
544

Development of Optimized Preliminary Vehicle Structural Model Using Simple
Structural Beams-Frames (SSB) and Sub-Structural Analysis

Steven Tebby1, Ahmad Barari2 and Ebrahim Esmailzadeh3

1University of Ontario Institute of Technology, Steven.Tebby@uoit.ca
2University of Ontario Institute of Technology, Ahmad.Barari@uoit.ca

3University of Ontario Institute of Technology, Ebrahim.Esmailzadeh@uoit.ca

ABSTRACT

Optimum design of vehicle’s structure is an important task in its development. The structure of a
vehicle has complex interactions with the other vehicle components and has significant impact on the
performance of the vehicle. Structural design is usually completed by a complex iterative process. The
design changes at late design stages effect many other parameters in the design of vehicle. Therefore,
it is highly valuable for designers to employ simple but effective analyses at the early design stages.
A method called Simple Structural Beams-Frames (SSB) that uses Finite Element beam elements to
represent the vehicle structure has been already developed in the previous work. However, the beam
representation of the vehicle structure is not a complete preliminary model since the model is missing
plates as the key structural elements. The beam model does not feature any planar sheets which are
required prior to a detailed design process. In order to overcome this problem a substructure analysis
and optimization procedure is implemented following the design of the beam frame structure.

Keywords: automotive structure design, finite element analysis, beam-frame model.

1. INTRODUCTION

The design of an automotive structure is critical to
the overall performance of a vehicle. The structure
of the vehicle is important to ensure it can satis-
factorily carry the applied loads that occur [4]. The
structure of a vehicle interacts with all other vehi-
cle sub-components and has a complex influence one
their functionality. Due to the structural design com-
plexity, the design process is traditionally conducted
by trial and error and is subject to numerous changes
even in the latest stages of the design process. How-
ever, some of the changes in the design of structure
may cause significant re-design of the other vehicle
components and this may become very costly. Typi-
cally, it is much more desirable to maximize design
changes during the early design stages and particu-
larly before the detailed design activities [2]. However,
employing a very comprehensive and detailed process
of analyses at the conceptual design stage, when there
is a greater range of design choices still available,
may become very time consuming and computation-
ally expensive as a result of the design freedom
available. Therefore, it is very valuable for designers
to employ simple but effective analyses at the early

design stages. One option for conducting this analy-
sis is through the use of a simplified vehicle structural
model. The simplified model can be used to represent
the geometric properties of the structure and then be
analyzed and optimized in a numerical finite element
program.

One of the most important criteria in automotive
structural design is structural stiffness. The chassis
stiffness, both in bending and torsion, has significant
impacts on the ride and comfort characteristics as
well as the overall dynamic vehicle performance [11,
12,18]. For this reason the stiffness values are used
as design parameters to be optimized. Increasing the
structural stiffness is highly critical in enhancing the
vehicle’s performance. However, due to economic con-
straints increasing the vehicle stiffness by increasing
the structural weight is not recommended. An opti-
mized solution is desired that maximizes structural
stiffness while keeping the structural weight as low
as possible.

Being able to efficiently analyze the body structure
during the conceptual design stages is important to
determining the performance characteristics. A pri-
mary method used to analyze the structure is the
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method of Simple Structural Surfaces (SSS) [4], [3].
This method utilizes planar sheets to model the body
structure. The SSS method can be used to determine
the load-paths present in a body structure, but is
unable to analyze an indeterminate static loading con-
dition. Alternatively, the method utilized in this work,
uses beam-frame elements to represent the struc-
ture as an equivalent space frame. The approach of
using beam elements has the advantage of being able
to determine displacements due to these forces by
using the Finite Element Method (FEM). The use of
the beam-frame finite element model can be used for
basic analysis of a vehicle structure and as an ini-
tial estimate of some important vehicle parameters
such as bending and torsion stiffness as well as some
vibration characteristics. Using analogy of names, this
method is referred to in this paper as the Simple
Structural Beams-Frames (SSB) method. This paper
presents an approach to develop an optimized pre-
liminary vehicle structural model. The SSB model of
a structure is a space frame representation and is
therefore missing some planar sheet elements that
are necessary in a typical vehicle structure such as
the floor and roof.

An SSS model has been previously analyzed using
commercial finite element software [3]. A diagram of
this geometry is shown below in Fig. 1. The deflec-
tion results that were produced using this model are
shown in Fig. 2.

Fig. 1: SSS Model [3].

