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ABSTRACT

Reconstruction of branched surfaces is an important class of reconstructing problems with wide appli-
cations in modeling of branched structures in fields like biomedical and automotive. For multiple
branching, the sections are normally segmented, reconstructed and then combined together, and thus
involve serial processes that are computationally expensive. Moreover, maintaining continuity between
such reconstructed patches while preserving the topological features is also difficult. The present work
reconstructs the disjoint surface with the help of a single equation from sectional data. At the same
time it addresses the requirements of continuity, geometric and topological complexities. Behaviour
of surface contours by varying control points is studied and then by electing an appropriate arrange-
ment of control points and manipulating the control polyhedron a continuous surface is generated.
The systematic development of the method is discussed with the help of experiments with excellent

results for bifurcations and multiple-bifurcations.

Keywords: surface reconstruction, B-spline surface, branching, reverse engineering.

1. INTRODUCTION

Surface reconstruction is a process where a desired
shape is constructed using the scanned data. Some of
the applications are modeling of human airway tree,
femur, human vasculature, automobile parts (like
branched manifolds and tubular frame parts) and
terrain reconstruction. This reconstruction, at times,
involves branching (furcation) i.e. creation of disjoint
surfaces from one contour to two or more contours
in adjacent plane. This branched surface may have
various geometrical (like continuity and planarity)
and topological (like shape and multi-furcation) com-
plexities. In absence of branching the problem is
greatly simplified and can be handled with simple
surface interpolation techniques, depending upon the
accuracy required and computation that can be han-
dled; however branching makes this problem more
difficult.

1.1. Previous Related Work

Different techniques in the past have addressed the
problem to varying levels of complexities. Meth-
ods based on triangulation [7,11] have also been
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developed to reconstruct branched surfaces but con-
tinuity requirements could not be met. For achieving
better surface quality and handling more features,
a lot of work [1,3,5,9,10] has been done towards
stepwise surface construction and then gluing them
together to get a single surface. Chai et al. [1] used
PDEs to reconstruct C! continuous surface from con-
tour map to solve with branching problem in terrain
reconstruction. Sub-surfaces bounded between con-
tours at two neighboring height levels were generated.
But an extra step to integrate these sub-surfaces
as a single C! continuous surface was required. In
medical field, Volkau et al. [9] reconstructed surface
to human normal cerebral arterial system by creat-
ing the furcation surface and two tubular branches
separately. Also, they had to use different methods
for generating the furcation and the tubular surface.
Again, gluing of these three surfaces was required
in their method. Kim et al. [5], generated C2 contin-
uous branched surface using non uniform B-spline
but they created surfaces of two branches separately
and then joined them to obtain a single surface.
Approaches based on joining of the surfaces leads to
more complexities as more parameters are extracted
and processed. For example, Chai et al. [1] needed
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Fig. 1: Terminology and representation: (a) shows polygonal sections at different z levels, (b) shows two
parametric directions in relation to the disjoint surface model.

to estimate the gradients at the contours to ensure
continuity between two surfaces being joined. This
information is not given explicitly by the contour map
and requires an extra estimation process. The method
proposed in this paper requires no such separate
steps to build different parts separately, which saves
computation cost and simplifies the process.

Some of the techniques [2-4] in the direction to
get smooth surfaces required an additional hole fill-
ing step. Guo et al. [3] used parallel transport frame
to obtain half tube sweeped surfaces which had to
be patched with additional Bezier surfaces. More-
over, their method could not solve completely the
problem of frame blending required to join the sur-
faces as one single surface. Periodic B-spline was used
by Jaillet et al. [4] to create the branched surface
but there was tearing of surface towards the stem.
These holes were filled using an additional Coons
patch. Subsequent hole filling using Gordon Coons
patch was also used by Gabrielides et al. [2]. They
split the problem in a sequence of local Hermite sur-
faces and integrated them with G! continuity, after
which the hole was patched. Unlike these methods,
hole-filling and joining steps are not required in our
method. These serial processes become complex and
involve large computations especially for applications
like modeling of human airway tree [6].Therefore, in
this paper we present a new and simpler method
to reduce the steps, by adopting a single equation
to create disjoint B-spline surface which can have
different orders in both parametric directions (u
and v).

