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ABSTRACT

Log-aesthetic curves (LACs), which are generally used in industrial design for aesthetic shape model-
ing, are examined for implementation as transition curves despite their non-trivial representation in
terms of incomplete gamma functions, or Fresnel integrals which appear in the parametric equations
of a certain spirals. The family of log-aesthetic curves includes well-known spirals as Euler, Nielsen,
logarithmic spiral, and involutes of a circle. The horizontal geometry of the route can contain classi-
cal transition curves, which are formed by transition curve-circular arc-transition curves. In order to
compare the examined family of log-aesthetic transition curves with the classical transition curve in
terms of vehicle-road kinematics, the curvature and superelevation functions are derived, and func-
tions of lateral change of acceleration (LCA) curves are obtained and illustrated graphically using a
constant motion model. The discontinuities in the form of jumps in the graphs of the lateral change
of acceleration are taken into consideration in order to compare log-aesthetic curves and clothoids.

Keywords: log-aesthetic curve, pseudospiral, lateral change of acceleration, curvature, route align-
ment, monotone curvature, spiral.

1. INTRODUCTION

Mathematical design is an integrative scientific and
artistic direction, the toolkit of which aims to
establish a process for the artistic design of the envi-
ronment and its components on the basis of the
mathematical analysis of problems, in order to obtain
a product of design whose aesthetic and technical
properties are optimized with the help of precise
calculations [20].

According to this definition, so-called log-aesthetic
curves (LACs) can be considered to be elements
of mathematical design, since they have aesthetic
appeal [9,10,27] and are represented in terms of
incomplete gamma functions [32]. Additionally, their

1 In his book they were known as pseudospirals.

plastic properties have been analyzed in terms of
technical aesthetics laws [36,37], and their possible
applications such as, for example, gear design (Fig. 1),
have been discussed in [35].

There are many interesting manuscripts on LACs.
The general formula of LACs, which describes
the relationship between their radii of curvature
and their lengths, has been studied by [21]1 and
[13–15]. [16] have proposed a method to generate a
LAC with G2 continuity from a sequence of 2D points.
Discrete log-aesthetic filters to fair a sequence of
points with noises and to fit them locally to LACs were
proposed in [17]. [18] have reformulated the LAC with
a variational principle and have proposed several new
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Fig. 1: Application of a G2 multi-spiral transition
curve in gear design. The blue points in (a) denote
the junctions of LAC segments (green) with straight
line segments (red) (for the interpretation of the refer-
ences in order to color in this figure legend, the reader
is referred to the web version of this article)

functionals to be minimized for free-form surfaces
and defining the log-aesthetic surface. In their recent
work, [19] have proposed a novel method to solve the
G2 Hermite interpolation problem with LACs, which
takes the form of log-aesthetic triplets and is imple-
mented as a plug-in module for a commercial CAD
system as well.

There are a series of serious and interesting
works by Norimasa Yoshida and his collaborators.
For example, in [28] the authors proposed quasi-
aesthetic curves that can be used in CAD systems
for aesthetic shape design; in [27], a novel method
for drawing an aesthetic curve segment by specify-
ing two endpoints and their tangent vectors has been
proposed; in [29], a method for the interactive gener-
ation of compound-rhythm log-aesthetic space curve
segments was discussed.

Despite the above-mentioned works, LACs have
never been studied in terms of road kinematics, and
this would be the aim of our current research work.

Motor vehicles may not follow their normal lane
widths when they meet a circular horizontal curve.
The resultant lateral forces, which occur at the con-
nection points of alignment and circular curves, can-
not be eliminated immediately. So that vehicles can
follow their lanes with a longer path, this is sat-
isfied by adding one more curve having different
radii [1].

Transition curves are extremely important and are
widely used in the design of today’s route alignment.
They are used for joining straight lines with a circle
or a circle of radius R1 with a circle of radius R2.
The Euler spiral (clothoid) is the most commonly used
transition curve, which can respond to demands of
up to 120 km/h speeds in route alignment. The inad-
equacy of existing curves has been identified at high
speeds, e.g., 200 km/h – 500 km/h, in railways. Curves
such as the Bloss curve, sinusoid, cosinusoid, Tari 1
[23] and Tari 2 [23] have better specifications with
regard to vehicle-road dynamics [24]. The discontinu-
ities in the form of jumps in the graphs of the lat-
eral change of acceleration function for these curves

are eliminated. Important components of vehicle-road
dynamics are:

• Vehicle speed, acceleration, velocity models;
• Technical and physical specifications of vehi-

cles, weather conditions;
• Horizontal-vertical geometry of route;
• Superelevation, superelevation functions;
• Transition curve usage;
• Lateral change of acceleration functions [3].

