
181

A Computational Framework for Boundary Representation of Solid Sweeps

Bharat Adsul1, Jinesh Machchhar2 and Milind Sohoni3

1Indian Institute of Technology Bombay, adsul@cse.iitb.ac.in
2Indian Institute of Technology Bombay, jineshmac@cse.iitb.ac.in

3Indian Institute of Technology Bombay, sohoni@cse.iitb.ac.in

ABSTRACT

This paper proposes a robust algorithmic and computational framework to address the problem of
modeling the volume obtained by sweeping a solid along a trajectory of rigid motions. The boundary
representation (simply brep) of the input solid naturally induces a brep of the swept volume. We show
that it is locally similar to the input brep and this serves as the basis of the framework. All the same,
it admits several intricacies: (i) geometric, in terms of parametrizations and, (ii) topological, in terms
of orientations. We provide a novel analysis for their resolution. More specifically, we prove a non-
trivial lifting theorem which allows to locally orient the output using the orientation of the input. We
illustrate the framework by providing many examples from a pilot implementation.

Keywords: solid sweep, swept volume, solid modeling, boundary representation, parametric curves
and surfaces.

1. INTRODUCTION

This paper is about the theory and implementation of
the solid sweep as a primitive solid modeling opera-
tion. A special case of this, viz., blends is already an
important operation and used extensively. Prospec-
tive uses for the sweep are in NC-machining ver-
ification [1,5,8,9], collision detection and assembly
planning [1]. Solid sweep can also be used to design
conveyor screws for product handling (see [7] for a
video from a proprietary site). In order to design the
conveyor screw, the desired motion of the product is
compounded with the rotation of the screw and the
product is then swept along the resultant motion. The
swept volume is subtracted from a cylinder to obtain
the screw.

The solid sweep is the envelope surface E of the
swept volume V generated by a given solid M mov-
ing along a one-parameter family h of rigid motions
in R

3. We use the industry standard boundary rep-
resentation (brep) format to input the solid M and
to output the envelope E . The brep of course is
the topological data of vertices, edges and co-edges,
loops bounding the faces and orientation of these,
and the underlying geometric data of the surfaces
and curves. We tacitly assume that the geomet-
ric objects are given by free-form curves and sur-
faces such as NURBS. As we show, the brep of E ,
while intimately connected to that of M , has several

intricate issues of orientation and parametrization
which need resolution.

Much of the mathematics of self-intersection, of
passing body-check and of overall geometry have
been described in the earlier work [4]. This paper
uncovers the topological aspects of the solid sweep
and its construction as a solid model. Here, we restrict
ourselves to the simple generic case, i.e., smooth M
and a smooth E which is free from self-intersections.
This serves to illustrate our approach and its imple-
mentation. The general case is also implemented and
a sample sweep appears in Fig. 1.

Our main contributions are (i) a clear topologi-
cal description of the sweep, and (ii) an architectural
framework for its construction. This, coupled with [4],
which constructs the geometry/parametrizations of
the surfaces, was used to build a pilot implementa-
tion of the solid sweep using the popular ACIS solid
modeling kernel [3]. We give several illustrative exam-
ples produced by our implementation to demonstrate
the effectiveness of the algorithm. To the best of our
knowledge, this is the first work which connects the
geometry of the envelope surface with the topological
aspects of the brep construction of E .

The solid sweep has been extensively studied [1,2,
5,6,11], mostly for the geometric aspects of the prob-
lem. In [2] the envelope is modeled as the solution set
of the rank-deficiency condition of the Jacobian of the

Computer-Aided Design & Applications, 12(2), 2015, 181–191, http://dx.doi.org/10.1080/16864360.2014.962430
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

mailto:adsul@cse.iitb.ac.in
mailto:jineshmac@cse.iitb.ac.in
mailto:sohoni@cse.iitb.ac.in
http://www.cadanda.com

182

sweep map. This method uses symbolic computation
and cannot handle general input such as splines. In [5]
the authors derive a differential equation whose solu-
tion is the envelope. An approximate envelope surface
is fitted through the points sampled on the enve-
lope. In [6] the authors give a membership test for
a point to belong inside, outside or on the boundary
of the swept volume. This does not yield a paramet-
ric definition of the envelope. In [12] the trajectory is
approximated by a screw motion in order to compute
the swept volume. In [11] the evolution speed of the
curve of contact is studied in order to achieve a pre-
scribed sampling density of points on the envelope,
through which a surface is fit to obtain an approx-
imation to the envelope. For a more comprehensive
survey of the previous work, we refer the reader to
[1]. Much of the work has focused on the mathemat-
ics of the surface. To the best of our knowledge, the
exact topological structure has not been investigated
in any significant detail.

