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ABSTRACT

In algorithm of part localization, the distances between the measured points and their projections
on the model surface is evaluated as the machining allowance or machining error of the parts with
free-form surfaces. Point projection of a measured point on the model surface is the key to process
the localization of the measured data points to the CAD model. At present, iteration-type methods
are the most popular solving strategy. However, it cannot provide full assurance that all roots have
been found. This paper presents a subdivision-based method for computing point projection on the
model surface. Different from the previous methods, our method is to use the position relationships
of the graph of the first derivative of the squared distance function and the u-v parametric plane
to eliminate the invalid surface segments. A simple formula is derived based on AMBP (arithmetic
of multivariate Bernstein-form polynomial) to facilitate the use of this criterion. Compared with the
iteration-type methods, one advantage of our method is that it can avoid providing any initial value
for achieving the proper result and guarantee the roots for all conditions. Finally, some examples are
given to demonstrate the effectiveness and robustness of the proposed method.
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1. INTRODUCTION

Point projection is an essential tool in quality evalu-
ation of the machined parts with free-form surface
and localization for machining allowance optimiza-
tion for evaluating the error between the machined
parts or blank parts and CAD models [11,20,21].
Much of the research work on point projection is
concentrated on Newton iteration and its variations
because of their quadratic convergence rate close
to the simple root [7,8,12,23]. The present work is
to compute the point projection on the model sur-
face by using the subdivision based strategy rather
than iteration processing. Out of the various applica-
tions of point projection, localization for machining
allowance optimization and inspection of machined
parts based on nominal CAD model are the main moti-
vation for the present work. In such applications, the
focus of interest is the correctness of point projection
rather than the computation speed of the algorithm
itself.

Although the predominant iteration-type meth-
ods exhibits quadratic convergence rate that is very
attractive for many applications, it is still a error
prone process that fails quite often especially for

the boundary points [17], and some tests by Ma
and Hewitt [14] have indicated that widely used
Newton-Raphson method gives occasionally some
wrong results even with a quite good initial iteration
point when applying it on the whole surface. Perhaps,
occasional errors is trivial for the graphics processing,
however, it is fatal for the practical industrial appli-
cations. For example, in inspection of the machined
part, if the error on a point shows bigger than that
it should be because of miscalculation of its clos-
est point, the qualified parts may be considered to
be defective ones that need to be returned back to
the factory and is reworked [10]. Also, for machining
allowance optimization, the distance between a point
and its projection on the model surface is evaluated
as the machining allowance at this point, if wrong pro-
jection is calculated, the blank parts may be reworked
due to the material shortage of some areas resulted
from the wrong projection, even although the nominal
model can be actually enclosed within the blank parts
[22]. For these industrial applications, the robustness
of calculation of the closest point may be found to be
more important and economical than the savings of
the computing time.
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The lack of robustness promotes the develop-
ment of effective and reliable techniques. A different
solving strategy, the methods based on subdivision,
has been used for computing the closest point or
providing a good initial value for Newton-type meth-
ods. For example, Piegl and Tiller [17] decomposed
the model surface into quadrilaterals, projected the
test point onto the closest quadrilateral, and then
recovered the parameters of the closest point from
the quadrilateral. Ma and Hewitt [14] eliminated the
invalid surface segments by checking the relationship
of the test point and the control points of Bézier
surface, and then subdivided the valid surface seg-
ments, approaching to the closest point or providing a
good initial value for Newton-Raphson method. How-
ever, their elimination criterion might fail in case of
some 3D curves that have been given by Chen et al.
[3,4]. Zhou et al. [25] converted the point projection
problem into a polynomial equation system and the
solutions were obtained by PP (Projected-Polyhedron)
algorithm. Dyllong and Luther [6] gave a diffident
exclusion criterion, however in some cases their
method might also lead to wrong results. Selimoic [19]
improved the subdivision-based method by a stricter
elimination criterion which can increases consider-
ably the robustness of the algorithm.

When subdividing the model surface, it is neces-
sary to determine which segments contain possibly
the projection. In other words, the segments not
including the solutions must be eliminated as much
as possible; it is also the crux of the subdivision-based
methods. The criterions of Ma [14] and Selimoic [19]
are both to utilize the relationship of the test point
and the control polygons of Bézier surfaces to elim-
inate the invalid surface segments. Different from
theirs, the elimination criterion proposed in the paper
is to utilize the position relationships of the graph
of the first derivative of the squared distance func-
tion and the u-v parametric plane to eliminate those
invalid surface segments. A simple formula is derived
using AMBP to facilitate the use of this new criterion.
Together with the variation diminishing property of
the Bernstein-form polynomials, it can eliminate effec-
tively the segments not including the solutions. With
a slight modification, the proposed method can be
applied well to NURBS surfaces. For the sake of sim-
plicity, its basic principles are explained by using
B-spline surface in the following.

