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ABSTRACT

This paper presents a type of surface approximation problem that commonly arises in relation to
design for manufacturing of complex architectural surfaces. The engineering context of the problem
is introduced by a real-world example. The problem requires approximation of each facet of a surface
subdivision by a simpler surface that is economical to fabricate into a panel. However, apart from the
fitting accuracy, it is also required to manage the gaps between neighboring panels. We show that the
concept of shape features is useful in modeling such problems into a global optimization problem.
When such non-linear optimization formulations can be solved, we obtain better solutions that the
two stage method currently used by the industry.
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1. BACKGROUND

Recent years have seen a profusion of complex archi-
tectural projects across the world. Examples include
the Al Raha Race Track in Abu Dhabi and the Dong-
daemun Plaza (DDP) in Seoul (Fig. 1). Firms of leading
architects such as Frank Gehry and Zaha Hadid are
increasingly employing free-from surfaces in their
designs.

The design of the building skin in such projects
goes through several stages. Initially the architects
produce a geometric model using surface design
tools. The 3D CAD surfaces may be produced
using any shape operator (e.g. subdivision-based
approaches and T-Splines, skinning or lofting, curve
sweeps, etc.), but the end result is typically a piece-
wise B-Spline surface. Next, the architect defines the
panelization by generating a pattern of subdividing
curves on the surface. These two steps essentially
dictate the aesthetics of the building. The next stage
is to determine the engineering details, such as the
geometric constraints on each panel (e.g. four-sided
planar, triangular, non-planar, etc.), the material of
the panels (e.g., glass, titanium, aluminum, stain-
less steel, etc.), and the configuration of the sub-
structure that will be used to support the panels
(such structural elements are made of a mesh of
steel bars). This is followed by a stage of geomet-
ric refinement – in this stage, the surface geometry
as well as the subdividing curves are allowed to be

perturbed, such that the individual panels are cheaper
for fabricate while preserving the aesthetics. This
stage is referred to as rationalization. Finally, the
engineering design is performed, in which the exact
dimensions of individual members are determined
and their locations in the global coordinate frame
fixed. Each stage uses the result of the previous one
as its input.

In this paper, we propose that significant advan-
tages can be derived by combining the last two steps
of the design process into single optimization model.
This approach shall be illustrated by means of a
case study from the Kai Tak Cruise Terminal build-
ing in Hong Kong. Most of the building is covered
with aluminum panels defined by developable sur-
faces. However, in some regions, e.g. along the curved
lip of the terminal roof (see Fig. 2), the shape is more
complex. The approach adopted in the original design
was to subdivide the entire lip into panels of approx-
imately equal length, and then approximating each
such piece by developable shapes. We applied our pro-
posed approach in an attempt to improve the panel
rationalization.

We begin with a brief recap of related research in
section 2. Section 3 presents details of our approach;
section 4 is a case study describing our implementa-
tion and its application to a real world problem. The
final section closes the paper with a brief conclusion
and discussion.
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Fig. 1: (a) Al Raha race track, Abu Dhabi, (b) The interior panelization in the DDP, Seoul.

Fig. 2: The Kai Tak Cruise Terminal Building (architect: Norman Foster). The CAD model of the front region of
the building is shown in the inset, and the expanded view of the panels making up the arch shaped lip of the
terminal roof.

2. RELATED WORK

Approximating a free-form surface by piecewise
developable patches is a classical problem faced in
many areas of engineering such as ship building,
textiles and footwear manufacture, etc. Two popu-
lar approaches for these problems are: (a) generate
the initial design independent of any manufacturabil-
ity constraints, and later modify the shape in some
minimal way into an approximation that is piecewise
developable, while satisfying other constraints (see
for example [6] and [9]); or (b) restrict the designer by
only allowing the use of developable shapes during
the design (an approach recently discussed in [8]).

