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ABSTRACT

In this paper, we show that any planar polynomial cubic Bézier curve can be described as an affine
transformation of a part of four primitive cubics (x3 + x2 − 3y2 = 0, x3 − 3y2 = 0, x3 − x2 − 3y2 = 0,
and x3 − y = 0), and propose an algorithm to derive the transformation matrix.
For a given cubic Bézier curve, we derive the linear moving line that follows the curve, and find the
double point D of the curve. If D is not a point at infinity, we derive the quadratic parallel moving
line that follows the curve. By testing whether the quadratic moving line crosses D or not, we classify
the curve into three cases (crunode, cusp, or acnode) which correspond to three primitive cubics. If D
is a point at infinity, the curve is classified as fourth case (explicit cubic), which requires exceptional
process. For each case, the affine transformation matrix between the primitive cubic and given Bézier
curve can be derived. We confirm that the proposed algorithm never fails unless the cubic Bézier curve
is degree reducible or consists of four collinear control points.
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1. INTRODUCTION

For highly aesthetic curve design, it is important
to control curvature properties. In addition to tan-
gent and curvature continuities, a fair curve should
have the property that its curvature varies mono-
tonically [5]. As a higher level property, Harada et
al. analyzed many existing aesthetic curves in real
objects, and found that the logarithmic curvature his-
togram (or logarithmic curvature graph, LCG) of such
aesthetic curve tends to be linear [6]. Yoshida et al.
proposed an interactive method to control a curve
segment with linear LCG [12]. Such kind of curves,
called log-aesthetic curves, has potential to be uti-
lized in future CAD system, especially in initial design
stage. For sophisticated CAD operations, however,
log-aesthetic curves are not suitable as in original
form, and need to be approximated with conven-
tional parametric curves [13]. Therefore, higher level
curvature analysis is required for parametric curves.

However, analysis of curvature variation of para-
metric curves is quite difficult. For example, as the
simplest subject in such analysis, monotonic curva-
ture condition of planar cubic Bézier curve has been
studied. Walton et al. proposed a selected family of
cubic Bézier curves that guaranties monotonic curva-
ture [10]. Dietz presented G1 Hermite interpolation

condition for polynomial (i.e. non-rational) cubic
Bézier curves by experimental analysis [3] and
extended it to rational cubic Bézier [4]. Unfortunately,
these results are not intuitive. This is due to the com-
plicated relationship between geometry of control
points and curvature variation of the curve.

In our project, we plan to investigate the curva-
ture variation properties for the whole set of planar
polynomial cubics instead of curve segments. Here,
the whole set consists of limited number of primitive
cubics with affine transformation. By investigation of
each primitive cubic and its scaling and skewing, cur-
vature properties of cubic curve segments can be
surveyed completely. In this paper, as the prepara-
tion of the project, we clarify the correspondence
between Bézier curves and the four primitive cubics:
x3 + x2 − 3y2 = 0, x3 − 3y2 = 0, x3 − x2 − 3y2 = 0, and
x3 − y = 0. First, we classify cubic Bézier curves into
four cases by checking the singularities. Then, we
show that the whole set of cubic Bézier curves is
equivalent to the four primitive cubics and their affine
transformation, which is our main contribution.

2. RELATED WORKS

It is well-known that parametric curve segments may
have inflection points, loops and cusps. These are
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usually undesirable features for curve design. Sev-
eral studies have been done to derive conditions of
these features and/or classification of curves, espe-
cially for cubic curve segments [7,9,11]. For example,
Stone et al. presented the geometric condition of
Bézier control points whether inflection points or sin-
gularities exist in the curve segment [9]. On the other
hand, we focus on whole cubic curves instead of
curve segments, find singularities, classify them into
four categories, and show the correspondence to four
primitive cubics.

Our research is also related to ideal basis of pla-
nar curves. Sederberg et al. presented that a cubic
Bézier curve is intersection of two moving lines that
are linear and quadratic, and a quartic Bézier curve is
intersection of two quadratic moving lines (or linear
one and cubic one in special case) [8]. Cox et al. gen-
eralized this idea as the ideal basis of rational curves,
which is named μ-basis [2]. They showed that the ideal
of any degree n planar rational curve can be gener-
ated by two polynomials that are degree n1 and n2 in
t, where n1 + n2 = n. Chen et al. proposed an efficient
algorithm to compute a μ-basis of a rational curve [1].
Our proposed method is an application of μ-basis,
and we focus on polynomial cubic curves. For each
curve, we find a specific μ-basis that enables to clarify
the correspondence to the primitive cubics.

3. MOVING LINES

In this paper, most part of the theory is based on mov-
ing line (family of lines on Bernstein basis) [8]. Here
are some definitions and properties of point, line,
Bézier curve, and moving line in 2D homogeneous
coordinate.

