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ABSTRACT

An automated finite element mesh generation algorithm for ship hull surfaces is proposed and applied
effectively in this work. The algorithm plays an important role in dealing with the intersections
between ship hull surfaces and its frames, since the operations for flexural surfaces and curved lines
are complex and quite different from those for general structures. In this study, a specialized planar
curve intersection method and a local refinement intersection algorithm between a non-uniform ratio-
nal B-spline (NURBS) surface and an implicit surface are combined, leading to high mesh quality and
close approximation to the actual ship hull structure. The proposed algorithm, with high applicability,
improves the efficiency and accuracy of finite element modeling of ship hull surfaces.

Keywords: ship hull surface, finite element mesh generation, intersection of B-spline curves and
surfaces.

1. INTRODUCTION

In the progress of ship hull surface finite element
(FE) modeling, the quality of mesh has a significant
influence on the result of FE analysis (FEA). Though
the surface mesh generation technique has led to
significant progress in the development of the FE
method (FEM) in recent years, not all these algorithms
are applicable FE mesh generation for complex ship
hull surface structures. Traditionally, for hull surface
manual FE modeling, the fine mesh is generated by lin-
ear interpolation and some manual modeling based
on a coarse mesh composed of the transverse and
longitudinal structure member intersectional points.
Since the surface structures are curved as illustrated
in Fig. 1(a), these traditionally generated manual FE
meshes are quite different from the actual surface
structures, leading to significant errors and non-ideal
expression. However, the generated mesh is closer to
actual situation using the method shown in Fig. 1(b),
with each FE node on the hull surface and structure.
The analysis result with this gird is more reliable.

On the other hand, there are many geometrical ele-
ment intersections in the process of hull surface FE
mesh interpolation generation. For instance, longitu-
dinal frame structures are treated as the intersections

of curved surfaces and planes, and porthole win-
dows are treated as the intersections of curved sur-
faces and cylinder surfaces. The intersection points
of longitudinal and transverse structure members are
taken as the key points of FE meshes. These intersec-
tions spread all over the mesh, leading to a situation
where intersection operations constitute most of the
FE mesh process for curved surfaces. The quality
of intersection operations thus plays a vital role in
the accuracy and efficiency of the FE mesh. In this
research, a different automated FE mesh generation
algorithm is proposed, to better approximate real ship
hull surface structures and to reduce the workload of
manual modeling. An intersection algorithm between
B-splines and an intersection algorithm between a
non-uniform rational B-spline (NURBS) surface and an
implicit surface are designed, to be embedded in the
mesh generation method on a curved surface and to
support it for accuracy and efficiency.

1.1. Surface FE mesh Generation Algorithm

There are two main ways to generate surface FE
mesh. One is the direct mesh method, with meshes
directly generated on a physical surface. This method
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is mainly represented by the surface decomposi-
tion method and the direct advancing front tech-
nique (AFT) [4,11,16] based method. The direct mesh
method has a good curved surface adaptive capacity
and local refinement ability, but its efficiency is lower
than that of the mapping method.

(a) (b)

Fig. 1: Finite element mesh: (a) linear interpolation,
(b) surface interpolation.

The mapping method, also called the paramet-
ric spatial method, is generated on the parametric
field by the planar mesh method and mapped on
the physical surface to form the surface FE mesh
model. Although the high-quality triangle and quad-
rangle planar mesh method is quite mature, distortion
often occurs in the process of mapping [2,3,13,14,17,
21,25,26].Though the researches made a great contri-
bution to automatic surface FE mesh generation, these
are not directly applicable for ship hull surface mesh
generation. Since not only the curved surface related
closely to the ship hull surface mesh generation, but
also the transversal and vertical components on the
hull.

In this research, the ship hull is described in
NURBS surface. The coarse mesh is composed of the
intersection points of transversal and vertical hull
components. The fine mesh is obtained by the inter-
polation of the surface and the coarse mesh. The
mesh generated by this method is closer to the actual
hull surface and considered reasonably with the ship
components.

1.2. Algorithm of Planar B-spline Curves
Intersection

The intersection algorithm of curves is one of the
key points for a complex curved surface. There are
several kinds of cubic B-spline curve intersection
methods, including the algebraic method, subdivision
method, iteration method, etc. Goldman [5] and Seder-
berg et al. [18] used the algebraic method that runs
quickly for low order parametric curves with elimi-
nation theory and extraction of roots. Sederberg and