Moreover, the techniques proposed by [3,9,10] are
limited to cross-sections with circular profile. Method
proposed in [9] is limited to bifurcations and Guo
et al. [3] had to modify their method for bifurcation
and trifurcation cases. The method discussed here
can address these limitations.

1.2. Overview of the Paper

The present work is related to reconstructing dis-
joint surfaces from the data points available. The
data points are presumed to be control points of
the B-spline surface that will approximate the control
polyhedron. In this paper all the experiments are car-
ried out for B-spline surface of order 3, in both the
parametric directions.

Fig. 1(a) shows the input sections used for surface
interpolation. Here, the control polyhedron sections
are taken as simple polygons for ease of understand-
ing. These sections lie in parallel planes and are
stacked one above the other at certain distance in z
direction.

At some z levels we have multiple polygonal sec-
tions and at others we have single. The part of polyhe-
dron containing multiple polygonal sections is called
branch while the other part having single polygons, is
called stem. Further, these sections act as the “con-
trol polyhedron” for the disjoint surface. First, by
experimentation on curves we found a generalized
formula to define the range of parameter u to get dis-
joint B-spline curves. This technique was extended to
surfaces with election of an appropriate arrangement
of control points and manipulation of control poly-
hedron. In the subsequent subsections the adopted
methodology is explained with conceptual figures.

2. METHODOLOGY

In this work it has been assumed that the control
polyhedron has been provided. For actual problems,
where the curve has to be interpolated on actual
data, the control polyhedron can be derived from
the data set by using methods described in [8]. This
polyhedron is now used to generate surface using
B-splines.
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2.1. Disjoint B-spline Curves

The surface developed in this experiment, using
single equation, is disjoint in one direction (u).
Generating bi-parametric surface can be inferred
in a way that, while traversing along v, surface
contours/curves in u direction are generated at every
v. Hence, the methodology to obtain disjoint B-spline
curves using single equation is discussed in this
section. For creating ‘n’ number of disjoint curves
from one set of control points, ‘n’ number of range
sets were selected out as explained as below.

Umin = Xk
Umaxl = X((k+(n1+1—(k=1))))
= X(ni+2)
Umin2 = X((k+n1+1—(k—1)))+(k-1))
= X(n1+2)+(k-1))
Umax2 = X((k+n1+1—k-1)))+(k—1)+n2+1—(k-1))
= X(n14+2)+(n2+2))

where nl+1, n2+1 are the control points which
make up the first and second disjoint curve respec-
tively. Here, x and y are matrices of knot vectors
corresponding to u and v direction respectively. There
are no additional points between the two disjoint
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curves. Hence, the range of parameter u for first dis-
joint curve is Upming < U < Umaxg; and similarly for
second one iS Upin2 < U < Upyagx2. These ranges are
then concatenated in one set (Eqn. (2.1)) and used
for generating all disjoints curves/contours of the
surface with single equation.

n
u=|Juy
i—1

(2.1)

Fig. 2 shows the results of the methodology
adopted for generating disjoint curves. This tech-
nique is applied to develop disjoint closed B-spline
curves and then extended to surfaces. This method
preserves the original nature of curve which can be
seen in the figure.

2.2. Pseudo Code for Generating Disjoint B-spline
Surface

The technique described in last section is imple-
mented to obtain branched surface using following
algorithm. The variables used are same as described
in previous discussions. Matrix “D” contains informa-
tion about no. of disjoint curves making up contour(s)
at one z level and number of vertices for generating
each disjoint curve.

Fig. 2: Disjoint B-spline curves. Curve is shown in blue and control polygon in green. In red color are points
along the curve: (a) and (b) shows original and result figure for open uniform and periodic B-spline respectively.
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Input-
Degree of surface required k (along u) and I (along v)
D=[D(1)D(2)---D(]
Calculating knot vectors for v and (matrix y).
Calculating range of v using standard method for B
-spline as in [8] and storing all values in V matrix
Calculating Basis Functions M;; at each element ie.
V= Vj
Obtaining range set for disjoint contours in u direction:
Initialize umin = yi
While condition (until range set of u for all
disjoint curves is not calculated)
Umax = Umin + D (t) — (k—1)
Producing all values from uyi, to Umax With a
fix interval and inserting in common matrix
(U) for taking union with all range sets.
Calculating i, and umgx for next set of
range:
Umin = Umax + k=1
t=t+1
end while loop
Using U as the input matrix for calculating Basis
Functions at each element u = u;
Obtaining final surface contour elements using B-
spline surface equation as in [8]

(n+1) (m+1)
Swvy= D" > By Ny WM @)
(i=1) (j=1)

(2.2)

End of For loop
End of program

3. DISCUSSION OF EXPERIMENTS

Sequential experiments lead to the development of
the final technique. To understand, the logic of the
methods used and the possible cases where this
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method can be applied, the experiments carried out
are discussed.