2. OUTLINE OF THE PROPOSED METHOD

In the proposed method, a B-spline surface is first
decomposed into a set of Bézier surfaces. For each
Bézier patches, the first derivative surface of the
squared distance function is modeled by using AMBP,
whose relative position to the u-v parametric plane is
then used to determine whether the derivative surface
is tangential to the u-v parametric plane or not and
the tangential point is the closest point. The candidate

surface patch will be iteratively subdivided, approach-
ing to the tangential point, until a given tolerance is
reached, as shown in Fig. 1. The proposed method is
summarized as following and the detailed steps are
discussed in the subsequent sections.

• Subdividing a B-spline surface into a set of
Bézier surfaces;

• Creating the first derivative surface of the
squared distance function;

• Narrowing down the surface including possibly
the solutions;

• Comparing the distances between the test point
and the candidate points to find the solutions.

(a) (b)

Fig. 1: Surface subdivision: (a) Bézier surface subdi-
vision. Left: Bézier surfaces; Right: Parameter domain.
(b) The first derivative surface of distance function

3. SUBDIVISION OF MODEL SURFACES

In the work, model surface is represented in B-spline
form. The details of the mathematical description for
such surfaces can be found in the literature [16].
For explanatory convenience, B-spline surfaces are
reviewed briefly as follows. A B-spline surface of
degree k in udirection and l in v direction is defined by

r(u, v) =
m∑

i=0

n∑
j=0

bi,jNi,k(u)Nj,l(v) (1)

where bi,j are the control points of B-spline sur-
face, and Ni,k(u) and Nj,l(v) are the normalized B-
spline basis defined over the knot vectors U and V ,
respectively

U =

⎡
⎢⎣0, · · · , 0︸ ︷︷ ︸

k+1

, uk+1, · · · , um, 1, · · · , 1︸ ︷︷ ︸
k+1

⎤
⎥⎦

V =

⎡
⎢⎣0, · · · , 0︸ ︷︷ ︸

l+1

, vl+1, · · · , vn, 1, · · · , 1︸ ︷︷ ︸
l+1

⎤
⎥⎦

So far, many efforts have been focused on subdi-
vision of B-spline surface into Bézier surfaces. The
most popular method is Oslo algorithm based on knot
insertion developed by Boehm [2] and Cohen et al. [5]
and proved by Prautzsch [18]. For practical applica-
tions, a more efficient way of using the Oslo algorithm
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is given by Lyche and Morken [13]. More detailed
review is also referred to the literature [2,5,13,15,18].
The essential subdivision steps are briefly summa-
rized as follows: Given a B-spline surface of degree k
and l, defined by Eq. (1), a set of Bézier surface can be
derived by inserting interior knot in U until its multi-
plicity is k and then inserting interior knot in V until
its multiplicity is l. An example of decomposing a B-
spline surface into its piecewise Bézier form is shown
in Fig. 2. In addition, a Bézier surface can also be
split into four Bézier sub-surfaces at arbitrary param-
eters (u, v) by applying de Casteljau algorithm on the
control points of the surface in u and v direction.

Fig. 2: Subdivision of B-spline surface into Bézier
surfaces: (a) A cubic B-spline surface with 10 × 10 con-
trol points, (b) Bézier surfaces after decomposition.

4. FIRST DERIVATIVE SURFACE

In this section, the first derivative of the squared
distance function is formulated as a Bernstein-form
polynomial by AMBP and its graph can be described
as a Bézier surface over the u-v parameter plane, such
that the necessary condition for the closest point,
∇ds

p(u, v) = 0, can be re-explained as the first deriva-
tive surface is tangential to the u-v parametric plane
and the tangential point is the closest point.

