
height-balanced root r� of T lies on the Voronoi edge
(r , r ′) and fulfills the following equation:

hT ,r (r) + dT (r , r�) = hT ,r ′(r ′) + dT (r ′, r�).

We conclude that the height-balanced root r� of T
can be found in time linear in the number of Voronoi
edges, which in turn means linear in the number of
boundary segments of S, i.e., in O(n) time.

We emphasize that we do not claim (in strict math-
ematical terms) the uniqueness or optimality of the
height-balanced root as start point of a spiral tool
path with a minimum number of laps. First of all, the
ceiling function �.� is a step function, which suggests
that the number of laps might not change if the start
point is changed slightly. Hence, it would be inappro-
priate to claim a uniqueness of the “optimum” start
point. Second, our algorithm measures distance along
the (curved) edges of T while the step-over distance
at a point p on the intersection of lap i + 1 with T
is given by the distance from p to a point q on lap
i. This point q need not lie on T , though. Even if q
lies on T then the length of the curved arc between
p and q forms only an upper bound on the distance
between p and q. We note, however, that the latter
problem becomes the more negligible the smaller the
maximum step-over s� is relative to the size of the
pocket. Hence, the fact that HSM tends to use rather
small step-over distances is in our favor.

From a practical point of view it is necessary to
discuss how the length of an edge of the Voronoi
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diagram can be computed. The theory of Voronoi dia-
grams tells us that every Voronoi edge is a portion
of a conic, i.e., a straight-line segment, parabolic arc,
hyperbolic arc, or elliptic arc. The length of a line
segment and a parabolic arc can be computed ana-
lytically. The arc length of a portion of an ellipse or
hyperbola is given by an incomplete elliptic integral,
which can be evaluated numerically. Alternatively,
and simpler for an actual implementation, one may
consider straight-line approximations and compute
the length of a Voronoi edge up to a specified preci-
sion. Since our geometric optimizations are heuristics
without claim of a strict optimality, a fairly moderate
precision will be sufficient in practice.

3.2. Decomposition of Complex Pockets

The time needed for machining a pocket decom-
posed into several sub-pockets includes the individual
machining times, times for retraction moves and, pos-
sibly, times for tool changes. Often the feed rate is
adapted to the tool path curvature or to the step-over.
This makes the accurate estimation of the machin-
ing time for a (sub-)pocket rather difficult. On the
other hand, it is known that a pocket can be machined
more efficiently if the step-over variation of the tool
path is kept low. In addition, the tool load is kept
more stable, which is an important criterion for HSM.
Another beneficial effect of a pocket decomposition is
that the total length of the tool path can be reduced,
too. (Splitting a pocket into two sub-pockets will, in
general, not reduce the total number of laps, though.)

Hence, as in Sec. 3.1, we focus on general geo-
metric aspects of the optimization of the pocket
decomposition: We try to find a pocket decomposition
which allows to optimize, among other parameters,
the step-over variation. Once again, we use several
simplifications and approximations and, therefore, do
not claim strict optimality.

We start by examining how S can be partitioned.
For a point p on T , we call a pair of two different
clearance lines of p a split curve at p. Note that a
Voronoi node of degree n defines n(n − 1)/2 differ-
ent split curves, and that each split curve does indeed
split S into two parts. We call a maximal connected
portion of S that is bounded by parts of ∂S (or by ∂S
completely) and zero or more split curves a sub-pocket
of S. A particular partition D of S by split curves is
called a pocket decomposition.

Figure 1 shows the tool paths for a sample pocket
and for its decomposition. Finishing is done by
machining along the dashed lines that consist of the
offset curve ∂S and the split curve between the parts.
Both parts can be machined with a smaller step-over
variation, and the total length of the tool path is
reduced. We exclude the final machining along ∂S
from the mathematical modeling (and our experimen-
tal tests) since at the end point of a spiral tool path
both the step-over and the engagement angle are zero,

thus rendering the computation of their minima for a
spiral tool path meaningless.

Our main goal is to decompose S such that the
step-over variation is minimized. But there are also
other criteria to consider for this optimization: A
split curve that forces a sharp corner of a sub-pocket
should be avoided because sharp corners tend to
lead to points of high curvature in the tool path.
Also, if a pocket is machined by machining sepa-
rate parts along individual tool paths then retrac-
tion moves (or other non-cutting moves) between the
sub-pockets are unavoidable. It is obvious that the
number of those moves and, thus, the number of sub-
pockets generated by the decomposition, cannot grow
unboundedly. Thus, we formulate the following three
criteria that a pocket decomposition should meet
as good as possible.

