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ABSTRACT

A comprehensive overview of 3D Object Retrieval methodologies that use a part-based representation
is presented. Taking into account the typical operational pipeline we detail each distinct module and
we provide a comparative study between the individual modules as well as the global methodologies.
This study relies upon the 3D mesh segmentation scheme used, the feature extraction method chosen,
as well as the selected graph matching methodology.
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1. INTRODUCTION

The rapid growth in the field of 3D capture tech-
nologies has led to the continuous expansion and
enlargement of 3D object databases. Therefore, the
construction of retrieval algorithms that enable effi-
cient and effective 3D object retrieval from either
public or proprietary 3D databases is becoming a
necessity. 3D object retrieval is the process which
retrieves 3D objects from a database in a ranked order
so that the higher the ranking of an object the bet-
ter the match to a 3D object query, using a measure
of similarity. Various methods exist in the literature,
which use a global descriptor to represent the object.
However, according to Biederman [11] humans tend to
recognize objects by analyzing the semantics of their
parts. This leads to the hypothesis that two objects
are similar, if they consist of similar parts.

In this paper, we strive towards presenting a com-
prehensive overview of methodologies on 3D Object
Retrieval using a part-based representation detail-
ing the key aspects, and discussing advantages and
pitfalls of each methodology. In the sequel, the fun-
damental operational pipeline of retrieval methodolo-
gies using a part-based representation is described
(Section 2), the existing methodologies in the field
are presented (Section 3), and finally a comparative
discussion is made (Section 4).

2. FUNDAMENTAL OPERATIONAL PIPELINE

The concept of content-based 3D object retrieval
involves a query object and a database of 3D objects.
The goal is to identify 3D objects in the database that
match the query. Practically, database objects will not
be identical to the query. Therefore, the retrieval pro-
cess usually means bringing from the database the
k most similar objects to the query. This requires
the definition of a similarity/dissimilarity measure
between the object in the database and the query. The
k objects with the lowest dissimilarity value are the
most similar objects to the query, and are retrieved
from the database. Representative surveys on the
subject are [44],[40],[27].

A typical operational pipeline for 3D object
retrieval methodologies using a part-based represen-
tation is shown in Fig. 1. First, a 3D mesh segmen-
tation algorithm is applied to all the objects of the
database. 3D mesh segmentation is defined as the
decomposition of a 3D mesh into meaningful parts,
i.e. the identification of the distinct parts that com-
prise a mesh and constitute a partitioning as close as
possible to human perception. Given an input mesh
M consisting of a set of vertices V , a set of faces F ,
and a set of edges E , a mesh segmentation algorithm
performs a partition of any of the aforementioned
sets into n disjoint subsets, resulting in a division
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Fig. 1: Typical operational pipeline of part-based shape retrieval methods.

of the object into n parts. For example, a meaning-
ful segmentation of a ‘human object’ would result in
the division of the mesh into head, torso, legs and
arms. Recent surveys on 3D mesh segmentation can
be found in [2],[34].

The produced partitions along with the adjacency
of the parts are the basis for the construction of
a graph representation of the object. Each part is
represented as a node while edges express the rela-
tion between adjacent parts. The next step is fea-
ture extraction and is applied to each extracted
part. Each node of the graph is associated with a
feature vector with attributes of the corresponding
segment, which take into account aspects like geom-
etry, topology, etc. Furthermore, each edge of the
graph can be attributed to pairwise features, i.e. fea-
tures that correspond to the boundary of two seg-
ments or features that involve two adjacent regions
in general.

The final step involves graph matching. The
problem can be summarized as follows: given two
attributed graphs the goal is to find the minimum

distance that represents the dissimilarity of the two
objects. Thus, a correspondence has to be found
between nodes of two distinct graphs. To measure
similarity, a distance measure is defined for two
parts. At this point, a choice of the distance metric
between vectors is necessary in order to compare the
corresponding descriptors of the parts.