For convenience of the following processing,
model surface has been subdivided into its piecewise
Bézier form in Section 3. Here, the basic principles
of the proposed method are explained using Bézier
surface. Mathematically, the point projection can be
described as to find a corresponding point of a given
point p on a model surface s(u, v) such that the
distance between p and its corresponding point is
minimal. The function to be minimized was

minu,v

(
ds

p(u, v)
)

= minu,v

(
‖p − r(u, v)‖2

)
(2)

If the closest point is not a point on the sur-
face boundary, the following condition is necessary,
i.e. ∇ds

p(u, v) = 0. Thus, calculation of closest point
is turned into a problem of solving the roots of
∇ds

p(u, v) = 0. In this paper, instead of using tradi-
tional numerical methods, a quadtree decomposition
based method is given to solve it. An equivalent

equation to ∇ds
p(u, v) = 0 is given by

w(u, v) =
(

∂ds
p(u, v)

∂u

)2

+
(

∂ds
p(u, v)

∂v

)2

= 0 (3)

The partial derivatives of the squared distance func-
tion ds

p(u, v) with respect to the parameters u and v is
given by

∂ds
p(u, v)

∂u
= 2

∂r(u, v)

∂u
(p − r(u, v)) (4)

∂ds
p(u, v)

∂v
= 2

∂r(u, v)

∂v
(p − r(u, v)) (5)

where

∂r(u, v)

∂u
= m

m−1∑
i=0

n∑
j=0

b1,0
i,j Bi,m−1(u)Bj,n(v) (6)

∂r(u, v)

∂v
= n

m∑
i=0

n−1∑
j=0

b0,1
i,j Bi,m(u)Bj,n−1(v) (7)

b1,0
i,j and b0,1

i,j are the first forward difference vector of

the control points bi,j of Bézier surface r(u, v). And
the point p can be described as a degenerative Bézier
surface by using the normality of Bernstein basis as
follows

sp(u, v) =
m∑

i=0

n∑
j=0

di,jBi,m(u)Bj,n(v) (8)

where di,j = p, i = 0, 1, · · · , m; j = 0, 1, · · · n. By using
the arithmetic operation of subtraction of two
bivariate Bernstein-form polynomials referred to [1],
p − r(u, v) can be formulated as

p − r(u, v) =
m∑

i=0

n∑
j=0

ei,jBi,m(u)Bj,n(v) (9)

where ei,j = di,j − bi,j, i = 0, 1, · · · , m; j = 0, 1, · · · , n.
Then, substituting Eq. (6) and (9) into Eq. (4),
∂ds

p(u, v)/∂u can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ds
p(u, v)

∂u
=

2m∑
i=0

2n∑
j=0

fi,jBi,2m(u)Bj,2n(v)

fi,j =
min(2m−1,i)∑
k=max(0,i−r)

min(2n,j)∑
l=max(0,j−s)

Ck
mCi−k

1 Cn
l Cj−1

0

Ci
2mCj

2n

Fk,l

F (2m−1,2n)

i,j =
min(s,i)∑

k=max(0,i−p)

min(t,j)∑
l=max(0,j−q)

×Cl
sC

i−1
p Ck

t Cj−k
q

Ci
s+pCj

t+q

(b1,0
l,k · ei−1,j−k)

(10)
where fi,j are the Bernstein coefficients of ∂ds

p(u, v)/∂u,
and s, t, p and q are, respectively, the maximum
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degrees of the polynomials ∂r(u, v)/∂u and p − r(u, v).
Similarly, ∂ds

p(u, v)/∂v can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ds
p(u, v)

∂u
=

2m∑
i=0

2n∑
j=0

hi,jBi,2m(u)Bj,2n(v)

hi,j =
min(2m,i)∑

k=max(0,i−r)

min(2n−1,j)∑
l=max(0,j−s)

Ck
mCi−k

1 Cn
l Cj−1

0

Ci
2mCj

2n

Hk,l

H (2m,2n−1)

i,j =
min(s,i)∑

k=max(0,i−p)

min(t,j)∑
l=max(0,j−q)

×Cl
sC

i−1
p Ck

t Cj−k
q

Ci
s+pCj

t+q

(b1,0
l,k · ei−1,j−k)

(11)
After substituting Eq. (10) and (6) into Eq. (3), by

using the AMBP, w(u, v) can be rewritten as a bivariate
Bernstein-form polynomial as shown in Eq. (12)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(u, v) =
4m∑
i=0

4n∑
j=0

gi,jBi,4m(u)Bj,4n(v)

gi,j = xi,j + yi,j

xi,j =
min(s,i)∑

k=max(0,i−p)

min(t,j)∑
l=max(0,j−q)

×Cl
sC

i−l
p Ck

t Cj−k
q

Ci
s+pCj

t+q

(fl,k · fi−1,j−k)

yi,j =
min(s,i)∑

k=max(0,i−p)

min(t,j)∑
l=max(0,j−q)