(C1) The pocket decomposition should minimize
the maximum of the step over variations
within the sub-pockets.

(C2) The number of sub-pockets should be kept
low.

(C3) Sharp corners at the middle vertices of the
split curves should be avoided.

Note that a split curve will always be perpendicu-
lar to ∂S and, therefore, we only need to worry about
the split angle at the point of T that defines the split
curve. (We take the angle at one side of the split curve
and check how much it deviates from π .)

The main remaining hurdle on the road to a opti-
mized pocket decomposition is the determination of
the step-over variation within some sub-pocket S ′ of
S: The step-over variation within S ′ is only known
once a tool path has been computed for S ′. But we
cannot afford the computational efforts of comput-
ing spiral tool paths within S ′. After all, different
combinations of split curves will induce different
sub-pockets of S, and it would be far too time-
consuming to compute tool paths for all the resulting
sub-pockets.

Hence, we replace the step-over variation of an
unknown tool path by a parameter that can be
obtained by inspecting only T , without a need to
compute actual tool paths. After determining the
height-balanced root of S, we replace smax by the
maximum distance dmax between neighboring laps
along a longest branch of T . Similarly, we replace smin
by the minimum distance dmin between neighboring
laps. If we assume that an algorithm that generates
a spiral tool path will attempt to keep the distances
between neighboring laps locally as uniform as pos-
sible then one needs to know only the start point r
of the tool path and the (user-specified) maximum
step-over in order to be able to extract both dmax and
dmin from T . For instance, dmax can be obtained by
determining the height hT ,r (r) of the root r of T , and
setting dmax := hT ,r (r)/m, with m := ⌈

hT ,r (r)s�
⌉

being
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the estimated number of laps necessary to machine S.
We denote the ratio dmax/dmin of the estimated step-
over variation of a hypothetical spiral tool path within
a sub-pocket S ′ of S by SOV (S ′).

Figure 3(b) shows a pocket with a large estimated
step-over variation, while the step-over variations of
Fig. 3(c) are considerably smaller. In both figures, dmax
is visualized by the red arrows, while the difference in
the radii of the concentric blue circles visualizes dmin.
In terms of our prior work [8], the ratio dmax/dmin
can be interpreted as the maximum impulse speed
divided by the minimum M-disk growth rate; we refer
to [8] for further details on how to compute dmax
and dmin.

We are now ready to formulate the problem of
finding a good pocket decomposition as an objec-
tive function that involves penalty coefficients. We
define the objective function o that evaluates a pocket
decomposition D as

o(D) := max
S ′∈D

SOV (S ′) + μ(|D| − 1)

+ ν

|D| − 1

∑
β∈splitangles

∣∣∣∣πβ − 1

∣∣∣∣, (3)

where |D| denotes the number of sub-pockets of S
that are contained in D. The first summand of o(.)
represents the estimated step-over variation which
we want to minimize. The second summand is the
penalty for the number of sub-pockets, with the
parameter μ ≥ 0 being the penalty coefficient for cri-
terion (C2). The third summand is the penalty for the
deviation of the split angles (of the split curves used
for partitioning S into D) from π , with ν ≥ 0 being the
penalty coefficient for criterion (C3).

It remains to discuss how to choose a suitable
set of split curves. Since there are k!�i!(k − i)! = O(ki)

many ways to choose i split curves out of a set of k
split curves, it is obvious that we cannot afford to try
all possible combinations of up to i split curves out
of a large set of k split curves; such an exhaustive
search would require O(ki) evaluations of the objec-
tive functions. Hence, generating candidates for the
split curves by naïvely putting lots of sample points
on all edges of T is no option in practice.

The major question for reducing the processing
time is “where are the split curves located that result
in a minimization of the objective function?” And can
we possibly detect the split curves on the fly, as the
optimization proceeds, rather than attempting to fix
them prior to the optimization?

Experiments with our code indicated that there
is a fair chance that a simple recursive scheme will
achieve a near-optimal solution for the objective func-
tion (3). The idea is to split S into two sub-pockets
that are obvious candidates for being machined
separately.