1.1. Lateral Change of Acceleration

Lateral change of acceleration is the change of the
resultant acceleration introduced along the curve nor-
mal with respect to the time T (sec). It can be
expressed as:

z = d �a
dT

�n, (1)

where �a is the resultant acceleration formed by all
free forces and tangential acceleration. Fig. 2 illus-
trates the forces acting on a vehicle moving on a
superelevated road: the gravitational force (P=mg),
the centrifugal force (F=mkv2) and the motor force
(FT =maT). The resultant acceleration is expressed as:

�a = dv
dt

�t + b√
u2 + b2

(
kv2 − g

u
b

)
�n, (2)

Fig. 2: Cross section of the forces acting on a vehicle
moving on a superelevated road.

where k – the curvature of the orbiting curve defined
on the horizontal plane (1/m); g – the gravitational
acceleration (9.81 m/sec2); b – the horizontal width of
the road platform (m); m – mass (kg); u – supereleva-
tion (m); v – the velocity (m/sec); �t is the unit tangent
vector. The equation of lateral change of acceleration
is derived from Eqs. (1) and (2):

z = d �a
dT

�n = bv√
u2 + b2

(
3kat + v2 dk

dl
− kv2u + gb

u2 + b2

du
dl

)

(3)

where at = the tangential acceleration produced by
the motor (engine) force (m/sec2).
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Some references give the maximum magnitude of
lateral change of acceleration as:

• in [22], ZMAX = 0.3 m/sec3 for highways;
• in [4], ZMAX = 0.3 m/sec3 for railways;
• in [7], ZMAX = 0.4 m/sec3 for railways;
• in [26], ZMAX = 0.6 m/sec3 for highways;
• in [25], ZMAX = 0.6 m/sec3.

Three elements in Eq. (3): k = k(l) the function of
the variation of the curvature functions; u = u(l) the
function of the variation of the superelevation func-
tions; and v = v(l) where the function of variation of
the velocity functions should be known to calculate
the lateral change of acceleration [3].

1.2. Horizontal Geometry of Route Alignment

The horizontal geometry of alignment is created
using plane curves with specific characteristics. These
curves, classified with respect to their curvature func-
tions, are:

a) First class curves: these curves have constant
curvature such as line segment, and circular
arc.

b) Second class curves: these curves have variable
curvature such as clothoid, sinusoid and Bloss
curve.

In addition, there are single spline curves that connect
two straight lines without a circular arc [3].

There are some conditions on the connection
points of two curves. These conditions are (see
Fig. 3):

i. Common connection point: the coordinates of
two curves must be equal on the connection
points.

ii. Common tangent: the tangents of two curves
must be equal on the connection points.

Fig. 3: The geometry of the connection point of two
curves [3].

iii. Equal radius of curvature: the radii of the two
curves must be equal on the connection points.
Thus, discontinuities in the form of jump are
eliminated in the curvature diagram.

iv. Common tangent of curvature functions: the
first derivative of curvature functions of the
two curves must be equal on the connection
points. Thus, curvature functions have a com-
mon tangent on the connection points and
thus eliminate the discontinuities in the form
of a break.

v. Equal radius of curvature on curvature func-
tions: the second derivative of the curvature
functions of the two curves must be equal on
the connection points. This condition is sat-
isfied by only a few transition curves and is
needed for extremely high speed railways.

The first and second conditions are satisfied by
all curves so they are visual conditions. However, the
remaining conditions are special conditions required
for higher speeds [3].

1.3. Organization

The rest of the paper is organized as follows. In
Section 2, we briefly review the classical transition
curve. Section 3 provides an overview of log-aesthetic
curves. In Section 4, the curvature, superelevation
and lateral change of the acceleration functions of
the log-aesthetic curves are derived. We analyse the
log-aesthetic curves with respect to their graphics
of lateral change of acceleration in Section 5. In
Section 6, we conclude our paper and present future
recommendations.

2. CLASSICAL TRANSITION CURVE

In this section, the properties of the classical transi-
tion curve using the “clothoid” are given briefly.

2.1. Clothoid (Spiral Curve)

The clothoid has been studied extensively for many
years. The main property of a clothoid is the linear
change of curvature.