2. BACKGROUND

Both SSS and SSB methods can be used to deter-
mine forces that are present throughout the structure
and assist with preliminary design decisions. A brief
explanation of both of these analysis methods is

presented here as background information. Another
important aspect of this structural analysis is the
utilized finite element method that is also briefly
presented here.

Fig. 2: Deflection of SSS Model [3].

The Simple Structural Surface method uses planar
surfaces to model a structure. It was developed ini-
tially to analyze the load path of a vehicle [4]. The
surfaces are able to react in plane loads only and
transfer the forces from one surface to another via
edge shear loads. The original intent of this method
is to analyze the structure and determine a suitable
load path. This method of analysis has a few limita-
tions which restrict the benefits however as an initial
estimation before the development of improved tech-
niques it is sufficient. One of the major limitations of
this method is that it cannot analyze structures with
redundancies, which commonly occurs in an auto-
motive structure, without utilizing the finite element
method. This requires the structure to be statically
determinant throughout, which may require remov-
ing a number of elements that may be required for
a fully assembled vehicle. The second major limita-
tion is this method does not have the capacity to
determine deflections that will occur due to different
loading conditions. This disadvantage prevents the
method from significantly contributing to the design
process since it doesn’t allow an initial analytical esti-
mation of some important design parameters such as
stiffness. Overall the SSS method is only of interest
as part of early automotive structural design and has
been replaced by improved models that allow for a
greater range of analysis such as the SSB method pre-
sented here. While the SSB method does require sim-
plifications the structural model utilized is a better
representation of modern space frame vehicles.
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In order to overcome some of the limitations of
the SSS method the SSB method is employed in this
work. A beam-frame uses beam elements to model
the structure of the vehicle [7,8,15]. An example of
simple beam frame model is shown in Fig. 3. The
beam frame model was developed primarily because
it can be easily implemented in the FEM. This method
allows the determination of the deflection of the vehi-
cle based on applied loading conditions. Once the
deflections have been found, it is possible to deter-
mine bending stiffness of the chassis. This method
neglects the sheet components that occur in a struc-
ture however where necessary an extra beam ele-
ment is implemented in the model to account for
missing sheets [7]. The beam frame model also has
the added flexibility of allowing for optimization
of the design by improving the cross-section type
and dimensions [8]. Finally the beam element model
allows for the determination of the vibration charac-
teristics [16].

More complete models have been developed that
utilize plate and shell elements to more accurately
model the vehicle structure [8]. However, their appli-
cation may become too computationally expensive
for an optimization process when there are many
design variables. This is typically the case during the
early stages of the design process. It is more appro-
priate to use a simplified conceptual model during
the early optimization process to roughly select val-
ues for majority of the structural design parameters
and then use the more accurate models for a few
more important parameters and the final tuning dur-
ing detail design. The SSB method presented here is a
trade-off between accuracy and time, and is sufficient
for the purposes of preliminary design estimation
of majority of the design parameters. In order to
improve the structural model a series of plates are
added to the SSB structure following an optimization
process.

The finite element solver developed for the SSB
method uses typical beam elements with linear shape
functions and Galerkin’s Method is used for deriving
the beam element equations [19]. The stiffness of an
individual beam element being used in this work is
shown below:

In the above equation A is the cross-sectional area,
Iz and Iy are the moments of inertia about the local z
and y axes respectively, J is the polar moment of iner-
tia, E is Young’s modulus and is equal to 206 × 109 Pa
G is the shear modulus and is equal to 79.8 × 109 Pa.
The material properties being used are most closely
related to carbon steel. As part of the substructure
analysis the beam stiffness matrix needs to be com-
bined with the plate stiffness’s. The stiffness matrices
for each component are combined according to the
degrees of freedom they relate to. This is illustrated
for a beam node below, where overlapping degrees
of freedom have a summation of stiffness term and
stiffness terms that are not part of the beam stiffness
matrix are substituted into the sparse entries.
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Fig. 3: Beam element model.

As can be seen the addition of the plate stiff-
ness matrix to the existing beam stiffness matrix
introduces a number of new terms with n repre-
senting the node being referred to, Ks referring to
the plate shear stiffness matrix and Kb referring to
the plate bending stiffness matrix. The plate shear
and plate bending stiffness matrices are shown below.
The numbers within the brackets refer to the posi-
tion within the corresponding plate stiffness matrix.
It should be noted that the summation of plate and
beam stiffness matrices is also dependent on the con-
nectivity’s of the nodes and therefore a more general
equation is not available. The stiffness matrices are
calculated individually as, based on Kirchhoff’s plate
analysis, they are decoupled [24]. The stiffness matri-
ces are formed in the same manner using the equation
shown below.

