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Filling the Empty Spaces of the Sierpinski Tetrahedron to Create a 3D Puzzle
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ABSTRACT

The purpose of this paper is to present the method used to fill, with tetrahedrons of dimension L
4 ,

the empty spaces of the Sierpinski tetrahedron. And the aim of this research is to create a 3D puzzle
that is assembled using modules formed of tetrahedrons that bind and/or intersect each other. In
this paper we illustrate the process that took place to generate the modules taking in to account the
unions and intersections of the tetrahedrons and we use applications CAD-CAM-CAE to perform, from
the modeling of the modules till the rapid prototyping, the 3D puzzle.
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1. INTRODUCTION

In 1874 George Cantor published his first paper about
set theory which shows that the set of integers has the
same number of elements as the set of even numbers,
and that the number of points in a segment is equal
to an infinite line in space.

The Cantor set begins with a closed interval [0,
1] that it divides into three open subintervals of the
same amplitude, the central third is removed and are
preserved the two closed intervals of the first level
of subdivision (Fig. 1(a)). Next, it divide in three open
subintervals the two remaining closed intervals and
from each the central third are remove and are pre-
served four closed intervals for the second level of
subdivision (Fig. 1(b)).

It continues with the subdivide of each of the
closed remaining intervals, is removed the central
third to reach the third level (Fig. 2) and so on up to
infinity.

Waclaw Sierpinski was known for outstanding con-
tributions to set theory, number theory, theory of
functions and topology and in 1919 introduced a
fractal called Sierpinski triangle.

The Sierpinski triangle develops through recursive
subdivision of equilateral triangles where, the inter-
action n = 0 is the equilateral triangle of side L, the
interaction n = 1 is the midpoint of side L, i.e. L

2 , the
interaction n = 2 is where each of the triangles has a
length L

4 , and so on (Fig. 3).
The Sierpinski tetrahedron is the three-dimensional

shape of the Sierpinski triangle where, in the

interaction n = 0 there is one tetrahedron, in
the interaction n = 1 there are four tetrahedrons, in
the interaction n = 3 there are sixteen tetrahedrons
an so on (Fig. 4).

This project stems from the idea of filling, with
tetrahedral dimension L

4 (69.282
4 mm), the empty spaces

of Sierpinski tetrahedron in its second stage, i.e. in
the n = 2 interaction, to build a 3D puzzle using the
following methodology.

• Development of the Sierpinski tetrahedron in its
second stage.

• Analysis of unions and intersections of the tetra-
hedrons.

• Generation of the modules.
• Assembly of the 3D puzzle.

The aim of this research is to create a 3D puzzle
which is assembled using modules formed of tetra-
hedrons that bind and/or intersect each other. To
achieve the objective of this research, in this study
were considered: (a) the intersection of the geometric
shapes, we understand as intersection, the meeting
of two lines, two planes or two solids, which cutting
each other, and (b) the construction of modules to get
to assembly the 3D puzzle.

This paper is organized as follows: in Section 2 we
give an explanation of the development of the Sier-
pinski tetrahedron in its second stage, in Section 3
we give an explanation of the analysis of unions and
intersections of the tetrahedrons, in Section 4, we
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(a) (b)

Fig. 1: Cantor set: (a) first level, (b) second level.

Fig. 2: Cantor set third level.

Fig. 3: Interactions of Sierpinski triangle: (a) n = 0,
(b) n = 1 and (c) n = 2.

Fig. 4: Interaction of Sierpinski tetrahedron: (a)
n = 0, (b) n = 1 and (c) n = 2.

explain the generation of the modules. In Section 5 we
explain as the puzzle is assembled. Section 6 presents
the results. Section 7 presents the use of this work in
education and finally Section 8 the conclusions. We
want to mention that all the figures presented in this
paper are original and created by the authors at the
Autonomous Metropolitan University, Cuajimalpa in
Mexico City.

2. DEVELOPMENT OF SIERPINSKI TETRAHEDRON
IN ITS SECOND STAGE

The tetrahedron is a polyhedron formed by four
equilateral triangles and four vertices. In Book XI of
Euclid’s Elements is considered the tetrahedron as “A
solid figure bounded by planes that are formed from a
plane at an arbitrary point.” The tetrahedron is one of
the five perfect polyhedra called Platonic solids, is one

Fig. 5: Sierpinski tetrahedron: (a) second stage (b)
irregular shapes of the empty spaces.

of the eight convex polyhedra called deltahedra (poly-
hedron whose faces are equal equilateral triangles),
and complies with the theorem of Euler polyhedra
4 + 4 = 6 + 2 (c + v = a + 2).