A well-studied strategy using the first approach is
the problem of approximating a given surface by a
ruled surface. A ruled surface is one in which the tan-
gent line at any point is entirely contained within the
surface. In practice, a common method for defining a
ruled surface is via a linear interpolation between two
space curves. If the curves are defined by B-splines,
then the ruled surface can be expressed as:

S (u, v) =
n∑

i=0

Ni,k (u)
(
1 − v

)
Pi,0 +

n∑
i=0

Ni,k (u) vPi,1 (1)

where Pi,0, (respectively, Pi,1) are the homogeneous
coordinates (given by [wij xij, wij yij, wij zij, wij] for
some non-zero weight wij) of the control points of
the boundary curve of the surface, and Ni,k are the
Bernstein basis functions of order k. Hoschek et al. [2]
used point-plane duality in projective space to rep-
resent a ruled surface as the envelop of a family of
planes. In particular, the tangent plane at each point
along the generator curve (which contains the ruling
at that point) is represented as a point in projective
space. This family of planes can be expressed as:

Y (u, v) =
n∑

i=0

Ni,k (u)
(
1 − v

)
Ui,0 +

n∑
i=0

Ni,k (u) vUi,1

(2)

where Ui,j are the homogeneous plane coordinates of
the tangent planes at the knot point i,j. The boundary
ruling at u = 0 is thus the intersection of the two
tangent planes U0,0 and U0,1. In particular, if these
two planes are coincident, then the ruled surface is
developable in the neighborhood of this ruling. If Uu,0
and Uu,1 coincide for all u, then the surface is devel-
opable. The approach presented by Hoschek et al.
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expresses the tangent disparity at some isoparamet-
ric points in terms of the L2 norm of the distance
between the two corresponding points in dual space.
In order to approximate a given surface by a devel-
opable ruled surface, they sample a large number
of points along the two bounding curves, and solve
for an ordered indexing along these points that min-
imizes the sum of this error over entire surface.
The idea of approximation of a ruled surface by a
developable ruling was explored further by several
researchers. In [5] an iterative algorithm is presented
to solve this problem. The input is a pair of BSpline
curves. The algorithm iteratively finds pairings of
points, one from each curve, to form potential rulings.
The objective is to minimize the warp angle (angular
error between the tangent planes at the end points of
a ruling. The matching that yields a good sequence
of pairings is used to generate a re-parameterization
of the input curves and consequently, the interpo-
lating quasi-developable ruled surface. No guarantees
are given about the convergence of the algorithm, or
the interpolation tolerances. In [9], a variation of the
approach of Hoschek was developed. Given a surface
S(u, v) and a user defined curve c(u(t), v(t)) lying on the
surface, a developable ruled surface approximation
was generated that would minimize the Hausdorff
distance between the original surface and the approx-
imation. The Hausdorff distance between two point
sets A and B is defined as:

DH = dist(A, B) = max{maxp∈A{minq∈B{‖p − q‖},
maxq∈B{minp∈A{‖p − q‖}}

Since DH is non-linear, [9] define a bound for the
error, which is used in the subsequent approximation
algorithm. The ruled surface is the envelop surface
defined along c(t) as: E(t, r) = c(t) + r(N(t) X N’(t))/||
N(t) X N’(t) ||, where the prime represents the deriva-
tive with respect to the parameter t, and therefore the
second term is merely the vector along the line on
the tangent plane of S(u, v), orthogonal to the tan-
gent of c(t). Since this equation is not a polynomial,
it is approximated by a low order polynomial spline.
The algorithm then searches for the best approxi-
mation ruling length by iteratively finding the far-
thest extension of the ruling that keeps error below
a user-defined tolerance. In the end, a smoothing
algorithm is used to refine the second bounding curve
of the developable ruled surface. By repeatedly using
the newly discovered bounding curve as an input,
the entire surface can be approximated.