Nishita [19] and Koparkar and Mudur [10] used the
sub-division method and solved the problem of more
than one point. But that method is inefficient since
large amounts of computer memory and calculation
time are needed. Jiang [8] also used the subdivision
method, setting the range boxes of maximum and
minimum point values (max min boxes) of two B-
spline curves as rectangle bounding boxes. He judged
the intersection points by the two max min boxes
with the repeating process of judge-divide-rejudge-
subdivide, that did not stop until the curved parts of
the two curves were replaced by the straight line parts
and the two max min boxes had intersected. Li and Shi
[12] turned the two B-spline curves into Bezier curve
segments and used their bounding boxes as judgment
and subdivision until the divided curve section was
smooth. The methods proposed by Jiang [8] and Li
and Shi [12] belong to the subdivision method. They
have the advantage of helping to figure out all the
intersection points and running rapidly, but they are
restricted to low precision and the objects must be
subdivided and calculated constantly with high preci-
sion requirements for engineering applications, a time
consuming process. Among those employing iteration
methods, Hoscheck and Lasser [6] used the tangent
line of the points to replace the curved sections and
calculated the step size by Newton projection. Jin
and Wang [9] and Hu et al. [7] used the iteration
method of a moving affine frame (MAF) intersection
operation with the step size calculation method. Pro-
cedures using the iteration method run quickly, but
they are quite sensitive to the initial iteration val-
ues. Avoiding the disadvantages of the Newton and
MAF methods, Zhang and Huang [24] proposed a cur-
vature circle iteration method based on secondary
curve approximation, which is closer to the real curve
than the first order. They gave the detailed algorithm
of step size reliability, which was the corresponding
maximum of each step size, and utilized the curva-
ture circle to calculate the step size. In Zhang and
Huang [24] research, 20 fourth order B-spline curves
were generated. Each of them has 4 to 20 control
points. Each intersection is iterated for 50 times.
The random test results respectively under the MAF
method of first-order iteration step size reliability and
the curvature circle iteration method are illustrated
as Table 1.

As shown in Table 1, it is easier to obtain more
accurate intersection points with less iteration using
Zhang and Huang [24] method compared with the
MAF algorithm. But it is only applicable when two
B-spline curves have a single intersection point. More-
over, there is no operation for an iteration value
outside of the definition field. Meanwhile, the accu-
racy of step size calculation with angle variation is
low when two curvature circles intersect.

The intersection algorithm of B-spline curves pro-
posed in this study combines the segmentation inter-
section method and the curvature circle iteration
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Method MAF algorithm with 1.order iteration step Curvature circle algorithm

Times 5563 5563
Success times 4762 5559
Iteration times 64998 27879
Success rate 4762/5563=85.6 5559/5563=99.9
Average iteration times 64988/5563=11.7 27879/5563=5

Tab. 1: Random test result of B-spline curves intersection [24].

method based on 2nd order approximation curves.
The initial iteration value is acquired by the process
of judge-divide-rejudge-subdivide. And the intersec-
tion points between two B-spline curves are located
by the curvature circle iteration method based on 2.
order approximation curves. The proposed method
has higher success rate and less iteration times. And
it is suitable for numbers of intersection points.

1.3. Algorithm of Intersection between NURBS
Surface and Implicit Surface

The algorithm of intersection between a NURBS sur-
face and an implicit surface is another key point for
operations involving complex curved surface inter-
section. Yu et al. [22] introduced a surface inter-
section algorithm of parametric surface and implicit
surface, based on the contour line extracted on a
two-dimensional scalar field. It can calculate all the
intersection lines and avoid the need for selecting
initial points for iteration. More important, it is appli-
cable to the intersection of trimmed surfaces. Zhang
et al. [23] extended the algorithm of Yu et al. [22] to
detailed applications including calculating the frame
lines. Song et al. [20] further developed the intersec-
tion program to verify the reliability of the contour
line algorithm. These algorithms deal with mesh ele-
ments one by one, according to their permutation
order. Since all mesh elements should be dealt with,
the efficiency is non-ideal, especially when surface
curvature changes markedly or when the accuracy
requirement of intersection lines is high with dense
regular meshes. Furthermore, linear interpolation is
used in the algorithm and the required accuracy for
intersection points may not be satisfied, as well as the
smoothness.

According to the isoline interpolation theory of a
NURBS surface and an implicit surface, an improved
local refinement intersection algorithm is proposed
in section 3. The main improvements are shown as
below.

(1) The calculation times of h value on vertexes
were reduced by local refinement algorithm.
And the efficiency of curved surface inter-
section algorithm was increase greatly.

(2) The quasi-Newton method was used for
the intersection points search between gird

cells and isolines, improving the algorithm
accuracy.

(3) The intersection lines of NURBS surface and
implicit curved surface are smoother with iso-
lines matched by triple B-spline curves.

(4) The residual value is applied and set for accu-
racy control, making the accuracy of algorithm
easier to control.

The proposed algorithm between a NURBS surface
and an implicit surface and can be used to acquire
ship waterlines, vertical stations, porthole and anchor
span boundary lines etc. It is the base of the following
work for ship hull automatic FE mesh generation.

1.4. Ship Hull Surface Modeling

A ship hull surface description is the decisive condi-
tion for the hull mesh generation. In this study, the
ship hull surfaces are modeled in NURBS surfaces
according to the hull offsets and the NURBS inverse
operation algorithm proposed by Lu [15]. A part of a
container vessel stern is modeled as an example using
the NURBS inverse operation algorithm, as shown
in Fig. 2. With its high accuracy and flexibility, the
NURBS surface description method lays a good foun-
dation for the quality of mesh generation in following
work.