The coefficients of curvature function for a
clothoid can be derived using k(l) = a + bl with
respect to the boundary conditions:

k = 0 for l = 0 and l = L1 + L2 + L3

k = kmax = 1/R for l = L1 and l = L1 + L2 (4)

k′ = 0 for all connection points

The curvature function is obtained as k(l) = l/LR
using preceding boundary conditions where l is the
horizontal length between Oi and O

′
i .
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Using the curvature function with respect to the
geometry of combined curves (Fig. 4), we obtain:

k(l) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

l
L1R

, 0 ≤ l ≤ L1

1
R

, L1 ≤ l ≤ L1 + L2

(L3 − l)
L3R

, L1 + L2 ≤ l ≤ L1 + L2 + L3

(5)

Fig. 4: The geometry of combined curves [3].

Superelevation functions are expected to have a simi-
lar structure to curvature functions [4].

k(l) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

umaxl
L1

, 0 ≤ l ≤ L1

umax , L1 ≤ l ≤ L1 + L2

umax(L3 − l)
L3

, L1 + L2 ≤ l ≤ L1 + L2 + L3

(6)

3. LOG-AESTHETIC CURVES

“Curves with logarithmic curvature graphs (LCGs)
which are straight lines were called log-aesthetic
curves, and they called curves with nearly straight
LCGs quasi-log-aesthetic curves” [27]. These curve
types can be used for aesthetic shape modelling and
are expected to be an important part of computer
aided design (CAD) systems. Log-aesthetic curves can
also be used in the context of computer-aided aes-
thetic design (CAAD), in which the plot of curvature
or the radius of curvature are the most significant fac-
tors for the quality of curves [35]. Log-aesthetic curves
are defined as having a radius of curvature which is a
function of their arc lengths [13]:

log
(

r
dl
dr

)
= α log(r)+ c, (7)

where the constant c = −logλ and (0, c) are the coordi-
nates of the intersection of the y-axis with a line of a

slope α, which is the shape parameter that determines
the type of log-aesthetic curve (see Fig. 5).

1c

a

Fig. 5: Geometric meaning of shape parameter (α) in
a logarithmic curvature graph.

After simply manipulating Eq. (7) and recollecting
that c is a constant, we get:

dl
dr

= rα−1

λ
(8)

Subsequently, after integrating Eq. (8) with respect to
the radius of curvature r , the required equation of the
log-aesthetic curve is found:

r(l) =
{

eλl , α = 0

(λal + 1)1/α , otherwise
(9)

where λ = e−c , 0 < λ < ∞. The following relation aris-
ing in the geometric interpretation of the curvature
of any regular curve is well-known in differential
geometry:

κ = 1
r

= dθ
dl

(10)

In Geomatics engineering, one needs to obtain the tan-
gent angle and X , Y coordinates of any curve to apply
the points to the ground. Therefore, if Eq. (9) is sub-
stituted into (10), by integrating with respect to arc
length, and setting θ = 0 when l = 0, we obtain Eq.
(11), and that relates the tangent angle θ with the arc
lengths:

θ(l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − e−λl

λ
α = 0,

log(λl + 1)
λ

, α = 1,

(λαl + 1)1− 1
α − 1

λ(α − 1)
, otherwise

(11)

Using Eqs. (8) and (10) we have:

dθ
dr

= dl
rdr

= ra−2

λ
(12)

Then the formulation of a log-aesthetic curve that
relates the radius of curvature to the tangent angle
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is obtained by integrating Eq. (12) with respect to the
tangent angle:

r(θ) =
{

eλθ , α = 1

((α − 1)λθ + 1)
1
α−1 , otherwise

(13)

Finally, the parametric equations of a curve can be
written as follows [31]:

x(ψ) =
∫ ψ

0
r(θ) cos θdθ (14)

y(ψ) =
∫ ψ

0
r(θ) sin θdθ (15)

After integrating Eqs. (14) and (15), the incomplete
gamma function arises in parametric equations [31].

4. GEOMETRIC AND KINEMATIC FUNCTIONS OF
LACs

In this section, the curvature and superelevation func-
tions of LACs are calculated. Then, LCA functions of
LACs are created.

4.1. Obtaining Curvature Functions

General curvature functions of LACs are obtained by
using Eqs. (9) and (10):

k = (λal + 1)−1/α , (16)

where λ parameter must be obtained in terms of R (see
Chapter 2.1) in order to use Eq. (10) as a transition
curve in route alignment. For α = 1, 2 and 3 values,
the λ parameter is calculated separately with respect
to the boundary conditions:

• For α = 1, the curvature function is k = (λl + l)−1

Applying κ(0) and κ(L), λ = R−1
L is obtained and sub-

stituted (see Tab. 1 for details).