We determine a point p on T for which our anal-
ysis of T predicts a step-over distance equal to dmin

to occur along two clearance lines of p. (Likely, it will
turn out that p is the middle point of a bottleneck
of ∂S.) Let D := {S1,S2} be the decomposition of S
obtained by using that pair of clearance lines as a split
curve.

In order to detect an improvement that occurs
in only one sub-pocket of S we replace the
term maxS ′ ∈ DSOV (S ′) by the term 1/2(SOV (S1) +
SOV (S2)), i.e., we consider the average of (our esti-
mates of) the maximum step-over variations within S1
and S2. Hence, for a decomposition D = {S1,S2} we get

orec({S1,S2}) := 1
2

(SOV (S1) + SOV (S2)) + μ + ν

∣∣∣∣πβ − 1

∣∣∣∣
(4)

as new objective function for the recursive decom-
position, where β is the split angle of the split line
(at either side of the split line). Of course, we set
o({S}) := orec({S}) := SOV (S).

If orec({S1,S2}) < orec ({S}) then the decomposition
of S into S1 and S2 is accepted, and we proceed
recursively within S1 and S2. The recursion stops if
either the number of sub-pockets exceeds some user-
specified bound or if the reduction of the step-over
variation does not outweigh the penalty imposed on
the increase of the number of sub-pockets. (Hence,
if no upper bound on the number of sub-pockets is
specified then choosing μ > 0 is important in order to
guarantee a termination of the recursion.)

3.3. Handling Pockets with Islands

The basic geometric tool for determining a good root
of a spiral tool path and for the pocket decomposition
is the medial axis T of ∂S. Both of our heuristics are
only applicable if the medial axis is indeed a geomet-
ric tree. However, it is obvious that the medial axis of
a pocket with islands contains cycles and is no longer
a tree.

Suppose that S is a multiply-connected pocket
that has k islands. The individual closed curves that
form ∂S are called contours and we denote them by
C0, C1, . . . , Ck , with C0 being the outermost contour
that contains all other contours in its interior. Note
that islands are not allowed to be nested. This restric-
tion is of no practical relevance since an island nested
inside an island would correspond to an area that is
to be machined, but since it is disconnected from the
rest it would have to be machined on its own, anyway.

We now explain how to insert bridge edges for link-
ing the islands contours with each other or with C0,
thus breaking up the cycles. We call a point p on the
Voronoi diagram of ∂S within S a bridge point if

• p has a locally minimum clearance, and if
• the two clearance lines starting at p end on

different contours of ∂S.
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The two clearance lines of a bridge point are called
bridge. One can prove easily that the two line seg-
ments of a bridge lie on the same supporting line.
Hence, twice the clearance of a bridge point equals
the length of the bridge, i.e., the width of a bot-
tleneck of S. Figure 4 shows a pocket with islands
(green contours) together with the bridges (red and
blue lines).

Fig. 4: A pocket with four islands and bridges.

Let n again denote the number of straight-line seg-
ments and circular arcs of ∂S. The theory of Voronoi
diagrams tells us that we get at most O(n) many
bridge points, and that all bridge points can be deter-
mined easily in O(n) time, provided that the Voronoi
diagram of ∂S is known. (This Voronoi diagram can be
computed in O(n log n) time, see [6,16].)

For every bridge we consider a quadruple (i, j, δ, p),
where i and j are the indices of the contours linked
by the bridge with bridge point p and length δ. Exper-
iments with our pocket decomposition suggest that
narrow bottlenecks of S are likely places where a
decomposition will occur. Sorting these quadruples
lexicographically allows to keep only the shortest
bridge between each pair of contours. (This sort takes
O(n log n) time.)

In order to choose a set of “good” bridges that
correspond to narrow bottlenecks we define an edge-
weighted graph G as follows: The k + 1 nodes of G
represent the outermost contour C0 and the k island
contours C1, . . . , Ck of ∂S. If there exists a bridge
between contours Ci and Cj then we insert an edge
between the nodes of G that correspond to Ci and
Cj , with the length of the bridge taken as weight
of the edge.

Obviously, the graph G is connected and planar.
Since it has O(n) nodes and edges, we can run a
standard algorithm to compute a minimum span-
ning tree on G in O(n log n) time. (E.g., we can use
Prim’s algorithm [12].) That is, we can determine
a set of k bridges such that each island is linked
(possibly via a sequence of bridges) with C0 and
such that the sum of the lengths of the bridges is
minimized. (These bridges are depicted by red lines
in Fig. 4.)