Fig. 1: A capsule being swept along a helical path.

We now outline the structure of the paper. In
Section 2 we give the preliminaries of the sweep prob-
lem. The solid M induces a brep structure on V via the
natural correspondence π between the solid bound-
ary ∂M and E . The faces, edges and vertices of ∂M
give rise to corresponding faces, edges and vertices
respectively, on E .

In Section 3 we give the overall framework of our
algorithm. We point out the issues related to the brep
of the envelope that must be handled such as the
adjacency relations amongst entities of E and their
orientations. While the global brep structure of E may
be very different from that of ∂M , the two are locally
similar.

In Section 4, we perform the topological analysis
of E via the funnel which is a two dimensional sub-
manifold of the parameter space and serves as the
basis for computing the geometric and topological
data for the envelope. We present two key theorems
which enable us to lift the topological data of ∂M to
that of E . The first theorem shows that the correspon-
dence π respects the adjacency relations while the
second theorem characterizes the sets of points on
E where π is orientation preserving/reversing.

In Section 5, we elaborate all the steps of the main
algorithm given in Section 3, using the key theorems
in Section 4 for proof of correctness. First we compute
the 0-skeleton, i.e., the vertices of E . This is followed
by the computation of the 1-skeleton, i.e., the oriented
loops which will bound faces of E . Finally the faces are
oriented and parametrized to produce the complete
brep of E .

We conclude the paper in Section 6 by giving sev-
eral illustrative examples of solid sweep generated
from a pilot implementation of our algorithm using
the popular ACIS solid modeling kernel [3]. We make
remarks on further extensions of this work.

2. THE BOUNDARY REPRESENTATION OF THE
SWEPT VOLUME

In this section we define the envelope obtained by
sweeping a smooth input solid M along the given
trajectory h and formulate a natural boundary repre-
sentation of the swept volume.

Definition 1 A trajectory in R
3 is specified by a

map h : I → (SO(3), R3), h(t) = (A(t), b(t)) where I is a
closed interval of R, A(t) ∈ SO(3)(SO(3) = {X is a 3× 3
real matrix |X t · X = I , det(X) = I } is the special orthog-
onal group, i.e. the group of rotational transforms),
b(t) ∈ R

3. The parameter t represents time.

We make the following key assumptions about
(M , h): (i) the solid M is smooth, and (ii) the tuple
(M , h) is in a general position (see [4]). The action of
h (at time t in I) on M is given by M (t) = {A(t) · x +
b(t)|x ∈ M }.

Definition 2 The swept volume V is the union
∪t∈I M (t) and the envelope E is defined as the bound-
ary of the swept volume V .

An example of a swept volume appears in Fig. 1.
We will denote the interior of a set W by W o

and the boundary of W by ∂W . It is clear that Vo =
∪t∈I M (t)o. Therefore, if x ∈ Mo, then for all t ∈ I , A(t) ·
x + b(t) /∈ E . Thus, the points in the interior of M do
not contribute to E at all. Clearly, for each point y
of E there must be an x ∈ ∂M and a t ∈ I such that
y = A(t) · x + b(t).

For a point x ∈ M , define the trajectory of x as
the map γx : I → R

3 given by γx(t) = A(t) · x + b(t) and
the velocity vx(t) as vx(t) = γ ′x(t) = A′(t) · x + b′(t). For
a point x ∈ ∂M , let N (x) be the unit outward normal to
M at x. Define the function g : ∂M × I → R as

g(x, t) = 〈A(t) ·N (x), vx(t)〉 (1)

Thus, g(x, t) is the dot product of the velocity vector
with the unit normal at the point γx(t) ∈ ∂M (t).

Computer-Aided Design & Applications, 12(2), 2015, 181–191, http://dx.doi.org/10.1080/16864360.2014.962430
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

183

Proposition 3 gives a necessary condition for a
point x ∈ ∂M to contribute a point on E at time t,
namely, γx(t), and is a rewording in our notation of
the statement in [5] that the candidate set is the union
of the ingress, the egress and the grazing set of points.