Shape parameter Curvature functions

κ =
(
(R − 1)l

L
+ 1

)−1

(17)α = 1

κ =
(
(R2 − 1)l

L
+ 1

)−1/2

(18)α = 2

κ =
(
(R3 − 1)l

L
+ 1

)−1/3

(19)α = 3

Tab. 1: Obtained curvature functions of LACs.

where 0 (zero) is minimum and L is the maximum
arc length of the transition curve.

Eqs. (17), (18) and (19) do not satisfy κ(0) = 0
boundary condition because κ = (λα0 + 1)−1/2 always
results in 1 (one) independently from α and λ.
Therefore, the general curvature function of LACs is

assumed as κ = (λal + 1)
1
α + γ to eliminate this prob-

lem [8]. Then λ parameter can be recalculated as
follows:

• For α = 1, the curvature function is κ = (λl +
1)−1 + γ

Applying κ(0) and κ(L), γ = −1 and λ = − 1
LR+L is

obtained then substituted.

Shape parameter Curvature functions

κ =
( −l

LR + L
+ 1

)−1

− 1 (20)α = 1

κ =
(
(−2.R − 1)l

L(R + 1)2
+ 1

)−1/2

− 1

(21)

α = 2

κ =
(
(R3 − 1)l

L
+ 1

)−1/3

− 1 (22)α = 3

Tab. 2: Re-obtained curvature functions of LACs.

Curvature functions in Eqs. (20), (21), (22) (Tab. 2)
tested for L=90 m and R=405 m are illustrated in
Fig. 6.

Fig. 6a illustrates that the graphs of the curva-
ture functions of LACs (α = 1, 2, 3) are unexpectedly
the same. Therefore, the curvature function of LAC
of α = 10 is obtained by using the same method and
illustrated in Fig. 6b. If we compare the two graphs,
they are almost same.

The graphs of the curvature functions of LACs
have discontinuities in the form of breaks at connec-
tion points, therefore, the fourth condition (see Fig. 3)
is not satisfied by LACs.

4.2. Obtaining Superelevation Functions

Superelevation functions should be expected to have
a similar structure to curvature functions as they are
obtained using the same method:

• For α = 1, the superelevation function is u =
(λl + 1)−1 + γ [8].

Applying u(0) and u(L), γ = −1 and λ = − l
LR+L

obtained and substituted into equation. Supereleva-
tion functions for different values of a shape parame-
ter α are shown in Tab. 3.
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Fig. 6: (a) Graph of curvature functions of α = 1, 2, 3. (b) Graph of curvature function of α = 10.

Shape Superelevation
parameter functions

u(l) =
( −lu

Lu + L
+ 1

)−1

− 1 (23)α = 1

u(l) =
(

−l(u2 + 2u)

L(u + 1)2
+ 1

)−1/2

− 1

(24)

α = 2

u(l) =
(

−l(u3 + 3u2 + 3u)

L(u + 1)3
+ 1

)− 1
3

− 1

(25)

α = 3

Tab. 3: Obtained superelevation functions of
LACs.

4.3. Obtaining Lateral Change of Acceleration
Functions

The first derivatives of the curvature functions and
superelevation functions must be derived to obtain

the lateral change of the acceleration functions of
LACs with respect to Eq. (3).

• For α = 1, the functions are u(l) =
(

−lu
Lu+L + 1

)−1

− 1 and κ(l) =
(

−l
LR+L + 1

)−1 − 1,

Derived with respect to arc length (l):
∂k(i)
∂l

= LR

(−l + LR + L)2
and

∂u(i)
∂l

= u(Lu + L)

(−lu + Lu + L)2
obtained and substituted into Eq. (3). Lateral change
of acceleration functions for different values of a
shape parameter α are shown in Tab. 4.