3. RETRIEVAL METHODS USING A PART-BASED
REPRESENTATION

In this section, we present the state-of-the-art
methodologies for 3D object retrieval using a part-
based representation. They have been classified
in terms of the core feature which characterizes
each of them. In particular, we present methods
based on (i) Attributed Relational Graphs, (ii) Reeb
Graphs, (iii) skeletons, (iv) surface-type segmentation,
(v) contextual part analogies, and (vi) style-content
separation.
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3.1. Attributed Relational Graph-Based Methods

3.1.1. MPEG-7 Standard: Perceptual 3-D Shape
Descriptor

This method [24] uses convexity and graph repre-
sentation for 2D and 3D object segmentation. The
author describes three steps: the initial decomposi-
tion stage (IDS), the recursive decomposition stage
(RDS), and the iterative merging stage (IMS) (Fig. 2).
First the opening operation of mathematical morphol-
ogy is performed to the binary image representing the
object. This operation results in a decomposition of
the object by rounding its corners. Multiple decompo-
sitions are produced by alternating the parameter k
(the radius of the circle) of the ball shaped structuring
element S(k), by which the opening is calculated. The
best segmentation is selected as the one with the high-
est weighted convexity value, which is the sum of the
convexity value of all parts weighted by their normal-
ized volume. After the initial segmentation, each part
is hierarchically decomposed with the same method
until a split condition is no longer met. Following
the hierarchical segmentation step the merging stage
checks for over-segmented parts. This is achieved by
calculating the difference between the convexity of
the merged part and the weighted convexity of the
constituent parts.

The Perceptual 3-D Shape Descriptor is defined in
[23]. An Attributed Relational Graph (ARG) represent-
ing object features is constructed. Each part repre-
sents a node of the graph. Each part is represented by
an ellipsoidal blob. There are 4 unary attributes used
to describe each node and 3 binary attributes describ-
ing edges or relations between nodes. The attributes
used are:

• The volume V of the segment
• The convexity C of the segment defined as the

ratio of the volume of the object to the volume
of its convex hull

• Two eccentricity values E1 =
√

1 − c2
/

a2 and

E2 =
√

1 − c2
/

b2, where a, b, and c are the three

maximum ranges along the three principal axes.

Edge features include:

• Distances between centers of ellipsoid segments
• The angle between the first principal axes of two

adjacent segments
• The angle between the second principal axes of

two adjacent segments

The comparison between two graphs is performed
using the Double earth mover’s distance (EMD).

3.1.2. Retrieval of 3D Articulated Objects Using a
Graph-Based Representation

This work [1] decomposes objects using the method
described in [3]. Geodesic extrema of an object are
considered salient points. The integral geodesic func-
tion is used to this end. The core partition is approxi-
mated by starting from the minimum of the geodesic
function and expanding the partition. When expan-
sion is completed the protrusion parts will have been
separated by the core. Boundaries are refined with a
minimum cut algorithm to form the final segmenta-
tion. After the segmentation step, each segment of the
object is represented as a graph node and adjacent
segments are connected in the graph with an edge.
Unary features are assigned to each node and pairwise
features are assigned to each edge. The graph match-
ing of the method is based on EMD of the feature
vectors. Unary attributes assigned to the nodes are
size, convexity, eccentricities of the ellipsoid approx-
imating the component [23], the spherical harmonic
descriptor vector [31]. The binary attributes assigned
to the edges of the graph are the distance of the cen-
troids of the segments and the angles that the two
most significant principal axes of the connected com-
ponents form with each other. Before the matching of
two graphs, penalty nodes are inserted in the graph
with the smaller number of nodes (equal to their
difference of cardinality).

3.1.3. Non Rigid 3D Object Retrieval Using
Topological Information Guided by Conformal
Factors

[33] uses a decomposition of the objects into parts
using the conformal factor [6] values of the mesh.
This is achieved by quantizing the discrete conformal
factor values calculated on each face. The latter leads
to the construction of an attributed graph (Fig. 3) with
the following features:

• Mean discrete conformal factor value of the
segment

• Normalized area of the segment
• Geodesic length between borders of the segment