A more comprehensive work on developable
approximation of BSpline surfaces was done by
Pottman and Wallner [6]. They follow Hoschek’s
approach of describing a ruled surface as an inter-
polation of the tangent planes at the knot points.
They further restrict the tangent planes to take the
form U(t) = (u0(t), u1(t), t, − 1), such that the deriva-
tive U’(t) = (u’0(t), u’1(t), 1, 0). This representation
does not impose many restrictions on the form of

the ruled surface, since the homogeneous coordi-
nate = − 1 only represents a scaling in E3, and the
restriction of the third coordinate is equivalent to
a re-parameterization of the bounding curve. They
represent the developable ruled surface as: S(t) =
(1 − v) C0(t) + vC1(t), where C0(t) and C1(t) are pla-
nar intersection curves of the input BSpline surface,
and therefore themselves BSpline curves. With some
other restrictions on the variation of the orientation
of the surface, they define a distance metric between
two planes U1, U2 as the Lebesgue measure:

dμ

(
U1 − U2

)2 =
∫

D

((
u0,1 − u0,2

) + (
u1,1 − u1,2

)
x

+ (
u2,1 − u2,2

)
y
)2 dxdy

or, in a discretized sense with the distance being
lumped as a mass at j discrete points, as:

dμ

(
U1 − U2

)2 =
∑

j

((
u0,1 − u0,2

) + (
u1,1 − u1,2

)
xj

+ (
u2,1 − u2,2

)
yj

)2

Suppose that the input surface is approximated by
a series of m planes, V1 . . . Vm, then the required
(unknown) developable ruled surface, U(t), can be
discovered by solving the system:

Minimize F = ∑m
i=1 dμi

(
Vi , U (vi)

)2. Furthermore,
if the developable surface is of the form in Eqn. (2)
and the bounding curves are of degree 3, then F is a
quadratic function of the parameters of Ui, which can
be therefore determined by solving a system of lin-
ear equations. This work was later extended to allow
replacing the approximating planes Vi by a series of
approximating conical strips in [1, 3].

All of the above work focused on the approxi-
mation of the input surface by a developable ruled
surface. This is very useful in some industries, such
as ship-building, where relatively few strips of steel
need to be custom-fabricated for each project. How-
ever, in façade design, a typical building surface
may require fabrication of a few thousand such
curved panels; this fabrication is achieved via rolling
machines like the one shown in Fig. 3 below. Such
machines can easily fabricate cylindrical or conical
panels, but are very cumbersome to control in order
to produce arbitrary ruled surface strips.

Therefore it is more interesting for us to study
surface approximation using general conical surfaces.
That problem has also received some attention in
some engineering contexts. A good introduction to
robust fitting of a set of sampled points by cones (and
other analytical surfaces) can be found in [4]. Since
any of these surfaces can be defined in terms of a
small number of parameters, when the set of sampled
points is large, the problem is over-constrained. At the
same time, there is inevitably some noise in the sam-
pling data, and therefore almost all instances of such
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interpolation problems are solved by the use of some
form of regression fit, typically requiring the solution
to a set of low order non-linear polynomial equations.
These systems are highly non-linear, and therefore
when the data is not well behaved, numerical methods
often fail to converge to a globally optimum solu-
tion. For example, if the input set of points is nearly
planar and we wish to find the best fitting cylinder,
the system may have local minima for vastly different
axis directions. The main focus of works such as [4]
is in developing robust algorithms that address such
issues. [7] used a least squares regression model to
fit cylinders into a set of points sampled from a free
form surface. There have also been several papers in
which the problem of approximating a developable
ruled surface by a set of cones is studied [10, 3].

Fig. 3: A rolling machine used to produce cylindri-
cal/conical panels.

However, in all of the previous work, each approx-
imation, or fitting algorithm runs independently over
its domain, with no additional constraints on the
fitting surface. Furthermore, in some practical set-
tings, such as the one that motivates our study, the
fitting surface is a piecewise developable surface com-
posed of up to three patches with G1 continuity at
their shared boundaries. Such panels are very com-
mon in modern architectural projects, and therefore
a model to produce the best fit on such shapes is
interesting. In the next section, we shall introduce the
particular form of our problem, and present a simple
approach for simultaneously fitting multiple surfaces
with constraints along their boundaries.

3. PROBLEM DESCRIPTION AND METHODOLOGY

We are given a free form surface, together with a
curve mesh on the surface inducing a subdivision.
We are given a shape feature (defined below), describ-
ing a generic instance of the approximating shape,
specified in terms of a small number of geomet-
ric parameters. Our objective is to approximate each
face of the subdivision by an instance of the shape
feature, such that the feature instances meet some
user-defined constraints along their shared bound-
aries in addition to minimizing the approximation
error.