5. IMPLEMENTATION AND ANALYSIS

The constant velocity motion model for railway
project quantities is used to obtain the lateral change
of acceleration values of LACs. In this model, velocity
(v) is assumed to be constant (aT = 0) along the tran-
sition curve. To compare the LACs with a clothoid, the
graphs of LCA functions of this model are illustrated
in Fig. 7, taking into account the following magni-
tudes: minimum radius of curvature at points TOi and
TFi is 405 m, the lengths of curves are L = 300 m, L1 =
L3 = 90 m and L2 = 120 m, maximum superelevation

α Lateral change of acceleration functions

zα,1 = bv√
u2 + b2

(
3kat + v2 LR

(−l + LR + L)2
− kv2u + gb

u2 + b2

u(Lu + L)

(−lu + Lu + L)2

)
(26)α = 1

zα,2 = bv√
u2 + b2

⎛
⎜⎝3kat + v2 2.R + 1

2L(R + 1)2
(
(−2R−1)l
L(R+1)2

)3/2
− kv2u + gb

u2 + b2

u2 + 2u

2L(u + 1)2
(−l(u2+2u)

L(u+1)2

)3/2

⎞
⎟⎠ (27)α = 2

Zα,3 =

⎛
⎜⎝3ka3 + v2 3R2 + 3R + 1

3L(R + 1)3

(
(−3R2 − 3R − 1)

L(R + 1)3
+ 1

)4/2

− kv2u + gb

u2 + b2

u2 + 9u2 + 3u

3L(u + 1)2
(−1(u2+9u2+3u)

L(u+1)2
+ 1

)4/3

⎞
⎟⎠ (28)

α = 3

Tab. 4: Obtained lateral change of acceleration functions of LACs.
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Fig. 7: (a) Graph of LCA functions of α = 1, 2, 3. (b) Graph of LCA function of clothoid.

Fig. 8: Transition road modeling using our approach (here, the LACs’ curve segments are in gray and the circular
arc segment is in red) (for the interpretation of the references in order to color in this figure legend, the reader is
referred to the web version of this article).

is uMAX = 0.15 m, horizontal width of the road plat-
form (railway) is b = 1.435 m, and constant velocity
is v = 100 km/h [26]. Some implementations of our
approach are shown on Fig. 8 (a, b).

5.1. Analysing LACs with respect to LCA

The graphs of the lateral change of accelera-
tion of the log-aesthetic curves are analysed with
respect to:

• Continuity of the graphs of the lateral change of
acceleration;

• Magnitudes of the graphs of the lateral change
of acceleration.

The graphs of LCAs of LACs have discontinuities in
the form of jumps, such as the diagrams of clothoid
LCA. It is clear that the magnitude of any discon-
tinuity at a point affects travel comfort, change of
geometry, and wear. Thus, the results of the research

into LACs illustrate similarities to the clothoid in
terms of road vehicle kinematics.

The magnitudes of the diagrams of the lateral
change of acceleration of log-aesthetic curves are
about 0.26–0.38 m/sec3 jumps at the connection
points. The maximum magnitude of LCA values show
differences of about 0.02 m/sec3 depending on the
shape parameter α value. The maximum values of
the lateral change of acceleration are acceptable val-
ues with respect to the boundary values given in the
literature.

5.2. Transition Curves in Road Design

Transition railroad modeling using our approach is
presented on Fig. 9 (a, b).

6. SUMMARY AND FUTURE WORK
RECOMMENDATION

In this study, different families of curves have been
implemented as a transition curve in road design. The

Computer-Aided Design & Applications, 11(5), 2014, 509–517, http://dx.doi.org/10.1080/16864360.2014.902680
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Fig. 9: Transition railroad modeling using our approach (here, the LACs’ curve segments are in gray and the
circular arc segment is in red). This approach cannot be used for movement at high speed of 200 km/h - 500
km/h (for the interpretation of the references in order to color in this figure legend, the reader is referred to the
web version of this article).

transition curve-circular arc-transition curve com-
bined model was used for implementation.

As a result of the analysis:

• The first, second and third conditions for con-
nection points are satisfied;

• The fourth condition for connection points is
not satisfied;

• The continuity of the graphs of the lateral
change of acceleration is not satisfied;

• The maximum magnitudes for the lateral change
of acceleration are satisfied by the log-aesthetic
curves.

As a result, log-aesthetic curves can be implemented
as a transition curve, but they do not have more spec-
ifications than the clothoid in terms of road vehicle
kinematics. If they had many more specifications than
the clothoid, we would create a new type of transition
curve with better kinematical characteristics.

Many curves of the monotone curvature func-
tion, such as superspirals [30], multispirals [34],
Pythogorean-hodograph curves [6], as well as class A
Bézier [5] and unit quaternion curves [12], [10], [11], in
addition to other high-quality curves [31], [32], have
not been studied in terms of kinematics. There are
possible opportunities for them to improve trends
in highway design, especially in designing high-speed
tracks, where not only kinematical properties but also
the laws of technical aesthetics can be taken into
account when looking to achieve the visual aesthet-
ics [36,37]. All these issues will be the scope of our
future work.
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