After the graph construction, graph matching is per-
formed. The matching first locates the core node of
each graph. All other nodes are used to form strings
ending at the core node. The idea is to perform a
matching between strings. Consequently, a distance
between two strings p, q is defined as the sum of the
L1 distances of the corresponding nodes. The distance
between two objects is the minimum distance of a
correspondence between strings of the two different
objects. Let m and n denote the cardinality of strings
of two objects, then the assignment problem is solved
with the Hungarian Algorithm in the m × n matrix
representing the distances between all string of two
objects. The matrix becomes square by padding with
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Fig. 2: Segmentation using the [24] method.

the following penalizing factor PF :

PF = |m − n|
m + n

(1)

3.2. Reeb Graph-Based Methods

The use of Reeb graphs [8] for retrieval by parts
is described extensively in [4]. Let f : M → R be a
real continuous function defined on a mesh M . The
Reeb graph is the quotient space of the graph of
f in M × R by the equivalence relation (X1, f (X1)) ∼
(X2, f (X2)) if and only if f (X1) = f (X2), and X1 and X2
are in the same connected component of f −1(f (X1)).
A sample segmentation is depicted in Fig. 4. Represen-
tative functions used in the literature for Reeb graphs
are the:

• Height function, which defines a point’s height
on the mesh as 0 (ground) and the remainder
get values related to the ground.

• Distance of each point to the center of mass.
• Integral geodesic function, which is defined

as the integral of the geodesic distances of
each point to all the others. If M is an input
mesh, then the integral geodesic of point v is
defined as:

IG(v) =
∫

p∈M
g(v, p)dM (2)

3.2.1. Multiresolution Reeb Graphs

The Multiresolution Reeb Graph (MRG) is introduced
in [20]. The normalized integral geodesic is used to
construct the Reeb graph. The method in [7] is an
application of the MRG approach used for CAD mod-
els. The first step is the construction of the Reeb

Fig. 3: Segmentation and the corresponding graph
using [33].

graph using a normalized approximation of the sum
of geodesics as function. Multiple graphs of the same
object are constructed with various resolutions (num-
ber of nodes). For each node m of the Reeb graph two
attributes are defined:

a(m) = 1
rnum

· area(m)
area(M )

(3)

l(m) = 1
rnum

· len(m)∑
n len(n)

(4)

where rnum is the resolution number of the MRG,
area(M ) and area(m) denote the area of the object
M and the node m respectively. len(m) is the differ-
ence of the maximum and the minimum values of
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Fig. 4: A human model segmented using Reeb graphs with the integral geodesic function (taken from [4]).

the Reeb function in the segment m. The matching of
two objects M1, M2 is performed as described below.
First a similarity measure between two nodes m, n, is
defined:

sim(m, n) = w · min(a(m), a(n))

+ (1 − w) · min(l(m), l(n)) (5)

where w is a constant controlling the contribution
of the two terms. The graph matching is performed
hierarchically, meaning that first nodes at lower res-
olution are matched and children of the nodes are
considered iteratively. When all nodes are matched,
the global similarity can be computed as the sum of
all matched pairs in P :

SIM (M1, M2) =
∑

(m,n)∈P

sim(m, n) (6)

The Augmented MRG is introduced in [43]. Each node
of the MRG is enhanced with attributes so that the
matching is more efficient. The graph nodes are rep-
resented in spherical coordinates. The radius and
the two angles are used as attributes of the node.
In addition volume, area, and curvature are used to
characterize each node.

3.2.2. Sub-Part Correspondence by Structural
Descriptors of 3D Shapes

The first step of this work [10] is the construction of
the Extended Reeb Graph (ERG) of the object. The ERG
is directed and acyclic (taking into account function
monotony) and is defined on a surface where a finite

set of contours is defined. The functions considered
are the distance to the center of mass and the inte-
gral geodesic. Since the graph is directed, each node
is associated with a sub-graph containing all nodes
to the leaves. The signature used for each node (sub-
graph) is defined in [22] and the result of the spherical
harmonic analysis of the corresponding sub-part. A
distance between two sub-graphs is defined:

d(u1, u2) = w1Gs + w2Sts + w3Szs

3
(7)

where Gs , Sts , Szs are the geometric, structural and
size distance between the two sub-graphs respec-
tively. In addition w1, w2, and w3 are weights depend-
ing on the application. A matching between two
graphs G1 and G2 is achieved by defining the fol-
lowing distance measure with respect to the common
sub-graph G, which is described in [9]:

D(G1, G2) = 1 −
∑

u∈G (1 − d(ψ1(u),ψ2(u)))

max(
∣∣G1

∣∣ ,
∣∣G2

∣∣) (8)

where ψ1, ψ2 denote sub-graph isomorphisms from G
to G1 and from G to G2 respectively.