• Point: P = (X Y W ) = w (x y 1).
• Line: L = (a b c) : aX + bY + cW = 0.
• Point P lies on line L : P · L = 0.
• Line L contains two points P0 and P1 : k L =

P0 × P1, where k is a constant.
• Point P is the intersection of two lines L0 and

L1 : k P = L0 × L1.
• Bézier curve P (t) (degree n): P (t) = ∑n

i=0 Bn
i (t)P i ,

where P i(0 ≤ i ≤ n) are control points, and

Bn
i (t) =

(
n
i

)
(1 − t)n−i ti .

• Moving line L(t) (degree n): L(t) = ∑n
i=0 Bn

i (t) Li ,
where Li(0 ≤ i ≤ n) are control lines.

• Curve P(t) follows moving Line L(t) (or moving
line L(t) follows curve P(t)), i.e. for all t, the
point P(t) lies on the line L(t) : P(t) · L(t) = 0.

• Moving line L(t) follows two curves P0(t) and
P1(t) : k(t)L(t) = P0(t) × P1(t), where k(t) is a
scalar function of t.

• Curve P(t) is the intersection of two moving
lines L0(t) and L1(t) : k(t) P (t) = L0(t) × L1(t).

4. CLASSIFICATION OF CUBIC BÉZIER CURVES

In this section, for given four control points P0, P1, P2
and P3 on a plane, we show that the Bézier curve P(t):

P(t) = (1 − t)3P0 + 3(1 − t)2tP1 + 3(1 − t)t2P2 + t3P3
(4.1)

can be described as an affine transformation of a part
of four primitive cubics (x3 + x2 − 3y2 = 0, x3 − 3y2 =
0, x3 − x2 − 3y2 = 0, and x3 − y = 0) shown in Fig. 1.
Here, any cubic Bézier curve is acceptable unless it
is degenerate; i.e. if the curve satisfies the following
conditions:

• It is not degree reducible;
• All of its four control points are not collinear.

Selection of these four primitive cubics will be dis-
cussed in subsection 5.3.

The outline of the algorithm is as follows. First,
we derive the linear moving line L0(t) that follows
the Bézier curve P(t), and find the double point D
of the curve. If D is not a point at infinity, we derive
the quadratic parallel moving line L1(t) that follows
the curve P(t). By testing whether the moving line
L1(t)crosses the double point D or not, we classify
the curve into three cases (crunode, cusp, or acn-
ode). Each case corresponds to each primitive cubic
(x3 + x2 − 3y2 = 0, x3 − 3y2 = 0, or x3 − x2 − 3y2 = 0).
If D is a point at infinity, the curve is classified as
fourth case (explicit cubic) and corresponds to the
primitive cubic x3 − y = 0. In this case, we derive the
quadratic moving line L2(t) that contains the inflec-
tion point I of the curve. For each case, by using
the correspondence of three reference points (D or
I , and two other characteristic points), from which
we obtain the affine transformation matrix M between
the primitive cubic and given Bézier curve P(t).

4.1. Double Point and Linear Moving Line

A moving line L(t) that goes through a fixed point K
and follows the curve P(t) can be obtained as,

L(t) = K × P(t). (4.2)

This is generally a cubic moving line. However, if the
fixed point is on the curve, i.e. K = P(τ ), the moving
line L(t) has a common factor and is substantially
quadratic [8]:

L(t) = P(τ ) × P(t) = (t − τ)
[
(1 − τ)2 (1 − τ)τ τ2

]

×
⎡
⎣Q0 × Q1 Q0 × Q2 Q0 × Q3

Q0 × Q2 Q0 × Q3 + Q1 × Q2 Q1 × Q3
Q0 × Q3 Q1 × Q3 Q2 × Q3

⎤
⎦

×
⎡
⎣(1 − t)2

(1 − t)t
t2

⎤
⎦ (4.3)

where Q0 = P0, Q1 = 3P1, Q2 = 3P2, Q3 = P3.
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(a) (b) (c) (d)

Fig. 1: Four Primitive cubics.

Furthermore, if P(τ ) is the double point of the
cubic curve, L(t) becomes substantially linear [8].

In order to classify the Bézier curve P(t), we first
find such linear moving line that follows the curve. In
Eqn. (4.3), L(t) follows P(t). Thus,

[(1 − τ)2 (1 − τ)τ τ2]

×
⎡
⎣Q0 × Q1 Q0 × Q2 Q0 × Q3

Q0 × Q2 Q0 × Q3 + Q1 × Q2 Q1 × Q3
Q0 × Q3 Q1 × Q3 Q2 × Q3

⎤
⎦

×
⎡
⎣(1 − t)2

(1 − t)t
t2

⎤
⎦ · P(t) = 0. (4.4)

Since Eqn. (4.4) is satisfied for any τ ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((
Q0 × Q1

)
(1 − t)2 + (

Q0 × Q2
)
(1 − t)t

+ (
Q0 × Q3

)
t2

)
· P(t) = 0((

Q0 × Q2
)
(1 − t)2+(

Q0 × Q3 + Q1 × Q2
)
(1 − t)t

+ (
Q1 × Q3

)
t2

)
· P(t) = 0((

Q0 × Q3
)
(1 − t)2

+ (
Q1 × Q3

)
(1 − t)t + (

Q2 × Q3
)
t2

)
· P(t) = 0

.