By traversing each of these k bridges twice, in
both directions, we can convert ∂S into one curve C
that contains C0 and all island contours. Technically
speaking, the curve C is not simple, but the heuristics

outlined in Sec. 3.1–3.2 remain applicable. Since all
individual steps of the bridge finding run in O(n log n)

time, a pocket with islands can be transformed into a
pocket without islands in O(n log n) time.

4. EXPERIMENTAL EVALUATION

We implemented our heuristics in C++, based on the
Voronoi code VRONI/ArcVRONI [4,6]. Our implemen-
tation was used for an extensive series of tests which
are summarized in this section. The actual spiral tool
paths (relative to specific settings of variables for our
heuristics) were computed as described in our prior
work [8].

Let D be a domain (to be specified later) that rep-
resents the range of permissible values for a variable
which influences the computation of the spiral tool
path P , and let d ∈ D be a specific value of this vari-
able. We will regard P as a curve parameterized over
the time interval [0, 1]. Table 1 lists the quality param-
eters, defined as functions over D, which we examined
in our analysis. We denote the maximum step-over
allowed by the user by s� and the diameter of the
(cross-section of the) tool by φtool.

sm : D → [0, 1] with sm(d) := smin�φtool, where smin
is the minimum step-over on the
first m laps of P .

sM : D → [0, 1] with sM (d) := smax�φtool, where
smax is the maximum step-over
along P .

Vs : D → R+ with Vs(d) := sM (d)�sm(d) =
smax�smin as the step-over
variation.

l : D → R+ is the length of P .
αm : D → [0, π ] is the minimum engagement angle

on the first m laps of P .
αM : D → [0, π ] is the maximum engagement angle

on P .
αD : D → [0, π ] with αD(d) := αM (d) − αm(d).
α̇M : D → R+ with α̇M (d) :=

sup
{
| d
dt α(t)| : t ∈ (0, 1)

}
, and

α(t) is the engagement angle at
time t of P . This is the maxi-
mum absolute value of the first
derivative of α.

κM : D → R+ is the maximum curvature along α.

Tab. 1: Quality parameters of the tool path analysis.

4.1. Impact of Height-Balanced Root

We started our experiments with an extensive series
of tests to investigate the impact of the start point of
a spiral tool path on the quality parameters detailed
in Table 1: For a set of 290 pockets we examined how
these quality parameters change when the start point
of P is moved along a longest branch away from the
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height-balanced root r� of T . The measure of how far
some start point r of P is away from r� is specified by

t = dT (r�, r)

hT ,r� (r�)
.

Hence, t can range between 0 and 1. We get sample
positions for r along a longest branch of T by incre-
menting t in steps of 0.01, starting with t = 0, i.e.,
with the height-balanced root r�. Thus, the domain D

is given by D = {0, 0.01, 0.02, . . . , 0.99, 1}. The nearer t
gets to 1 the closer r is to the boundary ∂S of S.

Figure 5 shows the results of this experiment. We
put t = dT (r�, r)/hT ,r� (r�) as a measure of the rela-
tive distance of r from r� on the x-axis. The red line
is the average over the set of pockets, and the blue
curves illustrate the standard deviation. In each plot
the area between the two blue curves represents the
2σ -environment around μ (in red), where σ is the stan-
dard deviation from the mean μ. If P is computed
such that it uses the minimum number of laps to
ensure that smax ≤ s�, where s� is the maximum step-
over allowed by the user, then it is not surprising that

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5: Plots of the quality parameters of a spiral
tool path in dependence on the distance from the
height-balanced root r�.

the maximum step-over sM in Fig. 5(a) is mostly inde-
pendent of the choice of t. (We set s� := 0.8 · φtool.) The
minimum step-over sm does depend on t: As Fig. 5(b),
shows it tends do decrease as r is moved away from
r�. Thus, the step-over variation Vs increases as t
increases.