∣∣Gi
∣∣ denotes the

number of nodes of graph Gi .

3.2.3. Partial 3D Shape Retrieval by Reeb Pattern
Unfolding

The method in [42] uses Reeb graphs to segment
an object. The segments are produced using the
method in [41]. For each segment of the object a
signature is computed using its Reeb chart. Disk-
like and annulus-like charts are considered. Disk-like
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charts correspond to one local maximum of the graph
with the local maximum located in the center of the
chart and the boundaries on the outer circle of the
disk. Disk-like charts correspond to the fingers while
annulus-like chart corresponds to the palm of a hand
object. Let ci be the disk-like chart of a segment. If ϕi
is the mapping of ci to the canonical planar domain
D, then the unfolding signature λϕι can be defined as
follows:

λϕι (ρ) = Aci (ρ)

AD(ρ)
= Aci (ρ)

πρ2
(9)

where ρ denotes a subset of the chart, and Aci , AD
denote the total area of the subset in each of the two
domains. Let now cj be the annulus-like chart of the
object. The signature can be computed as follows:

λϕι (ρ) = Acj (ρ)

AD(ρ)
= Acj (ρ)

π(ρ + 1)2 − π
(10)

The Reeb graph matching is performed using the
above signature. A Reeb pattern is a part of the Reeb
graph which contains protrusion areas. The struc-
tural signature of a Reeb pattern Pi is the couple
(nD(Pi), nA(Pi)), where nD(Pi) and nA(Pi) are the num-
ber of the disk-like and annulus-like Reeb charts in Pi ,
which are linked by the following equation with gPi

denoting the genus of the Reeb pattern:

nD(Pi) = nA(Pi)+ 1 − 3gPi
(11)

Making use of the structural signature, the maximal
common sub-graph is identified. The final step of the
method is matching of the Reeb patterns using the
following similarity function and a bipartite graph
matching algorithm:

s(cAi
, cBj

) = 1 − LN1(cAi
, cBj

) (12)

where LN1 is the normalized L1 distance between the
unfolding signatures of the set of matched disk charts
cAi

and cBj
.

3.3. Skeleton-Based Methods

3.3.1. Retrieving Articulated 3D Models Using Medial
Surfaces

This method [39] matches objects using medial sur-
faces. The medial skeleton of an object is extracted
using a topology preserving thinning algorithms. The
classification of the points lying on the skeleton
results in an automatic segmentation of the model
(Fig. 5). Nodes are used to construct a graph of the
object with edges connecting adjacent nodes. A bipar-
tite graph matching method is employed to find the
best match in the matching process while the dis-
tance used to measure similarity between nodes is the
Euclidean distance of the mean curvature histogram
vectors.

Fig. 5: Segmentation using the medial surface
approach (taken from [39]).

3.3.2. Shape Retrieval Using Shock Graphs

The work in [13] introduces a new indexing structure
for retrieval, using the shock-graph feature match-
ing method in [14]. 2-D silhouettes of an object are
required. The medial axis of a silhouette forms the
skeleton of the object. Nodes on the skeleton (shocks)
are processed. Each shock point is characterized by
the radius of the maximal bitangent circle centered
at the point. Edges are weighted by the Euclidean
distance between adjacent points. Graph embedding
techniques are used to transform the shock graphs
and finally the EMD is used for the graph matching
(Fig. 6).