[ks,b] =
∫ 1

−1

∫ 1

−1
[Bs,b]T[Ds,b][Bs,b]|J|ds dt (2.3)

In the above equation the B matrix is based on the
element shape functions and J is the Jacobian of the
shape functions. The subscripts refer to the type of
stiffness matrix with s representing shear and b rep-
resenting bending. The element coordinate system is
transferred to a isoparametric system in with s and
t axes replacing x and y. the integration in the above
equation can be very complex and is therefore gener-
ally done using two point Gaussian quadrature. The
distinction between in plane and bending stiffness
matrices is formed by the constitutive matrix, D. This
matrix is formed based on the material properties and
is shown below for each respective load condition.
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⎡
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0 0 1−ν

2

⎤
⎦ (2.4)
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⎡
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ν 1 0
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2

⎤
⎦ (2.5)

As can be seen the constitutive matrices are based
on the modulus of elasticity (E), Poisson’s ratio (ν)
and the plate thickness (t). The in-plane constitutive
matrix, shown in Eqn. (2.3), varies linearly with the
plate thickness as would be expected since this would
correspond to axial deformation. The bending con-
stitutive matrix, shown in Eqn. (2.5), varies with the
thickness cubed as is found in typical beam bending
theory.

The stiffness matrix of a vehicle would be formed
by assembling the individual element stiffness matri-
ces into a global stiffness matrix using the direct
stiffness method. The solution procedure is called
the stiffness method where the displacements are
unknown and related to the global forces by the
stiffness matrix. The stiffness method is the most
common solution method and is used in commercial
finite element solvers. The FEM used here is a system
of linear equations that can be solved using the devel-
oped computer program and implemented iteratively
for the optimization process.

3. METHODOLOGY

The analysis and optimization of the beam-frame
structure is a multi-step process. The first step is
to determine appropriate loads to be applied to the
structure. This is done by utilizing the existing anal-
ysis of a vehicle model based on the SSS method [3].
The SSB model is shown below, in Fig. 3, as it would
appear in a commercial solver.

The optimization process is used to determine the
beam section dimensions, which for the square beam
element used here is the side length and thickness,
which will give the smallest ratio between weight and
stiffness. The optimization performed here is a multi-
objective optimization algorithm that seeks to mini-
mize the weight to bending stiffness and the weight
to torsion stiffness of the structure. The optimization
process uses a constrained multi-function process
that utilizes four different algorithms. The algorithms
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used for the process are interior point, SQP, active set
and trust region reflective [5,6,9,10,13,14,21–23]. The
process is a goal attainment algorithm that attempts
to minimize a non-linear multivariate function. The
variables that can be adjusted are the unique beam
section dimensions. The initial step in the optimiza-
tion uses the set of uniform section properties that
were found to give a sufficiently small displacement.
The simultaneous optimization objective can be sum-
marized as follows.

Objective = Min[a1,t1,a2,t2,...,an,tn]

{
W
KT

,
W
KB

}
(3.1)

The output of the optimization process is the ele-
ment section sizes that will give the smallest ratio
between the structure weight and stiffness. The tor-
sion and bending stiffness are combined individually
with the weight to be objective functions to be mini-
mized simultaneously. Bounds are set for the section
values based on the initial analysis so that the values
being chosen are physically realistic. The process uses
a Hessian to drive the direction of each step and the
process ends when a set number of consecutive trials
show no improvement to within a specified tolerance.

Following the optimization of the beam structure
the substructure analysis procedure begins. The sub-
structure analysis is used to determine suitable plate
thickness values. The same optimization algorithm
is utilized to ensure that the addition of the plate
components will not substantially increase the over-
all structure weight. Substructure analysis is imple-
mented as a limitation of the codes being used and
future work would combine the plate components
into the SSB structural model to form an enhanced
SSB model that can have the same optimization per-
formed. The substructures consist of a plate compo-
nent bordered by a series of beam elements as shown
below in Fig. 4. The loading condition is based on
internal loads of the optimized beam structure and
is applied as though the plate/beam substructure is a
cantilevered system.

Fig. 4: Plate/Beam substructure.

The thicknesses of the plate components are deter-
mined through an optimization procedure that is
implemented to ensure the weight increase of the

structure is minimal. In order to have greater flexi-
bility in the optimization the beam element section
sizes are able to be reduced slightly. Any increases in
deformation due to this reduction should be compen-
sated for by the addition of the plate component. The
substructures that need to be analyzed are illustrated
below in Fig. 5.