×Cl
sC

i−1
p Ck

t Cj−k
q

Ci
s+pCj

t+q

(hl,k · hi−1,j−k)

(12)

where gi,j are the Bernstein coefficients, s and p is 2m,
t and q is 2n. The graph of w(u, v) can be descri-bed
by a Bézier surface over the u-v parameter plane, and
it is called as the first derivative surface in this paper
and is modeled by the following parametric equation⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
sw : w(u, v) =

4m∑
i=0

4n∑
j=0

gi,jBi,4m(u)Bj,4n(v)

gi,j =
[

i
4m

,
j

4n
, gi,j

]T
(13)

where gi,j are the control points of the first derivative
surface sw. From Eq. (3), it is seen that w(u, v) is non-
negative, namely, no portion of sw lies below the u-v
parametric plane, which implies that if w(u, v) is equal
to zero, namely ∇ds

p(u, v) = 0, sw has to be tangential
to the u-v parametric plane, and the tangent point is
the closest point. In other words, if the first deriva-
tive surface sw is completely above the u-v parametric

plane, the surface s(u, v) will be regarded as an invalid
surface to be discarded.

5. METHODS FOR FINDING THE CLOSEST POINT

5.1. Elimination Criterion for Invalid Surface

To narrow the domains including the potential solu-
tions, the invalid Bézier surfaces not containing the
solutions must been eliminated as much as possible.
For this purpose, a simple and efficient criterion for
eliminating the invalid surface is given in this section.

Criterion 1. For surface, the signs of Bernstein
coefficients gi,j in Eq. (12) are checked, if all signs are
positive, the first derivative surface must be not tan-
gential to the u-v parametric plane such that the test
surface s(u, v) is regarded as an invalid surface and
must be eliminated.

This criterion derives from the variation diminish-
ing property of Bézier surface. As shown in Fig. 3,
if the first derivative surface is tangential to the u-v
parametric plane, its control points are distributed
on both sides of the plane, and if the convex hull
or the control points of the first derivative surface
are completely above the u-v parametric plane, the
first derivative surface must not be tangential to the
u-v parametric plane and this means that the clos-
est point is not on the tested model surface. For all
Bézier surfaces obtained by subdivision in Section 3,
the above checking procedure is repeated. The surface
patches passing this test are selected as candidate
surfaces to be further subdivided.

5.2. Algorithm for Finding Closest Point on the
Model Surface

Once a Bézier surface is selected as the candidate
surface, its corresponding derivative surface will be
subdivided recursively and at the same time the signs
of the Bernstein coefficients gi,j of w(u, v) also be
checked in the subdivided parameter domain. An
adaptive quadtree decomposition on the u-v domain
is adopted to narrow the domain possibly containing
the tangent point, and de Casteljau algorithm is used
to subdivide the u-v domain into four sub-domains
at the midpoint of u and v. In searching the closest
point, sw is subdivided recursively and control points
of sub-sw,i are checked simultaneously. If all control
points are completely above the u-v parametric plane,
the node of the corresponding parameter region is
marked as one excluding the roots. The searching pro-
cess stops a depth dt where the size of the domain
is less than a given threshold ε0, namely 2−dt ≤ ε0.
Then the quadtree is traversed and all unmarked
nodes are collected at dt from which the intervals
[ul , uh] × [vl , vh] containing possibly the closest point
is produced and the closest point is calculated by
r((ul + uh)/2, (vl + vh)/2). Figure 4 shows an example
of the adaptive quadtree decomposition.

For each candidate Bézier surfaces, the procedure
is repeated and the midpoints of all marked domains
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(a) (b)

(c)

Fig. 3: Relationship between the control points of the first derivative surface and the u − v parametric plane.

are regarded as the candidate points of the clos-
est point. If all Bézier surfaces are considered to be
invalid surfaces, this means that the closest point
is not on the model surface but its boundaries, the
closest point of the test point can be calculated on
the surface boundaries by our previous method that
addresses the problem of the closest point on a para-
metric curve [24]. Thus, the closest points of a test
point on the surface boundaries should be also added
into the collection of the candidate points. Then, by
comparing the distances between the test point and
the candidate points, the closest point can be found
on the model surface of the test point.

Fig. 4: Adaptive quadtree decomposition. The
marked gray domains indicate those which possibly
contain the solutions.