3.4. Methods Using Surface-Type Segmentation

3.4.1. Salient Geometric Features for Partial Shape
Matching

The first step of this method [16] is the segmen-
tation of the model into patches approximated by
quadric surfaces. The goal is to find salient features,
i.e. regions of the surface where big difference in cur-
vature exists. A saliency score is defined to this end
for each patch F :

S =
∑
d∈F

W1Area(d)Curv(d)3 + W2N (F)Var(F) (13)

where Area(d) denotes the area of the triangle d,
Curv(d) the corresponding Gaussian curvature, N (F),
Var(F) the curvature variance in the patch. The W1
and W2 weights control the contribution of the two
terms. Top ten percent of the patches, or the ones
that surpass some threshold are considered salient
geometric features. Salient features are indexed and
geometric hashing is employed to locate them in a
retrieval application (Fig. 7).
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Fig. 6: Overview of the shock graph based method which includes skeleton extraction and EMD matching (taken
from [13]).

Fig. 7: Salient geometric feature extraction and partial matching (taken from [16]).

3.4.2. Bag-of-Words Descriptors for Partial Shape
Retrieval

The method in [26] first segments a mesh into
patches using Lloyd’s algorithm [29]. The latter first
divides the mesh surface into patches and iteratively
moves the centers of the patches until convergence.
A feature point is associated with every patch, for
which a descriptor is computed. For each feature
point the descriptor is the spectral amplitude vector

ci = [ci
1, . . . , ci

nc
], where ci

k the kth spectral coefficient
amplitude of the patch pi . The first nc coefficients are
chosen. For each patch individually the Laplace Bel-
trami operator is computed, the eigendecomposition
of which is used in the descriptor. The kth spectral
coefficient amplitude corresponding to the kth vertex
of a patch containing m vertices is defined as:

ck =
√

x2
k + y2

k + z2
k (14)
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where xk = ∑m
i=1 χiDi,iHk

i and yk and zk are defined
in the same way. χi denotes the x coordinate of the
ith vertex, Hk

i is the ith value of the kth eigenvec-
tor. D denotes the Lumped Mass matrix. A dictionary
is constructed with a simple k-means clustering (nw
clusters) on a large dataset. Then two Bag-of-Words
(BoWs) descriptors are defined. The standard BoW
bM of a mesh M is a histogram of size nw contain-
ing the distribution of the visual words. Each patch
is assigned the word with the minimum L2 distance
(Fig. 8). The spatial BoW BM is a nw × nw matrix which
takes into account adjacency between patches. The
distance between two models M1, M2 is defined using
both the spatial and standard BoWs:

d(M1, M2) = 6 ×
∣∣∣bM1 − bM2

∣∣∣ +
∣∣∣BM1 − BM2

∣∣∣ (15)

Fig. 8: The BoW approach (taken from [26]).

3.4.3. Thesaurus-Based 3D Object Retrieval with
Part-in-Whole Matching

[15] employs the Hierarchical Fitting Primitives (HFP)
[5] algorithm for the segmentation step. The HFP is
a hierarchical clustering method, which starts with
every face in a separate segment and iteratively
merges regions until all faces are in the same cluster.
The criterion to merge adjacent regions is proxim-
ity to a primitive shape (plane, cylinder, sphere). All
the above multilevel segmentation steps are stored
for each shape in the database, which is called hierar-
chically segmented mesh (HSM). For each segment of
the HSM tree in the database the spherical harmonic
descriptor (SH) [22] is computed. The Euclidean Dis-
tance between two segments’ SH is used to measure
similarity between objects. The level of segmentation
in the HSM selected for each object is determined by
the number of similar parts among all the objects
of the database. The last step results in a large pool
of shape segments, which is indexed using k-means

clustering creating a thesaurus. The query object
is matched with a term of the thesaurus and the
corresponding object is retrieved.

3.5. Contextual Part Analogies in 3D Objects

This work [37] uses the Shape Diameter Function
(SDF) [36] to segment objects. Shape Diameter is
defined as the local diameter on each face. The
histogram of the SDF values is processed using a
Gaussian Mixture Model in combination with the
Expectation Maximization algorithm to create parts.
The segmentation is performed in a hierarchical way.
A k is selected as the expected levels of segmentation.
The first level segmentation is performed by selecting
the maximum Gaussian mean as the core of the object
and the second mean corresponds to the second level
parts. For each level of segmentation a new mean
Gaussian value is selected and the parts that corre-
spond to that value are separated from the rest of the
mesh. The next step is assigning an attribute vector
to each part. The following features are considered
for the part signature:

• HSDF: the normalized histogram of SDF values
of the segment.