2. A PLANAR B-SPLINE CURVES INTERSECTION
ALGORITHM

A circle of curvature iteration algorithm is proposed
here. A rough iterative initial value is acquired by the
process of judge-divide-rejudge-subdivide. The inter-
section point values are calculated by iteration with
the circle of curvature algorithm. The range boxes
of maximum and minimum point values (max min
boxes) are generated before initial iteration values
are obtained, which is shown as below. As illustrated
in Fig. 3, there is a B-spline curve, with n discrete
points distributed evenly on it. The corresponding
parameters of points are [ū1, ū2, · · · , ūn]

Assume that the coordinates of discrete points
are p(ūi) = (xi , yi), i = 1, 2, · · · , n. The max min
box vertexes of whole curve are illustrated in
Fig. 4. Then the coordinates of vertex A is
(min([x1, x2, · · · xn]), min([y1, y2, · · · yn])). Vertex C is
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(max([x1, x2, · · · xn]), max([y1, y2, · · · yn])). To dived n
discrete points into k parts, the max min box vertex
of each curve section could be obtained by above way,
illustrated in Fig. 5.

Fig. 2: Part of a container vessel stern in NURBS
surface.

Fig. 3: The B-spline curve.

A B

CD

Fig. 4: The max min box of the curve.

Fig. 5: The max min box after dividing.

2.1. Initial Value and Step Size

Suppose that B-spline curve p(u) intersects B-spline
curve q(v). The process of obtaining the initial itera-
tion value is shown as below.

(1) Divide B-spline curves into segments and build
the max min box of each segment.

(2) Suppose that the max min box of p(u) is
m1i . The dealing process of a max min box is
illustrated as Fig. 6.

(3) Check the entire max min box on curve p(u)

as above process and renumber the subdivided
boxes.

(4) Repeat (2) and (3). The process of judge-divide-
rejudge-subdivide is illustrated in Fig. 6. The
initial iteration values for intersection point
on curve p(u) and q(v) are obtained as u0 =
u2−u1

2 , v0 = v2−v1
2 . The process is suitable for

the initial iteration value of other intersection
points.

Fig. 6: The process of a max min box computation.

The max min boxes of two B-spline curves were
formed after division as shown in Fig. 7(a). These
boxes were judged for intersection and re-divided as
shown in Fig. 7(b), then intersections was judged in
the new boxes for the third time and bounds were
narrowed for more accurate initial iteration values as
shown in Fig. 7(c). The curve segments are replaced
by the curvature circles arc calculated by the cur-
vature circle and secondary step size reliability. The
secondary step size reliability is derived as: �umax is
marked as the secondary step size reliability; arc cur-
vature on the point p(u0) of the B-spline curve p(u) in
the global coordinate system is indicated in the fol-
lowing formula; x1 and y1 are respectively the unit
vectors in the OX1 direction and OY1 direction; p′(u0)

is the first order derivative of (x(u0), y(u0)); p′′(u0) is
the second order derivative and p′′′(u0) is the third
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Fig. 7: The process of judge-divide-rejudge-subdivide on curves: (a) the first subdivision with corresponding max
min box, (b) the second subdivision after judgment and (c) the third subdivision.

order derivative.

C(u) = O + r cos(ku) · x1 + r sin(ku) · y1,

u ∈ (−�umax, �umax1) (1)

where the radius of curvature curve is

r = ‖p′(u0)‖3

|det(p′(u0),p′′(u0))| .
The center coordinates O(xo, yo) of the curvature

circle in the global coordinates system are

xO = x(u0) − y ′(u0)

∥∥p′(u0)
∥∥2∣∣det(p′(u0), p′′(u0))

∣∣ ,
yO = y(u0) + x′(u0)

∥∥p′(u0)
∥∥2∣∣det(p′(u0), p′′(u0))

∣∣ (2)

The values of x1 and y1 are illustrated as

x1 = p(u0) − O∥∥p(u0) − O
∥∥ = (y ′(u0), −x′(u0))

∥∥p′(u0)
∥∥2

r
∣∣det(p′(u0), p′′(u0))

∣∣ ,

y1 = p′(u0)

‖p′(u0)‖ (3)

The difference value between C(u) and p(u) is
shown below after Taylor expansion and ignoring the
remainder of o(u3):

R(u) = p′(u0) · p′′(u0)

2 ‖p′(u0)‖ · p′(u0)

‖p′(u0)‖u2

+
[

p′′′(u0)

3!
−
∣∣det(p′(u0), p′′(u0))

∣∣2
3! ‖p′(u0)‖4

p′(u0)

]
u3

(4)

The margin of error is set as dr . The derived
secondary step size reliability is shown as

�umax =
(

dr∥∥α + β�ūmax
∥∥
) 1

2

(5)

where �umax is the secondary step size reliability,
�umax is the middle iteration value and dr is the

maximum allowable error.