As mentioned previously, using knot insertion
technique, B-spline surface can be easily subdivided
into its piecewise Bézier form. For each Bézier sur-
face, the above algorithm is implemented to judge

whether w(u, v) = 0 hold or not. For Bézier surfaces
satisfying this condition, quadtree decomposition is
implemented to find the closest point. In such a way,
the proposed method is generalized nicely to B-spline
surface. Since the proposed method does not involve
any iteration, it avoids the requirement of providing a
good initial value for achieving the proper result and
can also guarantee the root for all conditions.

6. EXAMPLES

The proposed algorithm has been implemented on a
PC in C++, and in the following some examples will
be given to demonstrate its effectiveness and robust-
ness. As Selimonic [19] has ever pointed out that
CPU performance time strongly depends on hardware
and programming strategy, however the robustness is
only associated with the algorithm itself, and also as
mentioned earlier, for the practical industrial appli-
cations such as localization and inspection of the
machined parts based on CAD model, the robustness
is the main focus of interest. Thus, here the emphasis
is the ability that the proposed method deals correctly
with the point projection in any situations.

6.1. Example 1: Point Projection onto B-spline
Surface

Figure 5 shows an example that a point is projected
onto a 3D bicubic B-spline surface used earlier in
Fig. 2. The size of the control net of the surface is
10 × 10 and the test point is (50.00, 50.00, 50.00).
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Fig. 2(b) shows the obtained Bézier surface patches
by subdividing this B-spline surface, and for all Bézier
patches the first derivative surfaces are constructed
by the formulae given in Section 4 and are used to
eliminate the invalid surface patches by Criterion 1 of
Section 5.1. After implementing the above test, among
49 Bézier patches, only one surface is valid surface
which contains possibly the closest point of the test
point and 98% of Bézier surface patches (48 invalid
surfaces) are eliminated, as shown in Fig. 5(a). And
then this one valid surface is further subdivided until
the size of its parameter domain is less than a user-
specified tolerance. Fig. 5(b) shows the closet point
obtained by the proposed method.

(a) (b)

Fig. 5: Point projection onto a bicubic B-spline sur-
face and the remarked domain indicates one which
possibly contains solution: (a) Elimination of invalid
surface patches, (b) test point and closest point on
the surface.

Fig. 6: Comparison between the proposed method
and Newton-Raphson method.

6.2. Example 2: Comparison of our Method and
Newton-Raphson Method

When applying iteration-type methods on the whole
CAD surface, Ma and Hewitt [14] have pointed out
that widely used iteration methods such as Newton-
Raphson method possibly led to a wrong result. In
this our test, for a point shown in Fig. 6, Newton-
Raphson method produces a wrong answer when the
subdivision interval is set as 10−3. The reason is
under this subdivision interval the obtained initial
point for iteration process is closer to that wrong pro-
jection. If a smaller subdivision interval such as 10−5

or 10−6 is used, Newton-Raphson method can lead to
the proper projection that is same as that of the pro-
posed method and is shown in Fig. 6. The dependence
on a good initial value makes iteration-type methods
not providing full assurance that all solutions have
been found in any situations and such good initial
value is also hard to obtain due to the complexity of
the shape of B-spline surface.

6.3. Example 3: Point Projection on the Surface
Boundary

Piegl [17] and Ma [14] both point out that iteration-
type methods are an error prone process that fails
often especially for some boundary points. In this
situation, the proposed method always gives right
results. Fig. 7 illustrates the result of projecting the
points onto the surface boundary.

Fig. 7: Point projection on the surface boundary.

6.4. Example 4: Application to Localization
Algorithm for Machining Allowance
Optimization

Optimal localization for the machining allowance
optimization refers to a process of determining the
position and orientation of the design frame relative
to the machine frame when a casting or forging blank
part is arbitrarily fixed to a machine table, and then
the optimal transformation matrix is used to process
the initially generated tool paths which acts on the
blank as if it is accurately fixed to the machine table.
This process involves a set of measured data and
a nominal CAD model and amounts to find a rigid
body motion, transforming the measurement points
to coincide with the design surface as close as pos-
sible. It is highly preferable to push each measured
point outside the model surface in order to ensure
that the surfaces of interest can be machined with suf-
ficient machining allowances. In this case, the machin-
ing allowance is represented by the distances between
the points measured from the machined parts and its
projection on the nominal CAD surface.