• SD(D1,D2,D3,A3): Shape-distribution signatures
which include distances among multiple ran-
dom points picked on the surface of the mesh
(D1,D2,D3) and angles (A3) taken from [30].

• CG: The conformal factor values from [6].

The local HSDF measure between two segments p, p′ is
defined below respecting both size and SDF values of
the segment. The L1 norm is chosen for the normal-
ized histogram. A bipartite graph is constructed to
compare two segments of two distinct objects, with
nodes representing part hierarchies and edges con-
necting part that do not belong to the same object. A
capacity value is assigned to each edge (q, q′) of the
graph:

capacity(q, q′) = 1
d(q, q′)+ ε

− 1 (16)

where d(q, q′) is the feature vector with geometric
properties as described previously. Two nodes are
added to the graph, a sink T and a source S with
capacity set to 1, 5 × capacity(p, p′). The measure that
is used to calculate the distance between the two parts
is a context-aware distance, which takes into account
hierarchy (Fig. 9), and is defined with respect to the
maximum flow (flow (G)) of the bipartite graph G.

D(p, p′) = 1
flow(G)+ 1

(17)

3.6. Style-Content Separation by Anisotropic Part
Scales

[45] introduces a new signature for 3D objects, the
Anisotropic Part Scales (APS) signature. First, all
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(a) (b) (c)

Fig. 9: Contextual part analogies in 3D objects: (a) The SDF values on an octopus, (b) The segmented object, (c)
Analogous parts in other objects (taken from [37]).

(a) (b) (c)

Fig. 10: Part correspondence using the deformed OBB approach: (a) three chairs and the corresponding OBBs,
(b) matching of the OBBs, (c) final part correspondence (taken from [45]).

objects of the database are segmented using the
method of [19]. For each part generated by the seg-
mentation method the oriented bounding box (OBB)
is computed. Then, the APS signature can be defined
for each part composition of a given shape. Defin-
ing the actual signature requires the computation of
three Laplacian spectra along three directions of the
OBB graph. The complete APS signature contains 6n
eigenvalues, where n is the number of parts. The
APS signature is calculated with respect to the OBB
representation of the object (Fig. 10). Three Lapla-
cian spectra contribute for scaling along the three
dimensions, while three more contribute for transfor-
mation, each one for linearity, planarity and spheric-
ity. The matching is performed using a deform-to-fit
approach. Segments are deformed to find the best

match. The OBB graph of the objects is used. Each
OBB is matched to a type: linear, planar, or spherical.
The node with the most edges of the first object is
selected to be compared to the segments of the sec-
ond object of the same type. Unary attributes of each
segment are used for the comparison, as well as pair-
wise ones. Two adjacent nodes have a valid relation
if their types can be rotated or transformed to fit. An
APS style distance is defined between two shapes:

D(p, q) = min
n∈IAPS ,|cp|=|cq|=n

∥∥APS(cp)− APS(cq)
∥∥

a
√

n
(18)

where cp and cq are part compositions of shapes p
and q. |c| denotes the size of a composition while
APS(c) denotes the APS signature of c. The distance
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‖·‖ between two signatures is their Euclidean distance.
The clustering of the styles is performed with stan-
dard spectral k-means clustering. Within the style
a co-segmentation is performed and the final con-
tent classification is achieved by an exhaustive tree
search, using the Euclidean distance of the light field
descriptor [12] of the corresponding parts.