Similarly, the maximum engagement angle increases
and the minimum engagement angle decreases as t is
increased, see Fig. 5(c)-5(d). This leads to an increase
of αD in Fig. 5(e), which is a measure for the range
of the cutting forces arising during machining. Hence,
we get experimental evidence that a minimization of
the step-over variation implies a minimization of the
variation of the engagement angle. Except for a few
outliers the maximum slope of the engagement angle
α̇M and the maximum curvature κM also increase as
t increases, see Fig. 5(f)-5(g). Most strikingly, Fig. 5(h)
shows clearly that the length l of P increases rapidly
as t increases: Since at least one longest branch of T
grows as r is moved away from r�, more and more
laps are necessary to accomplish a tool path that
obeys smax ≤ s�. Summarizing, all quality parameters
of a spiral tool path deteriorate if the root r is moved
away from the height-balanced root r�.

4.2. Impact of Pocket Decomposition

We started the experimental evaluation of our heuris-
tic for decomposing a pocket by a closer examination
of the penalty coefficients used in the objective func-
tion (4). Figure 6 shows the reduction of the step-over
variation for ν = 0.5 and three different values of μ. In
the plots the x-axis corresponds to the step-over vari-
ation of the original pocket, while the y-axis plots the
average step-over variation for a pocket decomposi-
tion. A dot on the line y = x, depicted by a blue dashed
line, stands for a pocket which was not decomposed.
No maximum number of sub-pockets was specified by
us. Rather, we used the parameter μ to influence how
early the recursion would terminate. Within every sub-
pocket we used our heuristic for finding a good root
of the spiral tool path. Most pocket decompositions
took less than one second on a dual-core PC with a
clock rate of 2.7 GHz. (Our code does not benefit from
hyper-threading.)

Figure 7 shows the number of sub-pockets in rela-
tion to the step-over variation of the original pocket. It
comes as no surprise that smaller values of μ lead to
a larger number of sub-pockets but also allow a more
impressive reduction of the step-over variation.

Determining values of μ and ν that work best for
a particular application will likely require a bit of
experimentation on the user’s side. We suggest to use
μ := 0.8 and ν := 0.5 as initial settings for the penalty
coefficients. One may increase μ and, e.g., set μ := 2
if one wants to reduce the number of sub-pockets.
Figure 8 shows sample pockets decomposed by our
pocket decomposition, with the penalty coefficients
μ = 2 and ν = 0.5.
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(a) (b) (c)

Fig. 6: The reduction of the step-over variation achieved by a pocket decomposition.

(a) (b) (c)

Fig. 7: The number of sub-pockets in relation to the step-over variation of the original pockets.

Fig. 8: Examples of our pocket decomposition for the penalty coefficients μ = 2 and ν = 0.5.

We now turn our attention to an experimental eval-
uation of pocket decompositions with respect to the
quality parameters listed in Table 1. We carried out
our tests on over one thousand pockets for which a
decomposition makes sense. For this set of experi-
ments we set the penalty coefficients of the objec-
tive function (4) to μ := 0.8 and ν := 0.5. For every
pocket we compared the quality parameters for a
spiral path within the undecomposed S to the max-
imum (or sum) of the quality parameters of spiral
paths within the sub-pockets suggested by our pocket
decomposition.

That is, for every pocket S the domain D in plots
of Fig. 9 is given by S and its decomposition D. If D
is a decomposition of S, then we compute the quality
parameters for D as follows:

sM (D) := max
{
sM (S ′) : S ′ ∈ D

}

Vs(D) := max
{

sM (S ′)
sm(S ′)

: S ′ ∈ D
}

αM (D) := max
{
αM (S ′) : S ′ ∈ D

}
αD(D) := max

{
αM (S ′) − αm(S ′) : S ′ ∈ D

}
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maximum engagement angle

maximum curvature tool-path length

difference

step-over variation maximum slope of the engagement angle

(a) (b)

(c) (d)

(e) (f)

Fig. 9: Results for tool paths computed on decomposed pockets. The original pocket is denoted by S, whereas
D constitutes the pocket decomposition determined by our heuristic.