In our context, we define a shape feature as a
connected surface made up of one or more patches,
each of which can de described by a single analytical
equation. Each patch is bounded by a curve poly-
gon with the same number of boundary edges. Each
bounding edge has a well-defined form (e.g. planar
curve, straight line, arc, etc.). Each patch is connected
to one or more of its neighboring patches along
boundary curves, with specified continuity condition.
Some typical atomic shape features are shown in Fig.
4, and an example of a composite shape feature is
shown in Fig. 5.

Fig. 5: A tri-cone shape feature (red color). The fea-
ture contains three patches, each of which is a right
cone. Each patch is bounded by four lines, two of
which are generatrices of the cone, and the other
two are conic sections (and therefore planar). Neigh-
boring patches are G1 continuous along their shared
boundary.

Fig. 6 illustrates the key issue in approximating
a given surface patch by a feature instance. In this
case, it can be seen that approximating the same sur-
face by a plane or a cone results in very different
approximation error.

Fitting an atomic feature to a given surface is typ-
ically achieved by sampling a sufficient number of

(a) (b) (c) (d) (e)

Fig. 4: Atomic shape feature instances: (a) planar rectangular (b) planar polygon (c) cylindrical parallel (d)
cylindrical inclined (e) conical.
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points spread over the entire surface (and possibly
using a non-uniform density depending on the user
requirements), and then solving a regression model.
For example, a cone may be specified via six parame-
ters (3 coordinates for the cone point, two angles to
define the cone axis, and the cone half angle). Fig. 7
shows the expression for error of a sampled point
from the surface of the cone. A regression model for
this function could, for example, minimize the sum of
the squared error, e2

i , over all sampled points Pi . Solv-
ing the regression model requires solving a set of six
non-linear equations simultaneously.

Fig. 6: Fitting a single surface subdivision with a
planar or a conical patch. The fitting error is the Haus-
dorff distance between the approximation and the
original surface for some optimum placement of the
approximation in the coordinate frame of the orig-
inal surface. The figure shows the error along the
boundaries.

Fig. 7: Regression model setup for cone fitting.

In this research, the objective was mainly to test
the efficacy of combining the two stages of this ratio-
nalization process: the fitting of feature instances to
the faces of the subdivision and locating them rela-
tive to each other by solving a single optimization
model simultaneously. Intuitively, it is clear that given
a perfect solver, our approach searches over a super-
set of the solution space explored by the two-stage

approach. In practice, there is a trade-off between the
domain of the search and the ability of the numerical
solver to hunt down the global optimum.

The case study for testing our approach comes
from a sequence of aluminum panels form the lip
region of the Kai Tak Cruise terminal project as
indicated in Fig. 2. Fig. 8(a) shows the suggested
subdivision of the surface into ideal panels speci-
fied by the architect. In this scheme, each panel can
be approximated by a shape feature composed of
three patches: two planar patches joined together
by a curved patch in the middle. We set the tem-
plate shape feature as a plane-cone-plane structure
(see Fig. 9(b)), with G1 continuity along the shared
boundaries. It immediately follows that the bound-
ary of the conical patch is defined by directrices of
the cone (otherwise the boundary would not be a pla-
nar curve, and therefore the shared boundary with
the plane would have discontinuity). The parametric
representation of the shape feature is defined as fol-
lows. We assume a pre-defined local coordinate frame
associated with the subdivision of the original sur-
face (say the XYZ frame). Let the feature instance be
defined in a local coordinate frame X’Y’Z’. Without
loss of generality, we can assume that the Z’-axis lies
along the axis of the approximating cone. We use 5
parameters to define the transformation from XYZ
to X’Y’Z’ (three coordinates define the shift between
the origins, and two independent angles of relative
rotation, say, α and β). The cone point lies at some
distance, d, from the origin along the Z’-axis. Let the
cone half angle be denoted as γ . Finally, we need two
parameters, s and t, to identify the left and right direc-
trices defining the boundary of the cone. This fully
defines the cone, and each of the two tangent planes
along the shared boundaries. Therefore a total of 9
parameters are required for a regression fit between
an instance of the shape feature and the underly-
ing geometry. We use an additional 8 parameters to
complete the geometric description of the feature: 4
parameters identify the four corner points of the con-
ical patch (for each pair of points that lies along the
same directrix, it is sufficient to specify the start and
end distance along the directrix from the cone point).
Another four scalars identify the four corner points of
the planar faces (since the tangential boundary curve
is continuous, we only need to specify the length of
the boundary edge to locate each corner point).