Proposition 3 Let I = [t0, t1], t ∈ I and x ∈ ∂M such
that γx(t) ∈ E . Then either (i) g(x, t) = 0 or (ii) t = t0 and
g(x, t) ≤ 0, or (iii) t = t1 and g(x, t) ≥ 0.

For a proof refer to [4].

Definition 4 For a fixed time instant t ∈ I = [t0, t1],
the set {γx(t)|x ∈ ∂M , g(x, t) = 0} is referred to as the
curve of contact at t and denoted by C(t). Observe
that C(t) ⊂ ∂M (t). The union of the curves of contact is
referred to as the contact set and denoted by C, i.e.,
C = ∪t∈I C(t). The sets Lcap = {γx(t0) ∈ ∂M (t0)|g(x, t0) ≤
0} and Rcap = {γx(t1) ∈ ∂M (t1)|g(x, t1) ≥ 0} are referred
to as left end-cap and right end-cap respectively.

The curves of contact are referred to as the charac-
teristic curves in [11]. Fig. 2 shows the contact set and
the curve of contact at a few discrete time instants
in red. As noted in Proposition 3, E ⊆ Lcap ∪ C ∪ Rcap.
Clearly, the left and the right end-caps can be easily
computed from the solid at the initial and the final
position respectively.

In general, a point on the contact set C may not
appear on the complete envelope E as it may get
occluded by an interior point of the solid at a different
time instant. In such cases, the correct construction
of the envelope requires appropriate trimming of the
contact-set. We refer the reader to [4] for a compre-
hensive mathematical analysis of the trimming and
the related subtle issues arising due to local/global
intersections of the family {C(t)}t∈I . In this paper, we
focus on the case of simple sweeps.

Definition 5 A sweep (M , h) is said to be simple if
E = Lcap ∪ C ∪ Rcap. Clearly, in a simple sweep, every
point on the contact-set appears on the envelope, and
thus, no trimming of the contact-set is needed in order
to obtain the envelope.

Lemma 6 For a simple sweep, for t = t ′, C(t) ∩ C(t ′) =
∅. In other words, no two distinct curves of contact
intersect each other.

Proof Suppose that y ∈ C(t) ∩ C(t ′) for t = t ′. As
already noted, C(t) ⊂ ∂M (t) and C(t ′) ⊂ ∂M (t ′). Hence,
y ∈ ∂M (t) ∩ ∂M (t ′). By the assumption about gen-
eral position of (M , h), ∂M (t), and ∂M (t ′) intersect
transversally. Hence C(t) ∩M (t ′)o = ∅. It follows that
there exists y ′ ∈ C(t) such that y ′ /∈ E contradicting the
fact that the sweep (M , h)is simple. �

Henceforth, we assume that (M , h) is a simple
sweep. We now define the natural correspondence π :
E → ∂M . Let y ∈ E = Lcap ∪ C ∪ Rcap . We set

π(y) = x if y ∈ Lcap and y = γx(t0) for the unique

x ∈ ∂M .

= x if y ∈ Rcap and y = γx(t1) for the unique

x ∈ ∂M .

= xif y ∈ C(t) and y = γx(t) for the unique

x ∈ ∂M .

Observe that, thanks to Lemma 6, the t in the last
condition is unique and hence, the above map π is
well-defined. Clearly, the map π associates to a point
y on the envelope, the natural point x on the bound-
ary of the solid which transforms to y through the
sweeping process. The map π is the central object of
this paper and it sets up the boundary representation
of the swept volume V .

Recall that the brep of M models ∂M as a col-
lection of faces which meet each other across edges
which in turn meet at vertices. The brep structure
comes equipped with parametrizations underlying
the faces, edges and vertices which describe the geom-
etry of these entities. Furthermore, it also carries
the important combinatorial/topological information
such as adjacencies/incidences across these entities,
outward normals to faces, loops (sequences of co-
edges) bounding the faces and their orientations
which are consistent with the outward normals.

Now we outline the point-sets of the entities in the
brep of E . Let O ⊆ ∂M be an entity of the brep of M
such as a face or an edge or a vertex. We define EO =
{y ∈ E |π(y) ∈ O}. It turns out that, under the assump-
tion that M is smooth and (M , h) is in general position,
EO is of the same dimension as that of O. Clearly,
E = ∪OEO where the union varies over all the entities
of the brep of M . This natural covering of ε, induced
from that of M via the map π , provides the basis for
a natural brep structure on V . Sometimes, we refer to
it as the envelope brep.