In developing the Sierpinski tetrahedron in its sec-
ond stage are used sixteen tetrahedrons dimension L

4
which bind in to four modules with four tetrahedrons
each (Fig. 5(a)), so if the distance of 69,282 mm of the
edge of the tetrahedron is divided into four parts, the
edge of each of the tetrahedrons will be 17.3205 mm.

The Sierpinski tetrahedron has 75% of empty
spaces of equal irregular shapes of different sizes
(Fig. 5(b)), because the sixteen tetrahedrons are
removed from the initial tetrahedron (interaction n =
0).

The tetrahedron of edge 69.282 mm has a volume
of 39.192 cm3 and each of the sixteen tetrahedrons
has a volume of 0.612 cm3, i.e. a total of 9.797 cm3, so
we have a volume of 29.395 cm3 of empty space, i.e.
the 75% of empty space.

3. ANALYSIS OF UNIONS AND INTERSECTIONS OF
THE TETRAHEDRONS

3.1. Unions of the Tetrahedrons

The etymological origin of the term union comes from
the word unus, which can be translated as “one”.
Union is the action and effect of joining (putting
together, combine) and to join two or more tetrahe-
drons it must consider the position in space of the
tetrahedron and the inclination of its faces.

There can only be two unions between the tetra-
hedrons: the first between the faces that are parallel
to the horizontal plane of the orthogonal projection
(Fig. 6(a)) and the second between the inclined faces
(Fig. 6(b)).
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Fig. 6: Unions: (a) between horizontal faces, (b)
between inclined faces.

3.2. Intersections of the Tetrahedrons

The intersection can be defined as the region of
space which is occupied simultaneously by two or
more shapes. The intersection can be used to tie two
or more shapes or to create an empty space where
a geometric shape can be inserted into the open
space.

3.2.1. Intersections that tie two or more tetrahedrons

Depending on the position of the tetrahedrons in
space is the manner in which they intersect. At the
figures below (Fig. 7 and 8) it can see the five ways to
make the intersections that tie two or three tetrahe-
drons respectively.

3.2.2. Intersections that create an empty space

There are several ways to make the intersections
between two or more tetrahedrons so that they can
create empty spaces, but in this study only took into
account the below intersections because they are the
ones that will be used to assemble the puzzle. At
the figures below (Fig. 9) it can see the four ways to
make the intersections where an empty space is cre-
ated so that a tetrahedron can be inserted into the
open space.

Fig. 7: Intersection of two tetrahedrons: (a) first way, (b) second way, (c) third way.

Fig. 8: Intersection of three tetrahedrons: (a) first way, (b) second way.
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Fig. 9: Intersection through empty spaces: (a) first, (b) second, (c) third and (d) fourth way.

4. GENERATION OF THE MODULES

A module is defined as each of the separate parts
that make a whole. Our design is formed by ten mod-
ules with different numbers of tetrahedrons that bind
and/or intersect each other (Tab. 1) and are arranged
in three levels (Fig. 10(a)).

Number of modules Number of tetrahedrons

2 2
4 4
1 5
2 7
1 8
Total Total
10 47

Tab. 1: Modules.

Before creating the modules, it was considered the
arrangement of seven tetrahedrons to form, at the
base of the first level, an equilateral triangle, where
a tetrahedron is placed in the center of the equilateral
triangle and six tetrahedrons were placed around it
so that the tetrahedrons are connected by the vertices
(Fig. 10(b)).

To better understand how the modules were gen-
erated, each tetrahedra will have a number for identi-
fication that can be relate them in the tables (Tab. 2,

Fig. 10: (a) Levels and (b) seven tetrahedrons at first
level.

3 and 4) and in the figures (Fig. 11, 12, 13, 14 and 15)
which are presented below.

4.1. Modules first Level

The first level consists of four modules which are gen-
erated with different numbers of tetrahedrons that
bind and/or intersect each other. Table 2 explains,
which tetrahedrons (T) and modules intersecting (I)
with other tetrahedrons and with other modules of
the same level or second level.