The objective function of the optimization model
is composed of two components:

The first component is made up of the regression
terms, measuring the distance of each sampled point
on the original surface to the feature. In order to avoid
discontinuity, the sampled points are selected in a
manner to avoid any region in the neighborhood of
the path boundaries. Let Fi = {P1i, Ci, P2i} denote the
feature instance approximating the i-th panel using a
set of m points for the regression. Then we pre-assign
some m1 points to lie close to the planar surface P1i,
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X’
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(a) (b)

Fig. 8: (a) A segment of the ideal surface patches from the lip region of the cruise terminal; the patch is made
up of a free form surface blended onto two planar pieces, one on each end. (b) The developable shape feature
used to approximate the surface patch is composed of a set of three patches, a plane, a cone and a plane.
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Fig. 9: (a) The set of m points on the reference surface that are used for the surface fitting (regression) portion
of the optimization objective function and (b) the set of four points that are used to quantify the inter panel, or
gap error.

(a) (b)

Fig. 10: Kai Tak Cruise terminal showing the: (a) SE lip, (b) NW lip. Source: Hong Kong Tourism Board,
http://www.discoverhongkong.com

m2 points to lie close to the cone Ci, and m3 points to
lie closest to Pi2 (m = m1 + m2 + m3). The formu-
lae for the distance terms, di,j therefore are expres-
sions for point-plane distance for 1 < j ≤ m1 and

(m1 + m2) < j ≤ m, and the point-cone distance
expression for m1 < j ≤ (m1 + m2).

The second expression is a set of terms that con-
trols the distance between two neighboring panels
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at some specific points. For our case study, we use
the four corner points of the panels, as indicated in
Fig. 9. For this example, the weighted Euclidean dis-
tance between the corresponding pairs of points can
be used as the error metric. Although this metric was
sufficient for our example, the approach can be easily
adapted to use other inter-panel error measures.

Fig. 11: The maximum gap in the plane-cylinder–
plane setting is near 59 mm in NW side.

Therefore our surface fitting problem for a
sequence of n panels can be written as:

Minimize E =
n∑

i=1

[
wj

∥∥Pi,j − Pf (j),n(j)
∥∥2

+ wjdist
(
Pi,j , ref

(
i
))2

]
(3)

where the operators f ( j), n( j) determine the matching
between the point Pi,j and its appropriate panel and
corresponding neighboring point on that panel for the
gap error metric, wj are the weights associated with
each error term, and ref ( j) is the reference surface of
feature instance i.

The problem (3) is non-linear and non-convex. We
use a simulated annealing style heuristic approach to

solve it, as outlined in the pseudocode below. In each
stage of the algorithm, a random solution is gener-
ated, and then an adaptive stepping steepest descent
is used to locate the neighboring local stationary
point.

Algorithm: Concurrent Fitting
Input: set of reference surfaces, feature descrip-

tions, acceptable total error E0, convergence toler-
ance τ

Output: an instance of a shape feature for each
reference surface located in the global coordinate
frame

1. xk = initial solution computed by fitting each
feature instance independently

2. δk = initial step size
3. xk+1 = xk − δk∇E

(
xk

)
4. if

∣∣∣∣xk − xk+1
∣∣∣∣ < τ then

5. if E < E0 then
6. report incumbent solution
7. else perturb xk ; go to step 2
8. else adaptively scale δk ; go to step 3.