(4.5)

By making a linear combination of the three equations
in Eqn. (4.5),((

V023(Q0 × Q1) − V013(Q0 × Q2)

+ V012(Q0 × Q3)
)
(1 − t)2 + (

V023(Q0 × Q2)

− V013(Q0 × Q3 + Q1 × Q2)

+ V012(Q1 × Q3)
)
(1 − t)t + (

V023(Q0 × Q3)

− V013(Q1 × Q3) + V012(Q2 × Q3)
)
t2

)
· P(t) = 0

, (4.6)

where

Vijk = Q i · (
Q j × Qk

)
(4.7)

In Eqn. (4.6), the first factor looks a quadratic mov-
ing line, however, we can show that it is substantially

linear as follows. From

(Q0 × Q1) × (Q2 × Q3)

= (
Q3 · (Q0 × Q1)

)
Q2 − (

Q2 · (Q0 × Q1)
)
Q3

= (
Q1 · (Q2 × Q3)

)
Q0 − (

Q0 · (Q2 × Q3)
)
Q1

,

we obtain

V023Q1 − V013Q2 + V012Q3 = V123Q0, (4.8)

∴ V023(Q0 × Q1) − V013(Q0 × Q2) + V012(Q0 × Q3)

= V123(Q0 × Q0) = 0. (4.9)

By substituting Eqn. (4.9) in Eqn. (4.6),((
V023(Q0 × Q2) − V013(Q0 × Q3 + Q1 × Q2)

+V012(Q1 × Q3)
)
(1 − t) + (

V023(Q0 × Q3)

−V013(Q1 × Q3) + V012(Q2 × Q3)
)
t
)
t

·P(t) = 0

.

(4.10)
Therefore, we have found the linear moving line L0(t)
that follows the Bézier curve P(t):

L0(t) = (1 − t)L00 + tL01⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L00 = V023(Q0 × Q2) − V013(Q0 × Q3 + Q1 × Q2)

+V012(Q1 × Q3)

L01 = V023(Q0 × Q3) − V013(Q1 × Q3)

+V012(Q2 × Q3)

(4.11)

The double point D = wD
(
xD , yD , 1

)
of the curve

P(t) can be obtained as the intersection of two control
lines of the linear moving line:

D = L00 × L01. (4.12)

Fig. 2 shows an example. From four control points
of a Bézier curve, we can obtain two control lines
L00 and L01 of the linear moving line, and the double
point D.

The double point D could be a point at infinity. In
next subsections 4.2 and 4.3, we deal with the case
that D is not at infinity. In subsection 4.4, we treat the
case that D is at infinity.
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Fig. 2: Linear moving line that follows a cubic Bézier
curve.

4.2. Quadratic Parallel Moving Line and Its
Existence Area

If the double point D is not at infinity, P(∞) is not a
double point. Thus, by setting K = P(∞) in Eqn. (4.2),
we can derive the quadratic parallel moving line L1[t]
that follows the curve P(t). From Eqn. (4.3),

lim
τ→∞

P(τ ) × P(t)

(t − τ)τ2

= [
1 −1 1

]

×
⎡
⎣Q0 × Q1 Q0 × Q2 Q0 × Q3

Q0 × Q2 Q0 × Q3 + Q1 × Q2 Q1 × Q3
Q0 × Q3 Q1 × Q3 Q2 × Q3

⎤
⎦

×
⎡
⎣(1 − t)2

(1 − t)t
t2

⎤
⎦

= (−Q0 × Q1 + Q0 × Q2 − Q0 × Q3
)
(1 − t)2

+ (−Q0 × Q2 + Q0 × Q3 + Q1 × Q2 − Q1 × Q3
)

× (1 − t)t + (−Q0 × Q3 + Q1 × Q3 − Q2 × Q3
)
t2

.

(4.13)

Thus, the quadratic parallel moving line L1(t) is:

L1(t) = (1 − t)2L10 + 2(1 − t)tL11 + t2L12⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L10 = (−Q0 × Q1 + Q0 × Q2 − Q0 × Q3
)

L11 = 1
2

(−Q0 × Q2 + Q0 × Q3 + Q1 × Q2

−Q1 × Q3
)

L12 = (−Q0 × Q3 + Q1 × Q3 − Q2 × Q3
)

.