4.2. Modules Second Level

The second level consists of five modules which
are generated with different numbers of tetrahe-
drons that bind and/or intersect each other. Table 3
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Faces which Tetrahedron that Intersecting Edges that
Modules Tetrahedrons bind intersect. modules join

1 T1, T8, T9,T10 T1-T8 and T1-T9 T9-T10 (I1) Module 2 T1-T18
I1-T13

Module 8
I9-T8

2 T3, T11, T12, T4 and T13 T3-T11; T12-T4 and T11-T12 (I2) Module 1 T3-T17
T4-T13 T13- I1

Module 7
I2-T27

3 T7,T14,T15,T16,T17,T18 T7-T14; T2-T16 and T14-T15-T16 (I3) Module 5 T18-T1
and T2 T2-T17 T17-T18 (I4) I3-T21 T17-T3

Module 6
I4-T23

4 T6,T19,T20 and T5 T6-T20 and T5-T19 T20-T19 (I5) Module 8 NONE
I5-T31

Tab. 2: Modules first level related with Figures 11 and 12.

Faces which Tetrahedron Intersecting Edges that
Modules Tetrahedrons bind that intersect. modules join

5 T21 and T22 T21-T22 NONE Module 3 T21-T22-T26
I3-T21

6 T23, T24, T25
and T26

T23-T24 and T24-T25 T25-T26 (I6) Module 3 T26-T21-T22
I4-T23

Module 10
I6-T41

7 T27,T28,729
and T30

T27-T28 and T28-T29 T29-T30 (I7) Module 2 T44-T30
T27-I2

8 T31,T32,T33,
T34,T35,T36,
T37 and T38

T31-T32, T32-T33,
T32-T34, T34-T36,
T36-T37

T33-T34-T35 (I8) Module 4 T38-T20
T37-T38 (I9) T31-I5 T43-T34

Module 1
I9-T8

Module 9
I8-T39

9 T39 and T40 T39-T40 NONE Module 8 NONE
I8-T39

Tab. 3: Modules second level related with Figures 13 and 14.

Tetrahedron Intersecting Edges that
Modules Tetrahedrons Faces which bind that intersect. modules join

10 T41, T42, T43, T44,
T45, T46 and T47

T41-T42, T42-T46,
T43-T47 and T44-T45

T45-T46-T47 (I10) Module 6
I6-T41

T43-T34
T44-T30

Tab. 4: Module third level related with Figure 15.

explains, which tetrahedrons (T) and modules inter-
secting (I) with other tetrahedrons and with other
modules of the same level or first level.

4.3. Module Third Level

The third level consists of one module which is
generated with seven tetrahedrons that bind and/or
intersect each other. In Table 4 is explained which

tetrahedrons (T) and module intersecting (I) with
other tetrahedrons and with the module from the
second level.

5. ASSEMBLY OF THE 3D PUZZLE

The assembly word is derived from the French verb
“assembler” and is defined as the union of two pieces
forming part of a structure. There are many ways to
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Fig. 11: Modules first level: (a) first, (b) second, (c) third and (d) fourth.

Fig. 12: Modules first level: (a) orthogonal projection,
(b) three-dimensional graphical representation and (c)
unions, intersections and empty spaces.

assemble this puzzle but it is suggested to follow an
order in the placing of the modules since otherwise
would be very difficult to introduce the tetrahedrons
at the empty spaces. The following figures (Fig. 16 and
17) present the prototype that was printed in the uni-
versity laboratory and it can see how it was assembled
the puzzle.

Table 5 indicates the modules that should be
inserted in the empty spaces as a reference to assem-
ble the 3D puzzle.

6. RESULTS

Some of the 2D puzzles made in the course of his-
tory are the Stomachion, described in the manuscripts
made by Archimedes, the Tangram that is an ancient
Chinese game called the Chi Chiao Pan, the Pentomi-
nos, and the wood puzzles carried out in 1760 by
John Spilsbury.

The 3D puzzles began with the shape of a cube, for
example, the Soma Cube, the Lesk Cube, the O’Beirne’s
Cube and the most famous Rubik’s Cube.

The first 3D mechanical tetrahedral puzzles were
designed by Rubik (Pyramorphix) and Meffert (Pyra-
minx) followed by Adam Zamora (Megamorphix), by
Greenhill, and by Frederic Plateús, to name a few, and
also we find the 3D tetrahedral puzzles designed by
James Allwright [7] and Wayne Daniel [8], who used
modules to assemble its 3D puzzles.

Fig. 14: Modules second level: (a) orthogonal projec-
tion, (b) three-dimensional graphical representation
and (c) unions, intersections and empty spaces.

Fig. 15: Module third level: (a) tenth, (b) three-dimen-
sional graphical representation and (c) unions and
intersections.

Fig. 16: The ten modules printed.

These latest puzzles, which are those that will
relate to our research, are made through cuts and
intersections of the tetrahedron, for example, All-
wright intersects truncated tetrahedra to assemble
the puzzle, and Daniel cut the tetrahedron into two,
three or four equal pieces or in nine different pieces
to assemble their puzzles.