4. DISCUSSION

A structural snapshot of 3D object retrieval method-
ologies using a part-based representation is shown
in Tab. 1. Typically, the major challenges in the
operational pipeline are related to aspects as in the
following:

• 3D mesh segmentation
• Node features
• Edge features
• Distance between parts
• Graph matching

The first step of the retrieval procedure partitions
each of the 3D objects in the database as well as the
query object. The techniques involved can vary signif-
icantly and play a vital role in the outcome. 3D mesh
segmentation is an open problem, and the segmen-
tation technique used is crucial. An implicit way to
address this problem is the use of Reeb graphs. This
is advocated by the fact that they combine geometric
and structural information. The function mostly used
for the construction of the Reeb graph is the integral
of geodesic distances (Section 3.2), which is a pose
invariant function and can partition protrusions of an
object. The method in [33] uses the conformal factor
for segmentation. Other state-of-art 3D mesh seg-
mentation methods, involve hierarchical clustering
methods [15], morphology-based [23], patch-based
segmentation [26],[16], skeletons [39],[13] etc.

The following abbreviations are used in Tab. 1: IG:
integral geodesic function, SDF: shape diameter func-
tion, A: area, V: volume, C: curvature, Conv: convexity,
CF: discrete conformal factor, EE: eccentricity values
of ellipsoid representation, SH: spherical harmonic
descriptor, Dbary: distance from mesh barycenter,
DS: distance between segment centers, AS: angles
between segments’ principal axes, GD: geodesic dis-
tance between boundaries.

The result of the mesh segmentation step is a
graph representation of the object, where distinct seg-
ments are represented by nodes. Each part of the
object is assigned a set of geometrical attributes,
referred as the feature vector or descriptor. A descrip-
tor is expected to capture and quantify the part’s
essence. Typical functions used as part descriptors
are the total surface area, convexity, curvature, vol-
ume, and geodesic distance. In [20], [7] and [43] the
geodesic integral is used not only in the segmenta-
tion step, but also averaged over the surface of the

segment and used as a feature. The average discrete
conformal factor defined in [6] is used in [33] and
[37]. In [37] the shape diameter function is used, a
measure that calculates the thickness of the segment.
Apart from the features that describe each node of
the graph, namely the unary features, some methods
include binary features, i.e. geometric features that
correspond to the boundary of two segments or fea-
tures that involve two adjacent regions and express
the relation between them. Example binary features
are the Euclidean distance between adjacent segment
centers and angles between the segments’ principal
axes are used in [1] and [23]. Binary features have
only been used in three methodologies out of the
total number of methodologies reviewed in this paper.
Unary features are without doubt more important
than binary, since they describe the geometry of the
part.

A critical aspect in the retrieval process is the
similarity estimation of two parts. Given two descrip-
tor vectors, a distance needs to be defined, so that
the similarity of two parts can be evaluated. Any
Minkowski distance can be effective, with L1 and L2
distances being most common. The distance mea-
sure used to compare two part descriptors seems
independent to the rest of the aspects of the method.

In addition to the geometrical comparison between
two objects the problem of the topological correspon-
dence of the parts also needs to be addressed. The
choice of graph matching algorithm depends on the
complexity that one is willing to tolerate. A costly
solution would be to exhaustively search for the best
correspondence between nodes of the graph. The
methods in [1] and [23] use the Earth Mover’s Dis-
tance (EMD), which was introduced in [32] and reflects
the minimal amount of work that must be performed
to transform one distribution into the other, with
the two distributions corresponding to the two ARGs
to be compared. The method in [45] uses exhaus-
tive tree-based search with pruning [46], and selects
the node with the most edges as root in order to
reduce complexity. The methods in [20], [7] and [43]
utilize the multiresolution, hierarchical representa-
tion of the graphs, by matching nodes first in the
coarse representation and then expanding to finer
ones. The partial matching methods in [42] and [37]
use maximum bipartite matching algorithms to find
similar parts. [33] automatically matches the core
nodes of the two graphs, and then uses the Hungarian
algorithm to match the branches.