α = p′(u0) · p′′(u0)

2||p′(u0)|| · p′(u0)

||p′(u0)|| and

β = p′′′(u0)

3!
− | det(p′(u0), p′′(u0))|2

3!||p′(u0)||4 p′(u0).

2.2. Solving two Planar B-spline Curves
Intersection Problems

Two planar B-spline curve intersection problems can
be solved with curvature circle iteration algorithm
according to above, and the process is shown in
Fig. 8.

(1) Set the initial iterative values. In the process of
judge-divide-rejudge-subdivide with the parti-
tioning algorithm, the intersection points of
two planar B-spline curves will be judged. If
there is no intersection point, the algorithm
terminates. If there are intersection points, the
number of points can be calculated roughly,
and the n iterative initial values signed as.

(2) Calculate the intersectional points using the
curvature circle method.

(3) Calculate all the intersectional points during
the process of (2) with n initial iteration values.

(4) Eliminate repeated points. As shown in Fig. 9,
it is necessary to eliminate redundant inter-
sectional points.

The iteration step size �u is obtained in two situa-
tions as shown below.

(1) When there is only one intersection point on
two curvature circles. As illustrated in Fig. 10, the
curvature circle arc of second order confidence coef-
ficient at the point P1 and P2 on the B-spline curves p
and q is marked as black solid line. The points of min-
imum distance between two curvature circle arc are P ′

1
and P ′

2. θ1 and θ2 are angle variations of the points on
B-spline curves. The equation of iteration step size on
B-spline curve p and q derived by angle variations are
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shown as equation 6.

�u = θ1

k2
=

∥∥p′(u0)
∥∥2

θ1∣∣det(p′(u0), p′′(u0))
∣∣

�v = θ2

k2
=

∥∥q′(v0)
∥∥2

θ2∣∣det(q′(v0), q′′(v0))
∣∣ (6)

Fig. 8: Flow chart for solving the intersection prob-
lem with the curvature circle algorithm.

Fig. 9: Repeated intersection points.

(2) When there are two intersection points on two
circles, as shown in Fig 11. If the intersection point
is outside the tangent line, the endpoint is the clos-
est point as point P ′

1. If not, the closest point is the
intersection point as point P ′

2.

(a) 

P1

P2

P1
¢

P2
¢

O1

O2

(b) 

O2
O1

1P

P2

P1

P2

q1

q2q2

q1

Fig. 10: There is only one point on two circles: (a)
disjoint or circumscribed, (b) inscribe or contain.

P2

O1
O2

P1

P2
¢

P1
¢

Fig. 11: Two intersection points on the curvature
circles.

The iteration step size of B-spline curve p and q
are derived as equ.7.

�u =
∥∥P1 − P ′

1

∥∥
‖p′(u0)‖ �v =

∥∥P2 − P ′
2

∥∥
‖q′(v0)‖ (7)

It should be noted that the value of uij+1 (or vij+1),
which uij+1 = uij + �u, may not in the define field
of u ∈ [0, 1]. If not, the iteration step size should be
modified as below.

If uij+1 < 0, �u = −uij

2
; If uij+1 > 1, �u = 1 − uij

2
.

2.3. An Example of Planar B-spline Curves
Intersection

As shown in Fig. 12, we take two cubic B-spline curves
p and q which intersect at (1, 2.5), (3, 4), and (8, 3) as
an example. The corresponding analytical (u, v) val-
ues for intersections are (0.093, 0.071), (0.305, 0.365),
(0.813, 0.820), which are the reference value of the
following calculation.

Fig. 12: The example of two B-spline curve p(u) and
q(v).
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Ini. Value Result Ini. Value Result Ini. Value Result

(0.05, 0.05) (0.093, 0.071) (0.15, 0.05) (0.093, 0.071) (0.25, 0.35) (0.305, 0.365)
(0.35, 0.35) (0.305, 0.365) (0.75, 0.85) (0.813, 0.820) (0.85, 0.85) (0.813, 0.820)

Tab. 2: Intersection points after iteration of improved curvature circle algorithm.

After obtaining the initial iteration value by
decomposition algorithm, the improved curvature cir-
cle algorithm is applied in the iteration. Each initial
value is iterated several times to obtain the intersec-
tion points. The result is shown in Table 2.

Deleting repeated values, the intersection points of
curve p(u) and q(v) are (0.093, 0.071), (0.305, 0.365),
(0.813, 0.820), equal to the analytic values. The pro-
gram running time is 0.013s by a computer with 2.8
GHz AMD Athlon quad core and 8G RAM. The inter-
sectional algorithm of planar B-spline curves is shown
to possess high accuracy automated initial iteration
value, requiring little running time and demonstrating
efficiency.

The intersection algorithm between B-spline curve
and the straight line is the basis of locating key points
on ship sections. As illustrated in Fig. 13, the straight
line could be taken as a special B-spline curve. The
initial iteration value could be obtained by max min
box. And all intersection points could be obtained by
curvature circle method.