In the sweep example shown in Fig. 2, the map π

is illustrated via color coding, i.e., the points y and
π(y) are shown in the same color. This highlights the
induced brep structure on the swept volume.

The induced brep structure on Lcap and Rcap is
exactly identical to that of ∂M restricted appropriately
and henceforth we focus our attention to only the
brep structure of the contact-set C. Further, by abuse
of notation, henceforth by π we mean the restriction
of π to C, that is, π : C → ∂M .

Now we describe some notation which will be used
throughout this paper. Let F ⊆ ∂M be a face of M . We
denote by CF the set {y ∈ C|π(y) ∈ F} generated by F .
For an edge e ⊆ ∂M and a vertex z ∈ ∂M , the sets Ce

and Cz are similarly defined and said to be generated
by e and z respectively.

Computer-Aided Design & Applications, 12(2), 2015, 181–191, http://dx.doi.org/10.1080/16864360.2014.962430
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

184

Fig. 2: (a) A dumbbell being swept along y-axis while undergoing rotation about y-axis. The curve of contact at
initial time is shown imprinted on solid in red. (b) A cone being swept along a helical path. Curves of contact at
few time instants are shown on the envelope in red.

3. THE COMPUTATIONAL FRAMEWORK

In this section we describe the overall computational
framework for the construction of the envelope brep.
A high-level view of this framework is summarized in
Algorithm 1.

Before venturing into the details of this algorithm,
we point out some of the issues related to the enve-
lope brep that our computational framework must
handle. To start with, let us fix a face F of M and
the corresponding entity CF generated by F . It turns
out that, although CF is two-dimensional, unlike F , it
may not be connected. Thus, in the brep structure,
CF must be modeled as a collection of several faces
all of which are generated by the same face F . In the
sweep example of Fig. 3 the yellow face, marked F , on
solid gives rise to two faces, marked CF

1 and CF
2 , on

the envelope also shown in yellow.

Fig. 3: The face labeled F on ∂M gives rise to two
faces labeled CF

1 and CF
2 on the envelope. Curves of

contact at two time instants are shown imprinted on
E and ∂M .

In general, a face/edge/vertex of may gen-
erate multiple faces/edges/vertices on the enve-
lope. Roughly speaking, our first main theorem (cf
Section 4: Theorem 11) establishes that even in the
presence of these ‘multiplicities’, the local incidence-
relationships between the entities of the envelope
brep are naturally derived from the corresponding
incidence-relationships between the entities of the
solid brep. Thus, while the global brep structure of
the envelope may be very different from that of the
solid, there exists local similarity between the two.
This crucial fact is the basis of our algorithm which
iterates over the entities of the solid brep and com-
putes the generated entities of the envelope brep.

Further, before computing an entity O, its boundary
∂O is computed as well as oriented. Thanks to the
above theorem, ∂O is generated by the boundary of
the entity which generates O.

Next we discuss some issues related to the orien-
tation of the envelope brep. Somewhat surprisingly,
the orientation of the envelope may not match that of
the solid! In other words, the correspondence π may
be orientation preserving as well as reversing at dif-
ferent points on the envelope. In the sweep example
of Fig. 4, π(yi) = xi for i = 1, 2. The map π is orienta-
tion preserving at y2 and reversing at y1, as evident
from the order of colors of the adjacent faces at
the vertices. The change in orientation results due to
intersections of the π(C(t)) curves on the solid M . See
the sweep example of Fig. 3, which shows two inter-
secting curves π(C(t)) for t = t ′, t ′′ imprinted on the
solid. Observe that the curves of contact C(t) do not
intersect each other. In Section 4, we show that the
points on the envelope where the map π looses the
orientation are precisely the ‘swiveling’ points y ∈ E
for which π(y) is a ‘stationary’ point on ∂M .

Fig. 4: The map π is orientation preserving at y2 and
reversing at y1. The curve ft = 0 is shown in red.

Our second main theorem (cf Section 4: Theorem 12)
gives a complete characterization of the sets of points
where π is orientation preserving and reversing, and
provides an efficient test for membership in these
sets. The algorithm crucially uses this test to consis-
tently ‘lift’ the orientation of faces and the bounding
loops of the solid brep to that of the generated faces
and their bounding loops of the envelope brep.