(4.14)

Here, the differences of adjacent control line pairs can
be expressed:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L11 − L10 = 1
2

(
Q1 − 3 Q0

) × (
Q3 − Q2 + Q1 − Q0

)
= 3

2

(
P1 − P0

) × (
P3 − 3 P2 + 3 P1 − P0

)
L12 − L11 = 1

2

(
3Q3 − Q2

) × (
Q3 − Q2 + Q1 − Q0

)
= 3

2

(
P3 − P2

) × (
P3 − 3 P2 + 3 P1 − P0

) .

(4.15)

Since P(t) is not rational, weight of each control point
P i is 1. Therefore, each factor in Eqn. (4.15) can be
described as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P3 − 3P2 + 3P1 − P0 =
(
xd0123, yd0123, 0

)
P1 − P0 =

(
xd01, yd01, 0

)
P3 − P2 =

(
xd23, yd23, 0

) .

(4.16)

∴

⎧⎨
⎩

L11 − L10 =
(
0, 0, 3

2

(
xd01yd0123 − yd01xd0123

))
L12 − L11 =

(
0, 0, 3

2

(
xd23yd0123 − yd23xd0123

)) .

(4.17)

From Eqn. (4.17) each control line of L1(t) can be
expressed: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
L10 =

(
a1, b1, c10

)
L11 =

(
a1, b1, c11

)
L12 =

(
a1, b1, c12

) , (4.18)

∴ L1(t) = (
a1, b1, c1(t)

)
c1(t) = (1 − t)2c10 + 2(1 − t)tc11 + t2c12

, (4.19)

where a1 and b1 are constants. This means the motion
of L1(t) is a parallel translation of a line, and quadratic
function c1(t) gives the position. Therefore, L1(t)
exists in a certain half plane πE ; as t increases, L1(t)
approaches to the border of πE , reaches the border
at t = tE , then returns to the beginning side. The
parameter value tE is obtained by:

L̇1(tE ) = 0, (4.20)

∴ tE = c10 − c11

c10 − 2c11 + c12
. (4.21)

The curve P(t) is tangent to the border line L1(tE ), and
the tangent point E = wE

(
xE , yE , 1

)
is obtained as:

E = L0(tE ) × L1(tE ). (4.22)

Fig. 3 shows an example. From four control points
of a Bézier curve, we can obtain three control lines
L10, L11 and L12 of the quadratic parallel moving line,
the borderline L1(tE ) of the half plane πE , and the
tangent point E .

Fig. 3: Quadratic parallel moving line that follows a
cubic Bézier curve.
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4.3. Classification, Reference Points, and Affine
Transformation from Primitive Cubic

The feature of the double point D depends on its rela-
tionship to the half plane πE , i.e. whether D is inside,
outside, or on the border of πE . On the curve P(t),
the parameter value t at the double point D can be
obtained by a quadratic equation:

L1(t) · D = 0. (4.23)

Let D be the discriminant of Eqn. (4.23). Then the
sign of D corresponds to the relationship between D
and πE , from which the curve P(t) can be classified as
follows:

• D > 0: Case 1. Crunode,
• D = 0: Case 2. Cusp,
• D < 0: Case 3. Acnode.

[Case 1. Crunode]
If D > 0, Eqn. (4.23) has two real roots, which

means D is a crunode (self intersection) because the
curve P(t) go through the double point D twice. Let tF
be the greater root, then L0(tF ) is tangent to the curve
at D. Let F = wF

(
xF , yF , 1

)
be the intersection of

two lines L0(tF ) and L1(tE ):

F = L0(tF ) × L1(tE ), (4.24)

Next, we make a linear transformation of t:

t̂ = t − tE
tF − tE

, (4.25)

and let L̂0(t̂) and L̂1(t̂) be equivalent moving lines to
L0(t) and L1(t), respectively. Here, L̂0(0) is equivalent
to L0(tE ) which contains D and E , L̂0(1) is equivalent
to L0(tF ) which contains D and F , and L̂0(∞) is equiv-
alent to L0(∞) which contains D and P(∞). Therefore,
L̂0(t̂) can be described as:

L̂0(t̂) = (1 − t̂)L̂00 + t̂L̂01⎧⎨
⎩

L̂00 = kL0

(
D̂ × Ê

)
L̂01 = kL0

(
D̂ × F̂

) , (4.26)

where D̂ = D/wD = (
xD , yD , 1

)
, Ê = E/wE =(

xE , yE , 1
)
, F̂ = F/wF = (

xF , yF , 1
)
, and kL0 is a

constant. Likewise, L̂1(0) is equivalent to L1[tE ] which
contains P(∞) and E , L̂1(1) is equivalent to L1(tF )

which contains P(∞) and F , L̂1(∞) is equivalent to
L1(∞) which is the set of points at infinity, and