Fig. 13: Intersection between B-spline and straight
line.

3. A LOCAL REFINEMENT ALGORITHM OF
INTERSECTIONS

There are numerous intersection operations in the
process of hull surface modeling calculation, includ-
ing the intersection of hull surface and transverse
sections for the body lines, and the intersection of
hull surface and waterlines for the displacement and
buoyancy center. The hull surfaces are classical free
curved surfaces usually described by NURBS surfaces.
The surfaces with which they intersect, such as trans-
verse sections, water planes and cylindrical portholes,
are described as implicit surfaces. Thus, the inter-
sections are between NURBS surfaces and implicit
surfaces.

Suppose a NURBS surface can be expressed as x =
g1(u, v); y = g2(u, v); z = g3(u, v). Here the definition

domain of g is �g and g can be expressed as:

g(u, v) =

n1∑
i=0

n2∑
j=0

ωi,jpi,jBi,k1
(u)Bj,k2

(v)

n1∑
i=0

n2∑
j=0

ωi,jBi,k1
(u)Bj,k2

(v)

(8)

Where control vertices pi,j(i = 0, 1, . . . n1; j = 0, 1, . . . n2)

make a topological rectangular array and form the
control meshes. ωi,j is the weight factor that contacts
with vertices pi,j . Bi,k1

(u) and Bj,k2
(v) represent stan-

dard B-spline with k1 degrees in the u-direction and
k2 degrees in the v-direction, respectively.

The implicit surfaces are expressed as f (x, y, z) =
0. Here the definition domain of f is �f . The
equation of the intersection line can be simplified as
f (g1, g2, g3) = h(u, v) = 0. The process of solving the
polynomial equation h(u, v) = 0 is exactly the same as
the process of surface intersection.

3.1. A Whole Mesh Traversal Algorithm for a
NURBS Surface and an Implicit Surface

The traversal algorithm is a common method for
intersection operations between NURBS surfaces and
implicit surfaces. In the method, the parameter field
of a NURBS surface is divided into series of regulariza-
tion cells. Each cell is judged for intersections with the
contour line on an implicit surface. Then, all the inter-
sections are collected and used for the object contour
line fitting with a cubic B-spline curve. A flow chart of
the method is presented in Fig. 14.

However, the limitations of the whole mesh
traversing algorithm are obvious. Since all the mesh
cells are traversed seriatim, the calculation consumes
a large amount of time and resources. When the sur-
face curvature changes drastically or the accuracy
requirement of intersection lines is high, the mesh
sizes are small and efficiency declines dramatically.
An example of an intersection operation between a
NURBS surface and a cylindrical surface is shown
in Table 3. The NURBS surface is fitted by offsets
and the whole mesh traversing algorithm is operated
on a MATLAB platform with 2.8 GHz AMD Athod
quad-cores and an 8G memory.

Table 3 indicates that the elapsed time for the
object cell judgment calculation increases as the mesh
size decreases. While the mesh density increases, the
amount of calculation and the elapsed time tend
to multiply. For a small mesh space, the judgment
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time for object cells takes up most of the time. To
improve efficiency, a local refinement algorithm for
the judgment calculation is proposed here.

Fig. 14: Flow chart of whole mesh traversal
algorithm.

Mesh space 1/250 1/500 1/1000

Number of
judgments

63001 251001 1002001

Elapsed T of
judgment
calculation

68.7 246.4 985.1

Elapsed T of
intersection

77.3 261.4 1020

% of the elapsed T
for judgment

89% 94% 97%

Tab. 3: Elapsed time comparison.

3.2. A Local Refinement Algorithm for a NURBS
Surface and an Implicit Surface Intersection

3.2.1. Regularization base mesh

To begin with the local refinement algorithm, a sparse
regularization mesh is generated on a NURBS sur-
face parameter field. It is divided into nu and nv

parts separately on the u and v dimensions. The four
vertices of each cell are referred to as (ui , vj ), (ui ,
vj+1), (ui+1, vj+1), and (ui+1, vj ), corresponding with
the four judgment functions hi,j , hi,j+1, hi+1,j+1, and
hi+1,j (i = 0, 1, . . . , nu − 1; j = 0, 1, . . . , nv − 1). The base
mesh algorithm is marked as �. If h ≤ 0, the vertex
is marked “−”, if not, “+”. A judgment of no intersec-
tion for an object cell is made if four vertices have
the same mark. Otherwise, the intersection is located
by the Newton iteration method on lines with differ-
ent marked vertices. After a rough whole traversal
algorithm, several intersection points will be identi-
fied, as shown in Fig. 15. The h value of each vertex

is stored into a matrix h0(i, j) = h((i − 1)�, (j − 1)�),
(i, j = 1, 2 . . . , 1/� + 1).

Fig. 15: Intersection points.