Finally, the geometry of the envelope is far from
obvious. Typically, even if the input is NURBS, the
output envelope is not closed form and therefore

Computer-Aided Design & Applications, 12(2), 2015, 181–191, http://dx.doi.org/10.1080/16864360.2014.962430
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

185

not NURBS. For the output we use the procedu-
ral paradigm (see [4,10,13]) which is more general
and now also industry standard. This is an effi-
cient and accurate framework for computing surfaces
and curves which arise from solutions of algebraic
equations (as in our case) and maintains integrity.
The surface is stored as a parametrized seed-surface
and accurate evaluators based on Newton-Raphson
solvers.

Algorithm 1 Solid sweep

for all in F in ∂M
for all e in ∂F

for all z in ∂e
Compute vertices Cz

generated by z
end for

Compute co-edges Ce generated by e
Orient co-edges Ce

end for
Compute CF (t0) and CF (t1)

Compute loops bounding faces CF which
will be generated by F
Compute faces CF generated by F
Orient faces CF

end for
for all Fi , Fj adjacent in ∂M

Compute adjacencies between faces in CFi

and CFj

end for

Each of the steps of above algorithm is elaborated
in Section 5.

4. TOPOLOGICAL ANALYSIS OF E
In this section we show that the adjacency relations
between geometric entities of E are preserved by
the correspondence π . Further, we give a complete
characterization of the set of points of E where π

is orientation preserving/reversing respectively. Fix a
face F ⊆ ∂M . We define the restriction of the map π to
CF , πF : CF → F as πF (y) = π(y).

Definition 7 A smooth/regular parametric sur-
face in R

3 is a smooth map S : R
2 → R

3 such that
at all (u0, v0) ∈ R

2 ∂S
∂u |(u0, v0) ∈ R

3 and ∂S
∂v
|(u0, v0) ∈ R

3

are linearly independent. Here u and v are called the
parameters of the surface.

Let S be the regular surface underlying F and let D
be the pre-image of F in the parameter space of S, i.e.,
S(D) = F . We will refer to the set D × I as the prism,
where, the closed time interval I is the domain of the
trajectory h. The prism for a face F is shown schemat-
ically in Fig. 5. Further, let e be a co-edge bounding F
and d be its pre-image in the parameter space of S so
that S(d) = e.

Fig. 5: The prism for a face of . The funnel is shaded
in yellow.

Define the function f F : D × I → R as f F (u, v, t) =
g(S(u, v), t). Note that f F is easily and robustly com-
puted.

Definition 8 For a sweep interval I and a face F ⊆
∂M, define FF = {p ∈ D × I |f F (p) = 0}. The set FF will
be referred to as the funnel. The set {(u, v, t) ∈ FF |t =
t ′} will be referred to as the p-curve of contact and
denoted by FF (t ′). Define Fe = {p ∈ d × I |f F (p) = 0}.

The sets FF ,Fe and FF (t0) and are illustrated
schematically in Fig. 5. The funnel in this example has
two components viz., FF

1 and FF
2 .

By the assumption about the general position of
(M , h) it follows that for all p ∈ FF , the gradient
∇f F (p) = [f F

u (p), f F
v (p), f F

t (p)]T = 0̄. As a consequence,
FF is a smooth, orientable surface in the parameter
space.

Definition 9 The sweep map from the prism to the
object space is defined as σ F : D × I → R

3, σ F (u, v, t) =
A(t) · S(u, v)+ b(t). Note that, σ F is a smooth map.

The curve of contact at t ′ in the face is defined as
CF (t ′) := {γx(t ′)|x ∈ F , g(x, t ′) = 0}. The contact set CF

corresponding to face F is indeed ∪t∈I CF (t). Note that
CF (t ′) and CF are the subsets of C(t ′) and C respec-
tively corresponding to the face F . It is easily verified
that C(t) ∩ CF = CF (t).

Further, observe that σ F (FF) = CF and by Lemma 6,
σ F |FF : FF → CF is a bijection. As σ F is smooth, σ F |FF

is in fact a diffeomorphism. Therefore there is a
matching between the components of FF and those
of CF .

Lemma 10 For p ∈ FF , let σ F (p) = y. If f F
t (p) = 0, the

map πF : CF → F is a local homeomorphism at y.

Proof Define the projection πD : FF → D as (u, v, t) �→
(u, v). It is clear that the diagram shown in Fig. 6
commutes, i.e., S ◦ πD = πF ◦ σ F . Recall that σ F |FF :
FF → CF is a diffeomorphism. Also, S : D→ F is a
diffeomorphism as S is regular. Hence, in order to
prove that πF is a local homeomorphism, it suf-
fices to prove that πD is a local homeomorphism.