˙̂L1(0) = 0. Therefore, L̂1(t̂) can be described as:

L̂1(t̂) = (1 − t̂)2L̂10 + 2(1 − t̂)t̂L̂11 + t̂2L̂12⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L̂10 = kL1

(
P(∞) × Ê

)
L̂11 = kL1

(
P(∞) × Ê

)
L̂12 = kL1

(
P(∞) × D̂

)
. (4.27)

where kL1 is a constant. The intersection of these
moving lines:

P̂ (t̂) = L̂0(t̂) × L̂1(t̂) (4.28)

is equivalent to the curve P(t).
This curve P̂(t̂) can be obtained by an affine trans-

formation of the following primitive cubic:

P̃C1(t̃) =
(
t̃2 − 1, 1√

3

(
t̃3 − t̃

)
, 1

)
(4.29)

or x3 + x2 − 3y2 = 0 (4.30)

because this curve P̃C1(t̃) can also be defined from the
following reference points and moving lines:

D̃ = (
0, 0, 1

)
, Ẽ = (−1, 0, 1

)
,

F̃ =
(
−1, − 1√

3
, 1

)
, P̃∞ = (

0, 1, 0
)
, (4.31)

L̃0(t̃) = (1 − t̃)L̃00 + t̃ L̃01⎧⎨
⎩

L̃00 = D̃ × Ẽ =
(
0, −1, 0

)
L̃01 = D̃ × F̃ =

(
1√
3
, −1, 0

) , (4.32)

L̃1(t̃) = (1 − t̃)2L̃10 + 2 (1 − t̃)t̃L̃11 + t̃2L̃12⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L̃10 = P̃∞ × Ẽ =
(
1, 0, 1

)
L̃11 = P̃∞ × Ẽ =

(
1, 0, 1

)
L̃12 = P̃∞ × D̃ =

(
1, 0, 0

) , (4.33)

P̃ (t̃) = L̃0(t̃) × L̃1(t̃). (4.34)

The affine transformation matrix MC1 that maps
P̃C1(t̃) into P(t) can be obtained so as to map three
reference points D̃, Ẽ and F̃ into D̂, Ê and F̂ , respec-
tively: ⎡

⎢⎣D̃
Ẽ
F̃

⎤
⎥⎦ MC1 =

⎡
⎢⎣D̂

Ê
F̂

⎤
⎥⎦ (4.35)

∴ MC1 =
⎛
⎝ xD − xE yD − yE 0√

3 (xE − xF )
√

3 (yE − yF ) 0
xD yD 1

⎞
⎠ (4.36)

and the parameter transformation is:

t =
(
1 − t̃

)
tE + t̃tF . (4.37)

Fig. 4 shows an example Bézier curve with a crun-
ode and its correspondence to the primitive cubic.

Computer-Aided Design & Applications, 11(5), 2014, 568–578, http://dx.doi.org/10.1080/16864360.2014.902690
c© 2014 CAD Solutions, LLC, http://www.cadanda.com



573

(a)

(b)

Fig. 4: Case 1. Crunode.

Here, the whole shape of each curve is drawn in blue,
and parameter interval 0 ≤ t ≤ 1 of original Bézier is
drawn in black.

[Case 2. Cusp]
If D = 0, Eqn. (4.23) has double roots, which means

D is a cusp because the curve P(t) go through the
double point D once. Let tF be

tF = tE + 1. (4.38)

Let G = wG
(
xG , yG , 1

)
be the intersection of two

lines L0(tE ) and L1(tF ), and let F = wF
(
xF , yF , 1

)
be

the intersection of two lines L0(tF ) and L1(tF ):{
G = L0(tE ) × L1(tF )

F = L0(tF ) × L1(tF )
. (4.39)

In the same way as Case 1, the curve P(t) can be
obtained by an affine transformation and parameter
transformation of the following primitive cubic:

P̃C2(t̃) =
(
t̃2, 1√

3
t̃3, 1

)
(4.40)

or x3 − 3y2 = 0. (4.41)

By using the correspondence of three reference points
D, G and F , the affine transformation matrix MC2 that
maps P̃C2(t̃) into P(t) can be obtained as follows:⎡

⎢⎣D̃
G̃
F̃

⎤
⎥⎦ MC2 =

⎡
⎢⎣D̂

D̂
D̂

⎤
⎥⎦ (4.42)

where D̂ = D/wD = (
xD , yD , 1

)
, Ĝ = G/wG =(

xG , yG , 1
)
, F̂ = F/wF = (

xF , yF , 1
)
, and

D̃ = (
0, 0, 1

)
, G̃ = (

1, 0, 1
)
, F̃ =

(
1, 1√

3
, 1

)
,

(4.43)

∴ MC2 =
⎛
⎝ xG − xD yG − yD 0√

3 (xF − xG)
√

3 (yF − yG) 0
xD yD 1

⎞
⎠ , (4.44)

(a)

(b)

Fig. 5: Case 2. Cusp.

and the parameter transformation is:

t = t̃ + tE . (4.45)

Fig. 5 shows an example Bézier curve with a cusp and
its correspondence to the primitive cubic.