3.1. Polyhedron Representation and Definition

Fig. 3 demonstrates the manner in which control
points of branch’s polygon will be connected to the
control polygon of the stem. For example the point
labeled ‘1’ on left branch will be connected to the cor-
responding point labeled ‘1’ on the stem’s polygon of
first model (subsection 3.2).

Similarly, point labeled ‘7’ on right branch’s poly-
gon will be connected to the corresponding point on
stem’s polygon .The multiple labels on a point imply
that they have multiple connectivity with stem’s con-
trol points in accordance with the given label. A label
given ‘7’ and ‘11’ will be connected to ‘7’ and ‘11’
on the stem. This way entire control polyhedron is
defined. Notice that sum of points of stem is equal
to total number of points on both the branches. The
arrows are the guides depicting the direction in which
the side is traversed and the number of times it has
been traversed. In Fig. 3. the double arrows on stem’s
sides indicate that the side has been traversed twice
in definition of control polygon.

3.2. First Model

In the first experiment (Fig. 3.), the control polyhedron
of the surface was produced by repeating the control
polygons at each level in a particular fashion. Here,
the branch polygon is made of four distinct geometric
points which are wrapped to get closed contours. The
control polygon of stem is geometrically a rectangle
of four distinct points but actually two polygons (as
that of the branch) are superimposed because number
of control points at each level has to be constant.

Fig. 3: Polygon section geometry (a) and relative connectivity explained using first model and (b) the surface

generated by this arrangement (b).
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Fig. 4: Second model and surface interpolation results: (a) shows the arrangement of control points (b) shows
dissected branch’s surface model (c) shows the complete surface model of branch. (d) shows change in control

points for second model and change in result (e).

Although the surface is C! continuous along u and
v direction but there are intersecting iso-parametric
curves. This leads to non-hollow disjoint surface or
noise at the junction area, which is not required.
Therefore, to avoid such inconsistency the control
point arrangement was manipulated in the second
model, with the aim to ensure separation of branches,
when they join at stem.

3.3. Second Model

The arrangement of points was changed to follow
a different approach. The stem’s polygon would be
made of two distinct open polygons such that they
join to appear one polygon. The fact that periodic B-
splines are tangent at mid-point of every segment for
order 3 is used to maintain C! continuity.

Here, two arrangements are shown for the second
model. In the first arrangement (Fig. 4(a).) the control
points ‘1’ and ‘2’ at stem are wrapped while in sec-
ond arrangement (Fig. 4(d).) these control points are
repeated to clamp the B-spline curve. Consequently in
the later, the continuity at junction of left and right
side branch, along all the stem contours, was reduced

to CY (in object space) in u direction. Continuity in v
direction is still C!.

In comparison to previous experiment (Fig. 3.) the
branch has been successfully separated at the junc-
tion in addition to the C! continuity in both directions
(Fig. 4(b). and Fig. 4(c).). But a new problem of tearing
of the branch along v direction is evident. This led
to opening of surfaces in some portion (as shown in
dissection of branch Fig. 4(b).)

It was observed that the opening always starts
between the last and second last sections of the
branch, for case of third order. This observation will
be utilized in subsequent sections to produce more
successful results.

If second arrangement is to be used then, at the
junction (position of ‘1’ and ‘2’ points in Fig. 5(d).)
of left and right polygons of the stem, two addi-
tional control points are required-one each on either
side. They have to be arranged such that these three
geometric positions form a straight line. This arrange-
ment will ensure that curves corresponding to both
polygons will be aligned at O or 180 degrees with
respect to each other.

These experiments necessitated the understand-
ing of reasons for the tearing of surface so that
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they can be circumvented to resolve the problem
and generate a Y shaped disjoint surface with single
equation.