3.2.2. Refinement range

Taking the mesh space equal to � as an example, the
method for determining the refinement range is:

Sort the intersection points and record the points
as a1, a2, . . . ak , ak+1 . . . an(k = 1 . . . n). For the mesh
element i which contains intersection points, each
vertex is marked as shown in Fig. 16. Ai is set as the
reference point for mesh element i, and its coordinate
is (uAi , vAi ), in which uAi = floor(min(uk , uk+1)/�)�

and vAi = floor(min(vk , vk+1)/�)�. In mesh element
i, the coordinates of Bi , Ci , Di can be obtained by
the reference basis Ai . For example, uBi = uAi + �;
vBi = vAi .

Fig. 16: An identifier in element refinement range.

Identify mesh element reference basis points
A1, A2, . . . Ai , Ai+1 . . . Am(i = 1 . . . m) according to order
of intersection points, as shown in Fig. 17. Each
mesh element containing an intersection point can be
located by these reference basis points. The contour
line must therefore lie in these mesh elements and
the refinement range is made up of these mesh ele-
ments (see the blue frame surrounding area in Fig. 18).
The flow chart for determining the refinement range
is provided in Fig. 19.

3.2.3. Mesh refinement

Each element in the refinement range is divided
evenly into four small elements. For example, the
mesh before refinement is shown in Fig. 20(a) and the
mesh after refinement is shown in Fig. 20(b).
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Fig. 17: Identify the vertex.

Fig. 18: Sketch map of refinement range.

Fig. 19: Flow chart for determining the refinement
range.

Fig. 20: Sketch map for mesh refinement: (a) before
refinement and (b) after refinement.

3.2.4. Data processing

After each mesh refinement operation, the h value of
new vertices must be updated. To avoid repeat calcu-
lations, some special data treatments are adopted.

• Identify the minimum rectangular domain that
contains the mesh refinement area. Rectangular
domain D1D2D3D4 is the minimum rectangular
domain shown in Fig. 21. The fields surrounded

by a blue wire frame in the figure are the mesh
refinement areas.

D1 D2

D3
D4

Ai Ai+1

Fig. 21: Identifying the min rectangular domain.

H

M

N

Fig. 22: Min. rectangular domain after refinement.

• Generate a judgment matrix. After the mini-
mum rectangular domain is refined and each
element is divided evenly into four small ele-
ments (Fig. 22), the judgment matrix is intro-
duced to identify whether the vertices in the
minimum rectangular domain are in the mesh
refinement area or not. Suppose the judgment
matrix after mesh refinement of the K times is
PK (i, j), in which i = 1, 2, . . . 2K−1(vD3 − vD1)/� +
1 and j = 1, 2 . . . 2K−1(uD3 − uD1)/� + 1. PK (i, j)
can be expressed as:

PK (i, j) =
{

0 in the refinement area (such as M,N)

1 else (such as H)

• Update h values of the vertices in the mini-
mum rectangular domain and store them into
the matrix hK . When K = 1, h1(i, j) = h0(i +
vD1/�, j + uD1/�) and when K = 2, 3 . . ., the flow
process for calculating hK is used as shown in
Fig. 23.

3.2.5. Intersection points between elements and the
contour line after mesh refinement

Intersection points between mesh elements and the
contour line must be freshly calculated after every
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mesh refinement. The details of the calculation are
shown in Fig. 24.

Fig. 23: Flow chart for calculating hK .

3.2.6. Accuracy control

The accuracy of calculation determines the quality
of the intersection operation. There are n sample
points extracted from the contour line and here, we
suppose that n = 200; then, h(ui , vi)(i = 1, 2, . . . , n) of
these sample points are calculated. Residual values

are defined as ξ =
n∑

i=1

∣∣h(ui , vi)
∣∣ /n. Theoretically, the

exact function value of each point on the contour line
h(ui , vi) = 0, and the closer ξ is to zero, the higher
accuracy of the intersection algorithm. Here, use ξ < ε

to control the intersection accuracy.

3.2.7. Flow of local refinement algorithm for NURBS
surface and implicit surface

Details of the local refinement algorithm were intro-
duced above. Here, we give the flow process of the
local refinement algorithm for a NURBS surface and
an implicit surface in Fig. 25.

Fig. 25: Flow chart of local refinement algorithm.

3.3. Application of Local Refinement Algorithm
for Hull Surface Intersection

A surface intersection program based on the local
refinement algorithm is designed for a NURBS surface
and an implicit surface intersection to hull surface

Fig. 24: Flow chart for re-calculation of intersection points.
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intersection. The waterline of a ship can be obtained
successfully for any floating condition. Further, some
advantages of the local refinement algorithm are dis-
cussed based on this hull surface intersection appli-
cation.

3.3.1. Intersection between a hull surface and a
wave surface

In any floating condition, the intersection line
between a hull surface and the water surface is the
foundation of hull 3D stability calculation [1]. As men-
tioned above, the hull surface is a typical free surface
and it is often expressed by a NURBS surface. On the
other hand, a water surface, either a static water sur-
face or a simple wave surface, can be expressed by an
implicit surface, and thus we can apply the proposed
algorithm to obtain the waterline.