[Case 3. Acnode]
If D < 0, Eqn. (4.23) has complex roots, which

means D is an acnode (isolate point) because the
curve P(t) does not go through the double point D.
In this case, let G = Ĝ = (

xG , yG , 1
)

be

Ĝ = 2 Ê − D̂, (4.46)

where D̂ = D/wD = (
xD , yD , 1

)
and Ê = E/wE =(

xE , yE , 1
)
. Since E is the midpoint of line segment

DG, the point G is inside of the half plane πE and the
following quadratic equation has two real roots:

L1(t) · G = 0. (4.47)

Let tF be the greater root of Eqn. (4.23), and let F =
wF

(
xF , yF , 1

)
be the intersection of two lines L0(tF )

and L1(tF ):

F = L0(tF ) × L1(tF ). (4.48)

In the same way as Case 1, the curve P(t) can be
obtained by an affine transformation and parameter
transformation of the following primitive cubic:

P̃C3 (t̃) =
(
t̃2 + 1, 1√

3

(
t̃3 + t̃

)
, 1

)
(4.49)

or x3 − x2 − 3y2 = 0. (4.50)

By using three reference points D, G and F , the affine
transformation matrix MC3 that maps P̃C3(t̃) into P(t)
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can be obtained as follows:⎡
⎢⎣D̃

G̃
F̃

⎤
⎥⎦ MC3 =

⎡
⎢⎣D̂

Ĝ
F̂

⎤
⎥⎦ (4.51)

where F̂ = F/wF = (
xF , yF , 1

)
, and

D̃ = (
0, 0, 1

)
, G̃ = (

2, 0, 1
)
, F̃ =

(
2, 2√

3
, 1

)
,

(4.52)

∴ MC3 =

⎛
⎜⎜⎝

1
2 (xG − xD) 1

2 (yG − yD) 0
√

3
2 (xF − xG)

√
3

2 (yF − yG) 0
xD yD 1

⎞
⎟⎟⎠ , (4.53)

and the parameter transformation is:

t =
(
1 − t̃

)
tE + t̃tF . (4.54)

Fig. 6 shows an example Bézier curve with a cusp and
its correspondence to the primitive cubic.

4.4. Double Point at Infinity

If the double point D is at infinity, the linear mov-
ing line L0(t) contains P(∞) and is equivalent to L1(t).
Thus, we need a quadratic moving line with another
fixed point. Here, we use the inflection point. Inflec-
tion points of curve P(t) can be obtained by the
following equation [9]:

Ṗ(t) × P̈ (t) = 0, (4.55)

∴ (1 − t)2
(
P1 − P0

) × (
P2 − P1

) + t (1 − t)
(
P1 − P0

)
× (

P3 − P2
) + t2 (

P2 − P1
) × (

P3 − P2
) = 0, (4.56)

Since the parallel moving line L1(t) is linear,

L11 − L10 = L12 − L11. (4.57)

(a)

(b)

Fig. 6: Case 3. Acnode.

From Eqn. (4.14) and (4.47),

(
P1 − P0

) × ((
P1 − P0

) − 2
(
P2 − P1

) + (
P3 − P2

))
= (

P3 − P2
) × ((

P1 − P0
) − 2

(
P2 − P1

) + (
P3 − P2

))
,

(4.58)

∴
(
P1 − P0

) × (
P3 − P2

) = (
P1 − P0

) × (
P2 − P1

)
+ (

P2 − P1
) × (

P3 − P2
)
. (4.59)

By substituting Eqn. (4.59) into Eqn. (4.56),

(1 − t)
(
P1 − P0

) × (
P2 − P1

)
+ t

(
P2 − P1

) × (
P3 − P2

) = 0. (4.60)

Let tI be the root of Eqn. (4.60), then I =(
xI , yI , 1

) = P(tI ) is the inflection point of P(t). By
substituting τ = tI into Eqn. (4.3), the quadratic mov-
ing line L2(t) that contains the fixed point I and
follows the curve P(t) is:

L2(t) = (1 − t)2L20 + 2 (1 − t)tL21 + t2L22⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L20 = (1 − tI )2
(
Q0 × Q1