As mentioned earlier, if wrong calculation result
of the closest point occurs, the blank part could be
considered to be substandard and has to be reworked
due to the material shortage of some areas resulted
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Fig. 8: Application of the proposed method to localization algorithm: (a) Initial position and orientation of
measurement points to model surface, (b) localization result after matching with oriented distance constraints
by the method [22]

from the calculation error, even though the nominal
model actually can be enclosed within the blank part.
From a practical point of view, iteration-type meth-
ods may not be preferred although they are faster
than that based on subdivision strategy. For indus-
trial applications, the robustness of calculation of the
closest point may be found to be more important and
economical than the savings of the computing time.
The proposed method is to adaptively narrow down
the surface to approach to the closest point by using
surface subdivision rather than iteration processing,
and it has been demon-strated by the test results
that the proposed method can provide full assur-
ance for all solutions and is thus nicely applicable
to localization processing compared with iteration-
type methods. Fig. 8 shows an example that the
proposed method is used in localization of the mea-
surement data to the nominal model surface, and the
calculated closest distances are used as constraints
of the machining allowance optimization to ensure
that the blank parts can be machined with sufficient
machining allowances.

7. ALGORITHM ANALYSIS

In the proposed method, the strategy of adaptive
quadtree decomposition is used to narrow down the
regions possibly including the projection. For a can-
didate surface, its parameter domain is subdivided
into four sub-domains at the midpoint of u and v.
At a depth dt , there are at most 4dt nodes and each
node has an interval of size s2−dt ≤ u ≤ (s + 1)2−dt

and t2−dt ≤ v ≤ (t + 1)2−dt where s and t are inte-
gers of 0 ≤ s ≤ 4(dt−1) and 0 ≤ t ≤ 4(dt−1). Obviously,
surface subdivision is the most time-consuming step
of the proposed algorithm and it has significant
influence on the CPU performance. Generally, how
many subdivisions are implemented is not known in
advance, but the maximum depth required to satisfy
a user-specified tolerance ε0 can be estimated. For a
user-specified tolerance ε0, our algorithm stops when
the size of the subdivided domain is less than ε0,
namely 2−dt ≤ ε0. In the worst case, subdivision hap-
pens twice at every node up to depth dt − 1, such

that the total number of applications of the de Castel-
jau algorithm is 2

∑dt
i=0 4i [9]. For a Bézier surface

of degree m in u direction and n in v direction, the
application of de Casteljau algorithm in u and v direc-
tion is O(m2 + n2). Thus, the time complexity in the
worst case of the algorithm is O(4dt (m2 + n2)). As an
example, when a sphere and a point on the center of
the sphere are provided as input to the algorithm,
the worst case will happen. However, generally time
complexity could be much better than the worst case
because for much of the model surface in indus-
trial applications, the number of the closest point
of a given point is limited and generally is one. In
this situation, the subdivision on the invalid surface
can be considerably reduced. As shown in Example
6.1, 98% of Bézier patches need not be subdivided
after implementing Criterion 1 once. Despite this, its
CPU performance is still slower than Newton-Raphson
method in practical implementation. But, as men-
tioned earlier, the original intention of our method
and the subdivision-based methods is to compensate
for the deficiencies of robustness of iteration-type
methods and give full assurance that all solutions
have been properly found, which is very important for
those practical industrial applications.

8. CONCLUSION

In this paper, a method for calculating the clos-
est point on model surface is proposed. Different
from the previous subdivision-based methods, the
proposed method employs AMBP to formulize the
first derivative of squared distance function into a
Bernstein-from polynomial, and then by using the
linear precision property of Bernstein polynomial,
the graph of the first derivative is modeled by a
Bézier surface. Using the position relationships of
obtained Bézier surface and the u-v parametric plane,
the domain which contains the potential solutions
is iteratively subdivided until the closest point is
found. Experimental results have demonstrated that
the proposed criterion can eliminate efficiently those
invalid surface patches, and in Example 6.1, only
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implementing Criterion 1 once, 98% of Bézier patches
is determined to be invalid surfaces that need not
be further subdivided. To some extent, this shows
that the method is very effective for discarding the
invalid surfaces, but CPU time performance is slower
than Newton-Raphson method in the practical imple-
mentation of our examples. Programming strategy of
recursive subdivision is considered to be an impor-
tant reason, but as mentioned before, the computa-
tion time of the algorithm is not the focus of this
paper, and effectiveness and robustness of algorithm
are the most important for the industrial applications
from a practical point of view. As demonstrated by
the experimental results, the proposed method can
provides full assurance that all solutions can be found
for any conditions. Moreover, since it does not involve
any iteration processes, our method also avoids the
requirements of providing a good initial value for
achieving the proper result. Thus, this method can
be nicely applicable to the localization for machin-
ing allowance optimization and inspection of the
machined parts with free-form surfaces.
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