α̇M (D) := max
{
α̇M (S ′) : S ′ ∈ D

}
κM (D) := max

{
κM (S ′) : S ′ ∈ D

}
lS (D) :=

∑
S ′∈D

l(S ′)

Every pocket and its decomposition is represented
as a data point in the plots in Fig. 9. On the x-axis
we put the parameter value of the spiral tool path
for the undecomposed pocket S. Since αM and αD
have a bounded image domain ([0, π ]), we put the cor-
responding parameter values for the decomposition
directly on the y-axis. A data point below the line
y = x, depicted by a blue dotted line in the Fig. 9(a)-
(b), signals that the pocket decomposition improved
this quality parameter. It can be seen that for most
pockets the decomposition results in a reduction of
αM and αD , especially if αM (S) = π , i.e., if the tool is

fully immersed during a so-called “slotting cut” some-
where on the tool path. Our experience with pocket
decompositions tells us that slotting cuts can often
be avoided by a decomposition. However, there are
some pockets out of the set of over one thousand
pockets for which the maximum engagement angle of
D is higher than for S. This may happen since some-
times the maximum step-over on a tool path within
a sub-pocket comes closer to the maximum allowed
value s�. And a higher step-over locally also implies a
higher engagement angle.

For the quality parameters with unbounded image
domain we put the ratios of the parameter values
of the decomposition D to the parameter value of
the original pocket S on the y-axis, see Figs. 9(c)-(f).
A value below 1, illustrated by the blue horizon-
tal line, signals an improvement. As it can be seen,
for the vast majority of pockets tested the pocket
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decomposition results in an improvement of the step-
over variation Vs , the maximum slope on the engage-
ment angle α̇M , the maximum curvature κM and the
tool path length lS . Typically, the improvement is
substantial. There are only relatively few pockets for
which a decomposition resulted in a deterioration of
at least one of the quality parameters examined.

5. CONCLUSION

Computing a spiral tool path for a general pocket is
a non-trivial task if some form of “optimality” of the
tool path is sought. It seems impossible to come up
with one general-purpose algorithm that will generate
the best path(s) for every application. Rather, some
application-dependent fine tuning will always be nec-
essary. Still, it is possible to devise general-purpose
heuristics that have a wide range of applicability: One
can attempt to optimize the start point of a spiral,
and one can decompose a complex pocket into sub-
pockets such that the machining is improved. Based
on the Voronoi diagram of a pocket we present two
geometric heuristics which can be used to carry out
such an optimization. Again based on the Voronoi
diagram, we extend our heuristics to pockets with
islands by computing appropriate bridges to connect
the island contours with the outermost contour.

Our experiments provided clear evidence that our
heuristics reduce the overall tool-path length and
avoid excessive variations of the tool-path curvature,
the engagement angle and of the step-over distance.
Thus, if applicable to a specific machining situa-
tion, a spiral tool path is likely to improve if our
optimization heuristics are employed.

REFERENCES

[1] Bieterman, M. B.; Sandstrom, D. R.: A Curvi-
linear Tool-Path Method for Pocket Machining,
ASME J. Manufac. Science Eng., 125(4), 2003,
709–715. doi:10.1115/1.1596579.

[2] Chuang, J.-J.; Yang, D. C. H.: A Laplace-Based
Spiral Contouring Method for General Pocket
Machining, Int. J. Avd. Manuf. Technology.,
34(7-8), 2007, 714–723. doi:10.1007/s00170-
006-0648-6.

[3] Elber, G.; Cohen, E.; Drake, S.: MATHSM: Medial
Axis Transform Toward High Speed Machining
of Pockets, Comput.-Aided Design, 37(2), 2004,
241–250. doi:10.1016/j.cad.2004.05.008.

[4] Held., M.: VRONI: An Engineering Approach
to the Reliable and Efficient Computation of
Voronoi Diagrams of Points and Line Segments,
Comput. Geom. Theory and Appl., 18(2), 2001,
95–123. doi:10.1016/S0925-7721(01)00003-7.

[5] Held, M.: VRONI and ArcVRONI: Software
for and Applications of Voronoi Diagrams

in Science and Engineering, In Proc. 8th Int.
Symp. Voronoi Diagrams in Science & Engineer-
ing, pages 3-12, Qingdao, China, June 2011.
doi:10.1109/ISVD.2011.9.

[6] Held, M.; Huber, S.: Topology-Oriented Incre-
mental Computation of Voronoi Diagrams
of Circular Arcs and Straight-Line Segments,
Computer-Aided Design, 41(5), 2009, 327–338.
doi:10.1016/j.cad.2008.08.004.

[7] Held, M.; Kaaser, D.: C2 Approximation of Pla-
nar Curvilinear Profiles by Cubic B-Splines,
Computer-Aided Design & Applications, 11(2),
2014, 206–219.

[8] Held, M.; Spielberger, C.: A Smooth Spiral Tool
Path for High Speed Machining of 2D Pockets,
Computer-Aided Design, 41(7), 2009, 539–550.
doi:10.1016/j.cad.2009.04.002.