) + (1 − tI )tI
(
Q0 × Q2

)
+t2

I

(
Q0 × Q3

)
L21 = 1

2

(
(1 − tI )2

(
Q0 × Q2

)
+(1 − tI )tI

(
Q0 × Q3 + Q1 × Q2

) + t2
I

(
Q1 × Q3

))
L22 = (1 − tI )2

(
Q0 × Q3

) + (1 − tI )tI
(
Q1 × Q3

)
+t2

I

(
Q2 × Q3

)
(4.61)

[Case 4. Explicit Cubic]
Let tF be

tF = tI + 1. (4.62)

Let G = wG
(
xG , yG , 1

)
be the intersection of two

lines L0(tF ) and L2(tI ), and let F = wF
(
xF , yF , 1

)
be

the intersection of two lines L0(tF ) and L2(tF ):

{
G = L0(tF ) × L2(tI )

F = L0(tF ) × L2(tF )
. (4.63)

In the same way as Case 1, the curve P(t) can be
obtained by an affine transformation and parameter
transformation of the following primitive cubic:

P̃C4[t̃] = (
t̃, t̃3, 1

)
(4.64)

or x3 − y = 0. (4.65)

By using the correspondence of three reference points
I , G and F , the affine transformation matrix MC4 that
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(a)

(b)

Fig. 7: Case 4. Explicit cubic.

maps P̃C4(t̃) into P(t) can be obtained as follows:

⎡
⎢⎣ Ĩ

G̃
F̃

⎤
⎥⎦ MC4 =

⎡
⎢⎣ Î

Ĝ
F̂

⎤
⎥⎦ (4.66)

where Î = I = (
xI , yI , 1

)
, Ĝ = G/wG = (

xG , yG , 1
)
,

F̂ = F/wF = (
xF , yF , 1

)
, and

D̃ = (
0, 0, 1

)
, G̃ = (

1, 0, 1
)
, F̃ = (

1, 1, 1
)
,

(4.67)

∴ MC4 =
⎛
⎝xG − xI yG − yI 0

xF − xG yF − yG 0
xI yI 1

⎞
⎠ , (4.68)

and the parameter transformation is:

t = t̃ + tI . (4.69)

Fig. 7 shows an example Bézier curve with a dou-
ble point at infinity and its correspondence to the
primitive cubic.

5. DISCUSSION

In this section, we discuss some supplementary sub-
jects on the theory and implementation.

5.1. Completeness of Classification

In this subsection, we confirm that there is no other
possibility than the above four cases.

In Eqn. (4.11), L0(t) can always be calculated, and
Eqn. (4.10) shows that the result L0(t) must satisfy

L0(t) · P(t) = 0. (4.70)

If L0(t) is not a linear moving line, it must satisfy

L0(t) = 0 (for ∀t). (4.71)

Suppose Eqn. (4.71) is true,

L01 = V023(Q0 × Q3) − V013(Q1 × Q3)

+ V012(Q2 × Q3) = 0 (4.72)

∴
(
V023Q0 − V013Q1 + V012Q2

) × Q3 = 0. (4.73)

From Eqn. (4.8),

∴ V123Q0 − V023Q1 + V013Q2 = V012Q3 , (4.74)

∴ V123(Q0 × Q3) − V023(Q1 × Q3) + V013(Q2 × Q3)

= V012(Q3 × Q3) = 0,(
V123Q0 − V023Q1 + V013Q2

) × Q3 = 0. (4.75)

From Eqn. (4.73) and (4.75), two constants k0 and k1
exist such that{

V023Q0 − V013Q1 + V012Q2 = k0Q3

V123Q0 − V023Q1 + V013Q2 = k1Q3
, (4.76)

∴
(
k0V123 − k1V023

)
Q0 − (

k0V023 − k1V013
)
Q1

+ (
k0V013 − k1V012

)
Q2 = 0. (4.77)

Here, three points Q0, Q1 and Q2 are not collinear;
if so, the point Q3 is also on the same line by Eqn.
(4.76). Thus, ⎧⎪⎨

⎪⎩
k0V123 − k1V023 = 0

k0V023 − k1V013 = 0

k0V013 − k1V012 = 0

, (4.78)

and

k0 �= 0, k1 �= 0,

∴ V123

V023
= V023

V013
= V013

V012
= k1

k0
. (4.79)

From Eqn. (4.7),

V012 = 9P0 · (
P1 × P2

)
, V013 = 3P0 · (

P1 × P3
)
,

V023 = 3P0 · (
P2 × P3

)
, V123 = 9P1 · (

P2 × P3
)

(4.80)

Let Sijkbe the area of triangle �P iP jPk , then,

S012 + S023 = S013 + S123 (4.81)

Since the weight of each control point P i is 1,

Sijk = 1
2

P i · (
P j × Pk

)
(4.82)

∴ V012 + 3V023 = 3V013 + V123 (4.83)

By solving Eqn. (5.1) and (4.83), we obtain the solu-
tions:

k1

k0
= 1, −2 ±

√
3. (4.84)