Computer-Aided Design & Applications, 12(2), 2015, 181–191, http://dx.doi.org/10.1080/16864360.2014.962430
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

186

Let p = (u0, v0, t0) ∈ F . If f F
t (p) = 0, by implicit func-

tion theorem, there exists a neighborhood N ⊂ D of
(u0, v0) and a continuous function t = g(u, v) defined
on N such that ∀(u, v) ∈ N , f (u, v, g(u, v)) = 0. Further,
the set N (p) = {(u, v, g(u, v))|(u, v) ∈ N } is a neighbor-
hood of p in FF . The map πD restricted to N (p) is a
homeomorphism. �

Fig. 6: The face , its domain, the funnel, the con-
tact-set and their respective orientations. The above
diagram commutes.

By the assumption about the general position of
(M , h) it follows that the set of points on funnel where
f F
t = 0 is a curve. Hence, at almost every point on the

envelope, the local homeomorphism exists. The image
of the curve f F

t = 0 on envelope is shown in red in the
sweep example of Fig. 4. It is clear from Lemma 10
that the continuity of iso-u and iso-v curves of F is
preserved almost everywhere on CF by πF .

Let F ′ and F ′′ be two distinct faces in ∂M . Let y ∈
C(t) such that y is common to (only) CF ′

i and CF ′′
j . Since

the map π is obtained by gluing the maps {πF |F ⊆ ∂M },
πF ′(y) = πF ′′(y) = π(y). Then π(y) is common to (only)
F ′ and F ′′. Thus F ′ and F ′′ are adjacent in ∂M . By simi-
lar argument it is easy to see that if edges Ce

i and Ce′
j

are adjacent in C then the corresponding edges e and
e′ are adjacent in ∂M . We summarize this result in the
following theorem.

Theorem 11 If faces CF
i and CF ′

j are adjacent in C

then the faces F and F ′ are adjacent in ∂M. If edges Ce
i

and Ce′
j are adjacent in C then e and e′ are adjacent

in ∂M. If an edge Ce
i bounds a face CF

j in C then the

edge e bounds the face F in ∂M. If a vertex Cz
i bounds

an edge Ce
j in C then the vertex z bounds the edge e in

∂M.

The adjacency relations between faces of E are
illustrated in the sweep example shown in Fig. 4. via
color coding.

Now we focus on the orientation of C. This will
be achieved by an appropriate choice of a continuous
non-vanishing frame. For the rest of the paper, we will
assume without loss of generality that (Su, Sv) is the
orientation of F , i.e., Su × Sv points in the exterior of
the solid M . Choose (e1, e2) as the orientation of the
domain D of F , where e1 = (1, 0) and e2 = (0, 1). Thus,
under the orientations (e1, e2) and (Su, Sv), the map
S : D→ F is orientation preserving.

For a point p = (u0, v0, t0) ∈ FF , let σ F (p) = y ∈ CF

and πF (y) = x ∈ F . For brevity of notation, all the eval-
uations will be understood to be done at p unless
otherwise stated. Let α = (−f F

u · f F
t ,−f F

v · f F
t , f F2

u + f F2

v)

and β = (−f F
v , f F

u , 0). It is easily checked that α and
are β orthogonal to the normal ∇f to the surface
FF . If (f F

u , f F
v) = (0, 0), then (α, β) is a continuous non-

vanishing frame on FF . By the assumption about the
general position of (M , h), the set of points on FF

where (f F
u , f F

v) = (0, 0) is at most finite. Hence, the
ordered pair (α, β) determines an orientation of FF .
Further, as noted before, the map σ F |FF : FF → CF

is a diffeomorphism. Hence the set {Jσ F · α, Jσ F · β}
is linearly independent and spans the tangent-space
TCF (y). Also, it is easy to verify that {Jσ F · α, Jσ F · β} ∈
span{σ F

u , σ F
v }. Note that σ F

u = A(t0) · Su and σ F
v = A(t0) ·

Sv . Hence TCF (y) = TF(t0)(y). Here F(t) denotes the
translate of at time t, i.e., {γx(t)|x ∈ F}. The vectors
{α, β} and {Jσ F · α, Jσ F · β} are illustrated schematically
in Fig. 7.