4. UNDERSTANDING THE PROBLEM OF SURFACE
INTERPOLATION

Fig. 5. shows the curves obtained after multiplication
of each set of basis functions. The user given control
polyhedron is in red color. As per Egn. (2.1), after mul-
tiplying M;; to the input control polyhedron B ;),
blue curves are obtained. The dotted lines show the
intersecting curves, which lead to formation of hole.
When this curve was multiplied second time by basis
functions of u direction Ny, the final surface con-
tours (green color, Fig. 5(b).) were obtained. Therefore,
the polyhedron in red acts as control polyhedron for
the blue colored curves and the points on blue curves
act as control polyhedron for the curves in green color
(actual surface defining contours).

In this figure we are obtaining closed surface con-
tours along u direction (in green color), at v=1
because, the blue curve 1 and 2 does not diverge from
blue curve 5 and 6 respectively. But at v = 2, these
curves start to diverge. As a result, the mid-point
of first and the last edge of their (surface contours)
control polygon are not coincident which is required
for getting closed B-spline curves of 3" order. This
leads to opening of final surface contours along u
direction. In wrapping method for generating closed
periodic B-spline curve, the first and last edge of poly-
gon is overlapped to get one line segment. It was
observed that the surface contours open about mid-
point of this line segment and in a direction parallel
to it. Once this behavior is understood, efforts were
made to somehow avoid the blue curves to diverge by
manipulating the control polyhedron.

@ (b)
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5. FURTHER EXPERIMENTATION

Experiments based on the findings and understanding
from above section have been discussed here.

5.1. Closed Surface with C° Continuity at Junction

It is known that repeating the control point at a posi-
tion, according to the order of curve, forces the curve
to pass through that geometric position. Here, the last
two sections of the branch were superimposed to give
one geometrical section. This approach was used to
constrain the blue curves (Fig. 5.) to pass through the
user defined control points and ensure their wrap-
ping. Hence, the generated surface contour opened
only after the last section of branch. Moreover, the
edges having overlapping first and last segment, in
each of the polygons at last section (as in Fig. 4(a).),
were overlapped with each other (Fig. 6(c).). Now, as
the points about which the surface contours of left
and right branch open are coinciding and the opening
direction for both is parallel, these two open con-
tours join together to give one closed surface contour.
Hence, a closed surface is generated.

Some contours near the junction are CY continu-
ous, where both branches meet. All other contours
have C! continuity.

These are not final results as this method is
further improved to get enhanced continuity.

5.2. Next Successful Experiment with G!
Continuity.

Here the fact obtained from section 3.3 is uti-
lized, that the hole starts between last and sec-
ond last sections of the branch. So, one edge from
each of the last two polygonal sections of both the
branches, is made overlapping (Fig. 7(a).). The sec-
tions which were superimposed in subsection 5.1, are

Fig. 5: The wireframe of the generated surface. (a) shows the control polygon(in red) of the branch and the
subsequent curves generated (b) shows enlarged view of one side of branch. The labels denote the order in which
the points from blue curve are taken by the algorithm to plot the surface contours.
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(b) (d)

Fig. 6: Depiction of unsuccessful (a) and successful (c) surface generation (dissection and full surface). (b) is
dissection of (a) and when (b) is changed to give last section like (c) a closed surface is generated (d). The dotted
lines in red are control polygon at stem area.
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Fig. 7: The modifications in control polyhedron. (a) shows disjoint surface with last two sections of the branch,
in which polygons share a common edge. (b) shows the sections/slices to be inserted in actual application.
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Fig. 8: G! continuous branch and its open section.

not superimposed here. The arrangement of control 6. ASYMMETRIC BRANCHES
points is that of second model (Fig. 4(a).).

Above discussion implies that in actual problem
two additional slices need to be inserted as shown
in Fig. 7(b). They should have same arrangement of
points as in Fig. 4(a).

The surface is closed. The branched surface
(Fig. 8(a)). is improved from previous experiment and
now it is G! continuous in parametric space.