[9] Held, M.; Lukács, G.; Andor, L.: Pocket Machin-
ing Based on Contour-Parallel Tool Paths
Generated by Means of Proximity Maps,
Computer-Aided Design, 26(3), 1994, 189–203.
doi:10.1016/0010-4485(94)90042-6.

[10] Marinac, D.: Tool Path Strategies For High
Speed Machining. Modern Machine Shop, 72(9),
2000, 104–110.

[11] Pateloup, V.; Duc, E.; Ray, P.: Corner Opti-
mization for Pocket Machining, Int. J. Avd.
Manuf. Technology., 44(12-13), 2004, 1343–
1353. doi:10.1016/j.ijmachtools.2004.04.011.

[12] Prim, R. C.: Shortest Connection Networks and
Some Generalizations, Bell System Technical J.,
36, 1957, 1389–1401.

[13] Stori, J. A.; Wright, P. K.: Constant Engage-
ment Tool-Path Generation for Convex Geome-
tries, J. Manuf. Syst., 19(3), 2000, 172–183.
doi:10.1016/S0278-6125(00)80010-2.

[14] Wang, H.; Jang, P.; Stori, J. A.: A Metric-based
Approach to Two-dimensional (2D) Tool-Path
Optimization for High-Speed Machining, ASME
J. Manufac. Science Eng., 127(1), 2005, 33–48.
doi:10.1115/1.1830492.

[15] Yao, Z.; Joneja, A.: Path Generation for
High Speed Machining Using Spiral Curves,
Computer- Aided Design & Applications,
4(1), 2007, 191–198. doi:10.3722/cadaps.2007.
191-198.

[16] Yap, C. K.: An O(n log n) Algorithm for the
Voronoi Diagram of a Set of Simple Curve Seg-
ments, Discrete Comput. Geom., 2(4), 1987,
365–393.

[17] Zhao, Z.; Liu, B.; Zhang, M.; Zhou, H.; Yu, S.:
Toolpath Optimization for High Speed Milling
of Pockets, In Proc. ICIC’09, pages 327–330.
IEEE CS, 2009. doi:10.1109/ICIC.2009.90.

[18] Zhao, Z. Y.; Wang, C. Y.; Zhou, H. M.; Qin,
Z.: Pocketing Tool-path Optimization for Sharp
Corners, J. Materials Proc. Techn., 192-193(0),
2007, 175–180. doi:10.1016/j.jmatprotec.2007.
04.096.

Computer-Aided Design & Applications, 11(3), 2013, 346–357, http://dx.doi.org/10.1080/16864360.2014.863508
c© 2013 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1115/1.1596579
http://dx.doi.org/10.1007/s00170-006-0648-6
http://dx.doi.org/10.1007/s00170-006-0648-6
http://dx.doi.org/10.1016/j.cad.2004.05.008
http://dx.doi.org/10.1016/S0925-7721(01)00003-7
http://dx.doi.org/10.1109/ISVD.2011.9
http://dx.doi.org/10.1016/j.cad.2008.08.004
http://dx.doi.org/10.1016/j.cad.2009.04.002
http://dx.doi.org/10.1016/0010-4485(94)90042-6
http://dx.doi.org/10.1016/j.ijmachtools.2004.04.011
http://dx.doi.org/10.1016/S0278-6125(00)80010-2
http://dx.doi.org/10.1115/1.1830492
http://dx.doi.org/10.3722/cadaps.2007.191-198
http://dx.doi.org/10.3722/cadaps.2007.191-198
http://dx.doi.org/10.1109/ICIC.2009.90
http://dx.doi.org/10.1016/j.jmatprotec.2007.04.096
http://dx.doi.org/10.1016/j.jmatprotec.2007.04.096

	INTRODUCTION
	High-Speed Pocket Machining
	Prior Work
	Results Achieved

	SPIRAL TOOL PATH GENERATION
	Tool Engagement and Cutting Force
	The Medial Axis Tree

	OPTIMIZATION HEURISTICS
	Finding a Good Root of a Spiral Tool Path
	Decomposition of Complex Pockets
	Handling Pockets with Islands

	EXPERIMENTAL EVALUATION
	Impact of Height-Balanced Root
	Impact of Pocket Decomposition

	CONCLUSION
	References