Fig. 13: Modules second level: (a) fifth, (b) sixth, (c) seventh, (d) eighth and (e) ninth.
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Fig. 17: 3D puzzle, (a, b, c) exterior views and (d) interior view.

Modules with Modules that insert
empty spaces in the empty spaces

6 10
3 7
2 5 and 6
1 3
4 8
8 1 and 9

Tab. 5: Modules insertion.

The difference between the 3D tetrahedral puzzles
designed by Allwright and Daniel and the 3D puz-
zle presented in this research is that the tetrahedrons
in each of the modules is based on the dimension L

4
of the Sierpinski tetrahedron, i.e. one quarter of the
length of the edge, and in each of the modules took
into account the unions between two tetrahedrons,
the intersections between two or three tetrahedrons,
and the empty spaces to insert a tetrahedron for
assembling the 3D puzzle.

Once assembled the 3d puzzle, as indicates in the
Table 5, we find that certain edges, faces and ver-
tices of the tetrahedrons are joined (Tab. 6), the 75%
of empty spaces of Sierpinski tetrahedron is reduced
to 32.2% in the 3D puzzle, i.e., of 29.395 cm3 to
12.615 cm3 (Fig. 18, 19 and 20), and we have 14.15%,
i.e. 5.549 cm3, of interior empty spaces in the 3D
puzzle (Fig. 21).

Regardless that have not filled in all the empty
spaces of Sierpinski tetrahedron and due to the incli-
nation of the faces of the tetrahedrons, the goal of
this research is achieved, create a 3D puzzle that
is assembled using modules formed of tetrahedrons

Fig. 18: Empty spaces: (a) tetrahedron, (b) sierpinski
tetrahedron, (c) 75% of empty spaces.

Fig. 19: Empty spaces: (a) tetrahedron, (b) 3D puzzle
(c) 38.43% of empty spaces.

Fig. 20: Empty spaces: (a) 38.43% of empty spaces,
(b) Sierpinski tetrahedron, (c) 32.2% of empty spaces.

that bind and/or intersect each other (Fig. 22 and
Fig. 23).

7. USE OF THIS WORK IN EDUCATION

A puzzle is not just a game. It is an important educa-
tional learning tool that provides the development of
many mental skills, such as: capacity for analysis and
synthesis, coordination, spatial vision, motor skills,
logical thinking and creativity.

Joined at the faces Joined at the vertices

Modules Modules Modules Modules Modules Modules

1 3 10 7 4 3, 1, 2 6 and 9
8 6 and 3 6 4, 2, 7 and 9

1 8
9 4, 2 and 6

10 5, 8 and 7

Tab. 6: Modules joined: (a) at the edges, (b) at the faces and (c) at the vertices.
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Fig. 21: Interior empty spaces: (a) 3D puzzle, (b)
14.51% of empty spaces.

Fig. 22: 3d puzzle: (a, b, c) views.

Fig. 23: 3D puzzle: (a) render and (b) explosion.

To assemble any puzzle you need to have the
instructions, so were given the students studying
Masters in “Design, Information and Communication”
at the Universidad Autonoma Metropolitana, Cuaji-
malpa, the 3D puzzle of this work so that they carry
out the instruction manual.

As we can see in the Figures 24 and 25(a. b and c),
the students analyze each of the printed modules and

Fig. 26: First page of the printed instruction manual.

the Autocad file, they assemble the puzzle, and they
write the instructions.

Students concluded that if they paint each of the
modules of different color (Fig. 25(d) it will be easier
to assemble the puzzle and that this puzzle needs two
manuals, one printed (Fig. 26) and the other through
a movie with sound. After evaluating the manuals, the
results showed that it is possible to assemble the puz-
zle by following the instructions, concluding that the
instructions are well illustrated and explained.

8. CONCLUSION

This paper presents a system to create a 3D puzzle by
filling the empty spaces of the Sierpinski tetrahedron.
The puzzle is made up of a number of modules and
the modules are a series of tetrahedrons of dimension
L
4 forming different shapes.

The results show that it is not possible to cre-
ate a 3D puzzle completely filled with tetrahedrons
of dimension L

4 , because the tetrahedron is a solid
formed by four equilateral triangles that meet at a
vertex, and always, no matter the position of the
tetrahedron in space maintains its inclination angle,

Fig. 24: Students working in the laboratory of the university.

Fig. 25: (a, b and c) Students working in the laboratory of the university, (d) modules of different color.
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and due to this inclination was achieved that the 3D
puzzle can be assembled.
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