In our example we use the intersection of a hull
surface and a wave surface. The details of the inter-
section process are shown in Fig. 26. Here, the hull
surface is a part of a container ship stern and it
is fitted by 201 × 401 offsets. The wave surface is a
sinusoidal surface.

Firstly, the regularization base mesh and the inter-
section points are determined before the loop of
local refinement algorithm. Secondly, each part of the
loop is performed, which includes determination the
refinement range, refining mesh, updating h value of
the vertexes and store it into hx , updating intersection
points between elements and the contour line and
generating the contour line by using cubic B-spline to
fit the intersection points. Finally, the local refinement
algorithm is stopped while the accuracy requirement

is satisfied. And the surfaces intersection line is got by
reverse mapping the contour line to NURBS surface.

3.4. Comparison of the Local Refinement
Algorithm with the Whole Mesh Traversal
Algorithm

In this study, we present two programs to obtain the
waterline in any floating condition (see section 3.3.1.),
based on the local refinement algorithm (LRA) and
the whole mesh traversal algorithm (WMTA), respec-
tively. Table 4 shows the intersection process using
these two programs with �u = �v = � = 0.1 It is easy
to discern that LRA significantly reduces the num-
ber of calculations of the h value. The ratio of the
decreased number of h value calculations to WMTA
is even greater than 90%, when the minimum mesh
space is less than 1/160.

Times of refinement 5 6 7

Min. mesh space 1/160 1/320 1/640
h value calculations

with LRA
2937 5906 11722

h value calculations
with WMTA

25921 103041 410881

Reduction in num-
ber of h value
calculations

22984 97135 399159

Ratio of reduced part
to WMTA

89% 94% 97%

Tab. 4: Comparison of LRA with WMTA on the num-
ber of h value calculations.

Fig. 26: Intersection of a hull surface and a wave surface: (a) hull surface and wave surface, (b) intersection
points on the regularization base mesh, (c) identifying the refinement range, (d) refinement range of the first
refinement (K = 1), (e) refinement range of secondary refinement of K = 2 and (f) K = 3, (g) the contour line on
the refined mesh and (h) a waterline.
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Fig. 27 shows that the elapsed time for the pro-
gram using LRA is much less than that for the
program using WMTA in the same minimum mesh
space (the elapsed time percentage represents the
ratio of elapsed time for LRA to that for WMTA.).
When the minimum mesh space is less than 1/160,
the elapsed time ratio of LRA to WMTA is only about
25%. Table 4 and Fig. 27 indicate that the LRA in this
study greatly improves the efficiency of the surface
intersection operation compared to the WMTA, due
to the decreased number of calculations of h values,
even though this method includes accuracy control
and requires more judgments and cycle operations.

Fig. 27: Comparison LRA with WMTA on elapsed
time.

4. APPLICATION OF FEM GENERATION
ALGORITHM OF HULL SURFACE STRUCTURE

The automated generation of surface interpolation FE
meshes plays an important role in the improvement
of ship hull FE modeling efficiency and quality. A part
of a container ship stern and midship structure is
modeled here as an example of the automated mesh
generation method in surface intersection.

4.1. Rough FE Mesh Generation

A rough FE mesh is generated by the intersect oper-
ation here. Longitudinals can be considered as the
intersection lines of water planes and a hull surface,
since they are parallel to the base plane in general.
The intersection algorithm of a NURBS surface and a
water plane is used to locate the longitudinal frame.
The coordinates of key points are located rapidly by
the intersection algorithm of B-spline curves and the
LRA of NURBS surfaces and implicit surfaces. They
are mapped on the transverse section, connected to
form the rough FE meshes as shown in Fig. 28. The
key points in the surface parameter field are shown in
Fig. 29 and key points on the transverse section are
shown in Fig. 30.

The key point coordinates are obtained and
imported in the FEM code, and the hull surface and
the plates of girders and frames are modeled by
Quad4 (4-node shell unit). The stiffeners of bulkhead

Fig. 28: Rough FE mesh.

Fig. 29: Key points in the hull surface parameter
field.

Fig. 30: The transverse sections of a ship hull
surface.

and frame of web with height less than 300 mm are
modeled by beam element Bar2 considering the offset.
The FE model is shown in Fig. 31(b).
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However, the quality of a rough FE mesh is always
limited. The slenderness ratio of the red wireframe
shown in Fig. 31(a) reaches 2.57, which is far beyond
the ideal number of 1. Middle nodes need to be
inserted into the high slenderness wireframe for fur-
ther refinement and better quality.

Fig. 31: FE model of rough hull surface mesh: (a)
Rough FE mesh and (b) FE model.

4.2. Inserting Transverse Section and Water Plane

To refine the mesh, a series of middle points are
inserted. Taking one longitudinal as an inserted
object (z = 19000 mm), the parts after being divided
by the middle point are as indicated in Fig. 32. In the
same way, a frame line (x = 7000 mm) is taken as an
object line to be inserted. After calculation, the objec-
tive inserting transverse plane is x = 11000 mm and
the inserting water plane is z = 13700 mm.