In branched surfaces, it is possible that at the fur-
cation, surface on one of the side of the furcation
may be covering a larger area with a different shape
than the surface on other side. This may constrain
the overlapping edges of inserted slices’ polygons to
not be able to overlap end to end. Whereas for cases
discussed uptil now, the nature of furcation region
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Fig. 9: The asymmetric model: (a) shows top view of one of the inserted sections. (b) shows the control polygon
with inserted sections (in black) (c) is the reconstructed surface.

was such that the common edges of both polygons, at
the inserted slices, were overlapping end to end. This
will lead the midpoints (about which the contours of
surface open) of the overlapping edges to be non-
coincident. Therefore the contours of left and right
branches will not be able to join to give a closed sur-
face. To address the problem of this new possibility it
requires a slight change in the methodology which is
discussed in this section.

To create disjoint surface in this case, two con-
trol points are repeated, one each at start and at end,
in each polygon, at any one position along the com-
mon line AB (Fig. 9(a).). This constrains the contours
of both the branches to open symmetrically about one
single point and when they meet at junction, a closed
surface is obtained. Fig. 9(c) is the result of the new
arrangement with G! continuity along u. This is the
advantage of method discussed in this paper that it is
flexible to fulfill shape requirements of the branched

@)
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Fig. 10:

surface and simply the arrangement of control points
has to be varied.

7. SURFACE WITH UNIFORM KNOT VECTORS

With the arrangement of points as in 6.2, and using
uniform knot vectors for u and v direction, led to gen-
eration of same overall shape (Fig. 10(a).) but more
contours in v direction. If knot vectors for v direc-
tion are changed to uniform knot vectors while that
in u are kept periodic, there was no change in over-
all shape. There was difference in surface contours
position only at ends (Fig. 10(b).). Uniform knot vec-
tors in v direction can be more suitable where the
start and end of surface is required at a predeter-
mined position. For order of surface higher than 3,
in v direction, requires that (order — 1) consecutive
slices are to be introduced in stem section with same

4 3 J o i 2 | 4

(a) is branch with uniform knot vectors. For a different branch (b) is image of super-imposed surface

contours with periodic (in green) and uniform (red) knot vectors only along V.
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Fig. 11: Multiply branched surface model.

scheme of arrangement of points as in 6.2 or 5.2 (as
per shape requirements). This can be used to meet
higher continuity requirements.

8. MULTIPLE BRANCHING USING SINGLE
EQUATION

Multiple branches are found in trees, lungs, human
body (airway tree in lungs) and many other objects
of interest. Multiple branches were created success-
fully using the same algorithm as mentioned in 2.2.
The arrangement of control points in Fig. 11(a). is
developed using the same scheme as in section 6.
Here, two branches emanate from the stem and one of
the branches is further getting branched in two more
branches.

Fig. 11(b) is generated using control point arrange-
ment as in section 5.2. But owing to shape require-
ments the polygons or sections here are not stacked
parallel rather they are aligned along the cross-
sections. This is a two stage bifurcation, generated
using single equation of B-spline surface, for order 3.

9. CONCLUSION

The method discussed in this paper has never been
used before and opens a new direction for con-
structing branched surfaces using single equation
of B-spline surface. Also being a parametric model,
meshing is almost automatic and can be used for
finite element analysis. Thus, it proves to be easier
than other approaches. Moreover, not being restricted
to a particular shape of cross-section, it can handle
the requirements of irregular cross-sections, asym-
metric branching and varying cross-section profiles.
Since the method gives a minimum of G! continu-
ous (in parametric space) surfaces, it removes addi-
tional steps of stitching. The continuity here can
be higher than C! in v direction. Developing mul-
tiple bifurcations further minimizes steps required
to integrate each bifurcation with others. Thus, it is

a tool which can address topological and geomet-
rical requirements while minimizing the steps and
complexity involved. Some of the applications can be
design of human airways, automobile manifolds and
frame components.

10. FUTURE WORK

This method has given us encouraging results and it
can be extended to multi-furcations and topologically
other types of branches for which work is going on.
Surface reconstruction is a process involving series
of steps like data extraction and processing, slice
insertion, and fitting. Most of steps have pre-existing
techniques but specific methods to comply with this
technique remain to be experimented and imple-
mented. For e.g. algorithm for arrangement of the
control points in each polygon has to be automatized
for multiple as well as singly bifurcated surfaces. The
method for slice insertion position in the actual data
remains to be experimented to get a good estimate
of branching position. Thereafter, it will be applied to
data extracted from real world models.
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