However, k1/k0 must be positive; otherwise, two
points P2 and P3 must be in the opposite sides of line
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P0P1, two points P0 and P3 must be in the opposite
sides of line P1P2, and two points P0 and P1 must be
in the opposite sides of line P2P3, so it is impossible
to locate the four control points. Therefore,

k1

k0
= 1. (4.85)

∴ V012 = V013 = V023 = V123 (4.86)

From Eqn. (4.76),

V012
(
P0 − 3P1 + 3P2

) = k0P3. (4.87)

Since the weight of each control point P i is 1,

V012 = k0 (4.88)

∴ 3P1 − P0 = 3P2 − P3. (4.89)

Eqn. (4.89) shows that the curve P(t) is degree
reducible; P(t) is equivalent to the quadratic Bézier

curve with following control points Ri :

R0 = P0, R1 = 3
2

P1 − 1
2

P0 = 3
2

P2 − 1
2

P3,

R2 = P3. (4.90)

As a result, for any cubic Bézier curve P(t), unless
it is degenerate, the linear moving line L0(t) and the
double point D can be obtained correctly.

In Eqn. (4.14), L1(t) can always be calculated, and
Eqn. (4.3) and (4.13) shows that the result L1(t) must
satisfy

L1(t) · P(t) = 0 (4.91)

If the latter process fails, L1(t) must satisfy one of the
following conditions:

(1) L1(t) = 0 (for ∀t),
(2) L0(t) and L1(t) are equivalent i.e. there exists a

scalar function k(t) that satisfies

L1(t) = k(t) L0(t), (4.92)

(3) L1(t) is actually a linear moving line.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8: Example Bézier curves and corresponding primitives.
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(1) must not occur by the following reason. From Eqn.
(4.14),

L10 = −P0 × (
P3 − 3 P2 + 3 P1 − P0

)
, (4.93)

Where P0 is a control point that is not at infinity and(
P3 − 3 P2 + 3 P1 − P0

)
is a point at infinity. Thus,

L1(0) = L10 �= 0. (4.94)

(2) is impossible, because L0(t) contains a fixed point
D which is not at infinity, and L1(t) contains a fixed
point P (∞) at infinity. If (3) is true, the curve P(t)
must be degree reducible. Thus, (3) is also impossible.
As a result, for any cubic Bézier curve P(t), unless it
is degenerate or the double point D is at infinity, it is
classified into one of the three cases in subsection 4.3.

5.2. Implementation and Experimental Results

We have implemented a program to check the the-
ory in section 4. From given Bézier control points,
the program calculates and displays control lines
of the moving lines, reference points, correspond-
ing primitive, transformation matrix, and parameter
interval. Since each process is based on closed-form
expressions, the computation is in real-time on recent
PC’s. Fig. 8 shows example results, where three con-
trol points are fixed and the other one is moved.
For each Bezier curve, corresponding primitive and
parameter interval (black part on the curve) are pre-
sented. Also, we have tried to display the Bézier curve
from the result (primitive, transformation matrix, and
parameter interval), and confirmed that it is always
coincident with the input Bézier curve.

Three control points P0 = (−2, 2, 1), P1 = (0, 2, 1)

and P2 = (1, 1, 1) are fixed, and the other one P3
moves from (1, −1.5, 1) to (1, 0, 1), and the to
(2.25, 0, 1).

5.3. Selection of Primitive Cubics

The selection of four primitive cubics in Fig. 1 is not
unique. Each primitive can be replaced with any affine
transformed one. In general, symmetrical shapes with
simple coefficients in both implicit and parametric
forms would be better for primitives. One of the
simplest sets is:

x3 + x2 − y2 = 0, x3 − y2 = 0, x3 − x2 − y2 = 0,

and x3 − y = 0. (4.95)

The reason we chose the set in Fig. 1 instead of Eqn.
(4.95) is that the first primitive x3 + x2 − 3y2 = 0 is a
Pythagorean hodograph curve and its curvature can
be presented in simpler form. It may help curvature
analysis in the next step of our project.

6. CONCLUSION

In this paper, we presented that any planar polyno-
mial cubic Bézier curve can be described as an affine
transformation of a part of four primitive cubics, and
propose an algorithm to derive the transformation
matrix. By using the linear and the quadratic paral-
lel moving lines that follow the Bézier curve, we can
determine the type of the double point, from which
the curve is classified into four cases: crunode, cusp,
acnode, and explicit cubic. We confirmed that the
proposed algorithm never fails unless the curve is
degenerate.

Next, we will analyze the curvature properties of
the four primitive cubics and their affine transfor-
mation. From this analysis, we will try to show the
aesthetic ability of cubic curves. The extension to
rational cubic Bézier is also the future study.
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