4.3. Fine FE Mesh Generation

According to the transverse section and the water
plane, the coordinates of the middle points are calcu-
lated by the intersection algorithm of B-spline curves
and the LRA of NURBS and implicit surfaces. In
Fig. 33, the middle points are represented by red
points and new transverse section and water plane are
represented by red lines.

By importing the point coordinates in the FEM code
for MSC.PATRAN, the fine FE mesh of hull surface can
be modeled as shown in Fig. 34. The border length
of the unit consists of the key points and the nodes
are closer to each other after insertion of the mid-
dle nodes. The aspect, warp, skew, taper and Jacobian
ratio of the fine mesh tends to the ideal values. The
mesh quality of the fine FE mesh after insertion is

Fig. 33: The mesh consists of key points and inserted
middle points.

Fig. 34: The mesh consists of key points and middle
Points: (a) fine FE mesh and (b) FE model.

much improved. The quality of fine and rough FE
meshes is compared in Table 5.

Quadrilateral Ideal Rough Finer
unit value mesh mesh

Aspect 1 ≤2.558 ≤1.539
Warp 0 ≤0.019 ≤0.0145
Skew 90 ≥71.025 ≥71.025
Taper 0 ≤0.105 ≤0.059
Jacobian ratio 1 ≤1.24 ≤1.15

Tab. 5: Quality of fine and rough meshes.

4.4. Fine FE Mesh Generation

Although fine mesh can be used in FE calculation
and analysis, refinement of the fine mesh is still

Fig. 32: Inserting middle points in a longitudinal line.
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needed in the actual application. New nodes need
to be inserted in each corresponding section of the
water line and the transverse section line of the unit
side. The method of inserting a new node and the
model of fine FE mesh are shown in Figs. 35 and 36
respectively.

(b)(a)

Fig. 35: Inserting new nodes (a) sketch of new node
(b) location of new node C.

Fig. 36: Fine FE mesh of the ship hull surface struc-
ture.

4.5. Processing of the Stem and Stern Surfaces FE
Mesh

The change in the longitudinal direction of the ship
hull at stem and stern is quite significant, such that
the key point numbers at different stations are not
the same. Therefore, the triangle unit is introduced
for transition in the process of modeling hull surface
FE mesh for ship stem and stern. Unlike the midship
surface structure, the planes of key points are not par-
allel to the water plane or the longitudinal section.
The planes need to be formed by the transverse
section structure of stem and stern. The coordinates
of key points, which are still at the intersection of the
hull surface and water plan, can be calculated rapidly
by the LRA of a NURBS surface and a plane and the
intersection algorithm of B-spline curves. The mesh
generation process is shown in Fig. 37.

4.6. Data Exchange

The nodes of the coordinates are obtained and written
in the TXT files and then imported into the FE code.
According to coordinates of the nodes and the corre-
sponding unit property of the hull structure drawing,
a ship hull surface structure FE model can be built.

4.7. Modeling Example

Automated generation of hull surface structure FE
mesh is applied in the modeling of a container ship
midship and stern surface structure, as shown in
Fig. 38 with B = 1.0, T = 20.9, D = 0.0, P = 0.0. All

(a) (b) (c)

(d) (e) (f)

Fig. 37: Generation of fine FE meshes of stem and stern surface structures: (a) the key points on frame lines, (b)
rough FE mesh, (c) insertion of transverse section, (d) insertion of new nodes, (e) connection of key points, and
(f) fine FE mesh generation.
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Fig. 38: Examples of FE models: (a) the container midship model and (b) the container stern model.

kinds of plates, shell structures, and the webs and
bulkhead of strong frames, longitudinal girders, and
girders and frame lines of planar bulkheads are
modeled by 4-node shell unit Quad4. The stiffeners of
bulkheads and frames of web height less than 300 mm
are modeled by beam element Bar2 with consideration
of offset.

5. CONCLUSION

The automated FE mesh generation algorithm of ship
hull surface structure is challengeable in the long
term. In this study, the designed FE mesh generation
method of obtaining nodes by surface interpolation
in this research creates meshes that are close to the
real ship hull surface structure. The FE ship hull
surface structure is meshed automatically with the
generated nodes coordinates, nodes and unit num-
bers. The FE ship hull surface structure is modeled by
importing the mesh information in the FEM code and
giving the unit corresponding attribute. The intersec-
tion algorithm for curves and surfaces used largely in
automated generation of ship hull surface FE mesh
is studied intensively and improved. The improved
intersection algorithm proposed in this study is appli-
cable and feasible, and the LRA introduced in the
intersection algorithm of a NURBS surface and an
implicit surface improves the arithmetical efficiency.
This work lays a foundation for parameterization of
ship hull FE modeling. Meanwhile, the intersection
algorithm of B-spline curves and the LRA of a NURBS
surface and an implicit surface are widely applicable
to CAD/CAE.
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