We mention here that the perturbation to the ini-
tial (local fitting) solution may be achieved in several
possible ways. In our case, our approach is to merely
add small random variations to some of the parame-
ters of the feature instances. In the next section, we
report the results of using this approach for our case
study problem.

4. IMPLEMENTATION AND RESULTS

The approach described above was used to fit plane-
cone-plane panel instances to three sets of 8 ∼ 10
panels each along the most twisting and curving lip
regions of the Kai Tak Cruise terminal building. The
building has a lip on each end (the south-east end,
SE, and the north-west end, NW). Fig. 11 shows the
images of SE and NW side of the Terminal. The North
corner of the NW lip included 8 panels, while the
South and East corners of the SW lip included 9 and
10 panels respectively. The optimization model was

(a) (b)

Fig. 12: (a) Panels with large inter-panel gap are not aesthetic, as compared to (b) panels with a optimized
inter-panel gaps.
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(a)

(b)

(c)

Fig. 13: Final results of plane-cone-plane optimized
fitting surface: (a) North side of NW lip (b) South side
of SE lip. (c) East side of SE lip.

implemented as an API integrated into a commercial
CAD system, CATIA (which was used to model the fea-
ture instances as well as the original surface). Our

benchmark was the result of a local fitting of pan-
els using the 2-stage approach. The panel models by
using the 2-stage process on the same 8 panels on
the NW lip are shown in Fig. 11. It can be seen that
the outcome of this approach yields inter-panel gaps
of up to 58.7 mm. Fig. 12 shows two images from
the actual building, one where the inter-panel gaps
are of this order of magnitude, and the second one
from the lip region where the inter panel gap has been
reduced to under 20 mm. Fig. 13 shows the result of
our approach for the three sets of panels.

Table 1 summarizes the maximum inter-panel gap
for all the panels in our three optimization exper-
iments. The maximum gap in each of these cases
when using the 2-stage process are also shown for
comparison, and it is clear from this data that our
proposed approach yields significantly better results
in all cases. The run-time for our optimization models
is of the order of ∼ 10 minutes for each case.

5. DISCUSSION

We introduced the problem of rationalization of
curved panels for architectural skins. We showed that
limitations of manufacturing machines limit the type
of panel shapes that may be economically fabricated
to developable shapes using analytical surfaces such
as cylinders or cones. The notion of a shape fea-
ture was introduced to represent various varieties
of rationalized panels. To our knowledge, all past
work on producing rationalized surface panels uses
a 2-stage approach, where the first stage performs
a local (panel-by-panel) fitting, and the second stage
performs the optimized location. We introduce a sim-
ple approach that combined the two optimization
problems into a single global optimization problem.
For moderate sized problems (i.e. involving up to a
few hundred variables), this approach was demon-
strated to be more effective and to yield better results
that the traditional 2-stage approach. Our approach
was tested for a particular shape of panels in the con-
text of our case study. Nevertheless, the method can
be applied to sets of panels, each defined by arbitrary

Inter-Panel SE, South SE, South SE, East SE, East NW NW
index (2-stage) (our method) (2-stage) (our method) (2-stage) (our method)

1 0 6.8 0 9.4 32 11.9
2 32.7 12.7 31.136 11.8 38.4 13.8
3 36.9 17.1 35 17.7 58.7 19.9
4 34.4 16.8 32.5 18.1 54.1 12.4
5 34.5 16.8 31.5 17.4 24.3 16
6 32.9 16.5 30 16.2 25.3 18.2
7 30.5 15 28.6 16.3 36.4 15.5
8 28.01 13.8 26 15.6 27.2 12.3
9 25.533 12 22.1 15 16.8 12.4
10 21.86 16.4 17.8 15.5 – –

Tab. 1: Maximum gap (mm) comparison between the 2-stage fitting approach and our approach.
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user-defined shape features. A possible interesting
future research direction is to classify shape features
and grid types based on the type of optimization for-
mulation they induce. In particular, problems that are
defined in terms of, say, convex optimization could be
solved by very robust algorithms even for fairly large
problem sizes.
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