Fig. 5: Vehicle substructures.

4. IMPLEMENTATION

The presented method has been implemented for a
vehicle case study. The optimization of the structure
has been previously performed and only the results
of the optimization process are presented here. The
loading conditions for bending and torsion are shown
below.

The first step of the process was to determine ini-
tial loads. These loads are based on assumed loads
that are commonly found in a vehicle such as passen-
gers, the power train and the other components. The
structure loads are found based on existing analysis
of the SSS method and can be found in the Tab. 1.

Weight Centre of Gravity
Component (N) Position (m)

Front Bumper 200 0
Powertrain 3000 0.65
Front Passengers & Seats 2000 2.2
Rear Passengers & Seats 2500 3
Fuel Tank 500 2.95
Luggage 950 4
Rear Bumper 300 4.4
Exhaust 350 2.5
Front Structure 2227.5 0.675
Passenger Compartment 3870 2.425
Rear Structure 1170 3.95

Tab. 1: Component weights for initial analysis.

The final step in the procedure is to perform the
optimization. As stated the optimization is a non-
linear constrained optimization that seeks to mini-
mize the ratio between the weight and the stiffness.
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(a) (b)

Fig. 6: Beam element geometry with constraints and loads: (a) bending, and (b) torsion.

(a) (b)

Fig. 7: Deflection of vehicle model: (a) bending loads, and (b) torsion loads.

The initial condition for the optimization process
was the radius values that resulted in an acceptable
static deflection of less than 15 mm. After running
the optimization process the following results were
found.

As can be seen the optimization process resulted
in a substantial reduction in structure weight with
slight increases in both stiffness values. This pro-
cess results in a reduction in both objective functions.
The optimization convergence and Pareto front can be
seen below in Fig. 8, Fig. 9 and Fig. 10.

The images above show the convergence of both
objective functions as the optimization proceeds and
as can be seen both objective functions achieve con-
vergence based on the tolerance specified. The Pareto
Front shown in Fig. 10 illustrates the interaction of
the objective functions throughout the optimization
process. With the optimization process complete the
next stage in the process can begin

The initial step of this process is calculating the
internal loads of the optimized beam structure under
static loading. The internal loads are used for the
loading condition of a cantilevered substructure as
illustrated in Fig. 3 and are applied at the free end.
The optimization objectives are to minimize the sub-
structure weight as well as the magnitude of the

deflections at the free end. A summary of the plate
thicknesses, as well as the final beam element dimen-
sions are shown below in Tab. 2.
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Fig. 8: Convergence of first objective function.

As can be seen the addition of the plates did
reduce the size of some beam elements with the great-
est changes occurring in the wall thickness. These
results conclude the process of substructure analysis
and represent a complete vehicle structural model.
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Fig. 9: Convergence of second objective function.
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Fig. 10: Pareto front for optimization process.

5. CONCLUSION

A new approach to developing a preliminary vehi-
cle structural model is presented in this work. The
structural model is developed based on existing beam
element structures. The beam element structure is
subjected to an optimization process, such as occurs
in the initial stages of the design process when the
greatest design freedom is available. The optimization
sought to minimize the ratio between the structure
weight and structure stiffness, with specific attention
paid to weight reduction. The beam structure uti-
lizes hollow square sections with the side length and
wall thickness chosen as design variables. Following

Fig. 11: Final element side lengths.

Fig. 12: Final element thicknesses.

Plate Thickness (mm)

1 0.620752946
2 0.60706
3 0.608724024
4 0.621295302
5 0.60706
6 0.60706
7 0.60706
8 0.60706
9 0.60706
10 0.60706

Tab. 3: Plate thicknesses.

Parameter Initial Values Optimized Values % Improvement

Weight, (N) 12567.91 8702.85 −30.7534
Bending Stiffness, (N/m) 738024.93 767037.35 3.9311
Torsion Stiffness, (Nm/rad) 1511743.86 1671002.90 10.5348
Objective 1 0.01702912 0.01134606 −33.3726
Objective 2 0.00831352 0.00520816 −37.3531
Attainment Factor 0.0052

Tab. 2: Results of optimization process.
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the optimization of the beam element model a pro-
cess of substructure analysis is employed to estimate
suitable plate thicknesses. To accommodate the addi-
tion of plate components the beam element section
dimensions of each substructure were given an allow-
able reduction. Each substructure was subjected to
the same optimization algorithm to ensure a minimal
increase in overall structure weight.
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