Recall that each face F of ∂M is oriented so that
the unit normal points in the exterior of the solid M .
If N (x) is the unit outward normal at the point x ∈ F ,
the unit outward normal to F (t0) at y is N (y) := A(t0) ·
N (x). Further, since TCF (y) = TF(t0)(y) and the interior

Fig. 7: The vectors {α, β} and {Jσ F · α, Jσ F · β} shown on TFF and TCF respectively.

Computer-Aided Design & Applications, 12(2), 2015, 181–191, http://dx.doi.org/10.1080/16864360.2014.962430
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

187

of the swept volume is Vo = ∪t∈I M (t)o, it follows that
the unit outward normal to CF at y is given by N (y).

It is easy to verify that the determinant of the lin-
ear transform relating (Jσ F · α, Jσ F · β) to (σu, σv) to is

given by (f F2

u + f F2

v) · θ , where, θ := n · f F
u +m · f F

v − f F
t .

Here (n, m) are the coordinates expressing σF
t in terms

of (σ F
u , σ F

v) (the Jacobian Jσ F being rank deficient at p),
i.e., σ F

t = n · σ F
u +m · σ F

v . For a simple sweep, is posi-
tive on the funnel (see [4] for more details). Hence,
Jσ F · α × Jσ F · β points in the exterior of the swept vol-
ume and for later discussion we fix the orientation of
CF determined by the ordered frame (Jσ F · α, Jσ F · β).
The manifolds FF , CF , D and F and along with the
respective choice of orientations are shown in Fig. 6.
Under the above choices of orientations, the map
σ F |FF : FF → CF is orientation preserving.

We refine Lemma 10 by characterizing the set
of points of E where πF is orientation preserv-
ing/reversing respectively.

Theorem 12 For p ∈ FF , let σ F (p) = y. The map πF :
CF → F is orientation preserving/reversing at y if
−f F

t (p) is positive/negative respectively.

Proof Define the projection πD : FF → D as πD(u, v,
t) = (u, v). Note that the diagram shown in Fig. 6 com-
mutes, i.e., πF ◦ σ F = S ◦ πD . Since the maps σ F and
S are both orientation preserving under the above
choice of orientations, the map πF is orientation pre-
serving/reversing if and only if the map πD is orien-
tation preserving/reversing respectively. Denote the
Jacobian of πD by JπD . Expressing (JπD · α, JπD · β) in
terms of (e1, e2) it is easy to see that the map πD is
orientation preserving/reversing if and only if −f F

t is
positive/negative respectively. �

The following Lemma explains the geometric
meaning of the set of points where the hypothesis of
Theorem 12 does not hold.

Lemma 13 Consider a point p ∈ FF . Then f F
t (p) = 0

iff JπF (V (p)) = 0 where JπF is the Jacobian of πF and

V (p) = ∂σ F

∂t (p) is the velocity at the point σ F (p).

Proof For clarity of notation, we will suppress p as
the argument and all the evaluations will be under-
stood to be done at p throughout this proof, unless
otherwise stated. Let δ := (−n · ft

θ
,−m · ft

θ
, 1+ ft

θ
). Note

that δ ∈ TFF (p) and Jσ F (δ) = V .
Since the diagram shown in Fig. 6 commutes,

by chain rule, JS ◦ JπD (δ) = JπF ◦ Jσ F (δ) and hence JS ◦
JπD (δ) = JπF (V). As S : D→ F is a diffeomorphism, JS ◦
JπD (δ) = 0 iff JπD (δ) = 0 iff f F

t = 0. Hence JπF (V) = 0 iff
f F
t = 0. �

5. COMPUTATION OF THE BREP OF E
In this section we elaborate the steps of Algorithm 1.
Note that for each entity O of ∂M , CO may have sev-
eral components. Algorithm 1 marches over all the
entities O of ∂M in order to compute the correspond-
ing entities CO .

5.1. Computing Vertices Cz

The solid M being smooth, at each vertex z ∈ ∂M , ∂M
has a well-defined outward normal. Computing the set
of vertices Cz amounts to computing the set T := {t ∈
I |g(z, t) = 0}, that is the set of zeroes of the smooth
function g(z, t) of the free variable ‘t’. We perform this
computation using Newton-Raphson solvers. Thence,
the set Cz is obtained as {γz(t)|t ∈ T }.