The analysis of the methods comes to conclude
that the most critical elements in part-based retrieval
are the 3D mesh segmentation and the selection of
the most appropriate descriptor. The graph match-
ing problem is mainly a complexity problem, while
most distance measures yield satisfactory results. The
segmentation approach is closer to human percep-
tion than the global approach since it can capture
the essence of an object. The key to good retrieval
results is the combination of the proper segmentation
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Unary Binary Global/Partial Distance Graph
Method Year Dataset Segmentation Features Features Retrieval Measure Matching

Hilaga et al [20] 2001 Stanford dataset,
3dcafe

Reeb−graph {IG} A,IG − global weighted min
value

Multiresolution
approach

Bespalov et al [7] 2003 Primitive shapes,
CAD, lego

Reeb−graph {IG} A,IG − global weighted min
value

Multiresolution
approach

Tung and Schmitt
[43]

2005 Generic Models
downloaded
from the
internet

Reeb−graph
{IG/height/
Dbary}

A,IG, Dbary, C,V − global, partial any Minkowski
distance

Multiresolution
approach

Kim et al [23] 2005 The MPEG-7 set Morphology-based V, C, EE DS, AS global Euclidean
Distance

EMD

Biasotti et al [10] 2006 Drexel University,
AIM@SHAPE,
Princeton [38],
Image-based 3D
models Archive,
McGill [47]

Reeb−graph
{IG/Dbary}

SH, geodesic, node
degree

− global, partial weighted graph-
based measure

Tree search

Gal and Cohen-Or
[16]

2006 Princeton [38] Quadric fitting C − partial − Geometric
hashing

Siddiqi et al [39] 2008 McGill [47] Medial surfaces C − global Euclidean
Distance

Bipartite graph
matching

Agathos et al [1] 2009 McGill [47] Protrusion
oriented

V, Conv, EE, SH DS, AS global Euclidean
Distance

EMD

Tierny et al [42] 2009 SHREC 2007 [18] Reeb−graph
{geodesic to
seeds, C}

area of the Reeb
chart

− partial L1 Bipartite graph
matching

Demirci [13] 2010 Silhouettes of 9
objects

Shock graphs Circle radius Euclidean distance global Euclidean distance EMD

(Continued)

Tab. 1: Methods overview.
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Unary Binary Global/Partial Distance Graph
Method Year Dataset Segmentation Features Features Retrieval Measure Matching

Ferreira et al [15] 2010 Engineering Shape
Benchmark [21]

Hierarchical
clustering

SH − partial Euclidean
Distance

−

Shapira et al [37] 2010 SHREC 2007 [18],
Princeton [38]

SDF SDF, CF, Shape
Distribution
(D1,D2,D3,A3)

− partial L1 Bipartite graph
matching

Xu et al [45] 2010 Princeton [38],
iWires [17]

Hierarchical
clustering

APS signature,
Light field
descriptor

APS signature global Euclidean
Distance

Tree search

Sfikas et al [33] 2012 TOSCA, SHREC
2007 [18],
SHREC 2010 [28],
SHREC 2011 [27]

CF quantization CF, A,GD − global L1 Hungarian
algorithm

Lavoué [26] 2012 McGill [47],
SHREC 2007 [18]

k-means
clustering

Spectral coeffi-
cients of the
Laplacian

− global, partial L1 −

Tab. 1: Continued.
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method and a meaningful part signature. A milestone
for the evolution of retrieval methods is the establish-
ment of the SHape REtrieval Contest (SHREC) [35], and
most methods since then use the SHREC Dataset for
evaluation purposes.

Since part retrieval implies a part-based represen-
tation, it is evident that part retrieval methodolo-
gies will be more effective in datasets that comprise
objects with distinct parts, eg. McGill dataset for artic-
ulated objects. This is the reason that there exists an
emphasis at the experimental level on this type of
datasets in contrast to generic datasets e.g. Prince-
ton, for which 3D object segmentation is not trivial
and part distinction cannot easily be achieved. For the
sake of clarity, the datasets shown in Tab. 1, indicate
that datasets including objects with distinct parts are
by far favored by the presented methods.

In the future the part-based representation is
highly likely to play an essential role in content-based
3D object retrieval. Part descriptors are becoming
more efficient and the field of 3D mesh segmen-
tation is currently evolving. As better segmentation
methods emerge, they are likely to be employed for
retrieval purposes more frequently. New tendencies
for segmentation include the application of multiple
partitioning methods on the same object although
this would increase the computational cost. Further-
more, hierarchical approaches seem to be appealing
for retrieval purposes since they take into account
that an object has different levels of detail and parts
are retrieved based on their shape as well as the
hierarchical level that produce them.
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