5.2. Computing Co-edges Ce

Let e be a co-edge bounding a face F of ∂M with
underlying surface S. Let d be the domain of e in
the parameter space of S, i.e. S(d) = e and δ be the
parametrization of d (see Fig. 5), i.e., a point of e may
be obtained as S(δ(s)) where s ∈ I ′ is the parameter of
δ and I ′ is a closed interval.

Define the function f e : I ′ × I → R as f e(s, t) =
g(S(δ(s)), t). Note that f e is the restriction of the func-
tion f F to d. Computing Ce amounts to computing the
set Fe := {(s, t) ∈ I ′ × I |f e(s, t) = 0}. The set Ce is then
obtained as {γS(δ(s))(t)|(s, t) ∈ Fe}. A typical example of
the set Fe is illustrated schematically in Fig. 8. This
example has four connected components, viz., Fe

ij
for

j = 1, 2, 3, 4 and gives four components of Ce.

Fig. 8: Edges in parameter space (s,t) generated by a
co-edge e ⊆ ∂F .

Note that the vertices bounding each component
of Ce have already been computed. In order to trace
an edge Fe

i , we begin at one of its bounding vertices
and march till we reach the other bounding vertex. We
use Newton-Raphson solvers for this purpose. This
gives us a discrete set of points in Fe

i which are inter-
polated to obtain an approximation to Fe

i . Thereafter,

Computer-Aided Design & Applications, 12(2), 2015, 181–191, http://dx.doi.org/10.1080/16864360.2014.962430
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

188

Fig. 9: Orienting Ce
i . In this case −f F

t is negative at the point y.

we use the ’procedural’ parametrization (see [10,13])
to obtain the exact edge Fe

i .

5.3. Orienting Co-edges Ce

The orientation of a co-edge is a choice of a continu-
ous unit tangent at each point in the co-edge. In the
brep format, each co-edge e bounding a face F is ori-
ented so that the interior of F is on the left side of e
with respect to the outward normal in a right-handed
coordinate system. In other words, if z̄ is the tangent
to e at a point x ∈ e and N is the unit outward normal
to F at x, then N × z̄ points in the interior of F . This is
illustrated in Fig. 9(a).

We will orient the co-edge Ce
i bounding face CF

j
using the orientation of the co-edge e and the map
πF . Let γx(t ′) = y ∈ Ce

i . Let for x ∈ e and t ′ in the sweep

interval I , i.e., πF (y) = x. Assume without loss of gen-
erality that A(t ′) = I and b(t ′) = 0. The unit outward
normal to CF

j at y is N . For brevity of notation,

throughout this section, the Jacobian JπF
−1 = JπF

−1

will be understood to be evaluated at the point x.
Since πF is a local diffeomorphism in a neighborhood
of y, points in interior of F are mapped to points in
interior of CF

j by πF−1. Hence, JπF
−1 · (N × z̄) points

in the interior of CF
j at y. Also, JπF

−1 · z̄ is tangent

to Ce
i at y. This is illustrated in Fig. 9(b). Now, if the

map πF is orientation preserving at y, JπF
−1 · z̄ is the

orientation of Ce
i so that CF

j is on its left side with

respect to N . Similarly, if πF is orientation revers-
ing at y, −JπF

−1 · z̄, is the correct orientation of Ce
i .

In the scenario illustrated in Fig. 9(b), πF is orienta-
tion reversing at y. Using Theorem 12 we conclude
the following Proposition.

Proposition 14 For a co-edge e bounding a face F of
∂M, let y ∈ Ce

i ⊂ CF and πF (y) = x ∈ e. Further let p ∈
Fe ⊂ FF be the unique point with σ F (p) = y and z̄ ∈
Te(x) be the orientation of e. If−f F

t (p) > 0 then JπF
−1 · z̄

is the orientation of Ce
i and if −f F

t (p) < 0 then −JπF
−1 ·

z̄ is the orientation of Ce
i .

Note that for a co-edge Ce
j of Ce, it is sufficient to

compute −f F
t at a single point on Fe

j in order to orient

Ce
j . Further, suppose that for some x ∈ e, γx(ti) for

i = 1, 2, . . . , n belong to the edges Ce
j for j = 1, 2, . . . , k

respectively of Ce, so that, ti are sorted in ascending
order. Let x = S(δ(s0)) where s0 ∈ I ′ is the parameter
identifying x. It follows by the mean value theorem
that −f F

t alternates sign at each point (s0, ti). This
is illustrated schematically in Fig. 8 where sign(−f F

t)

alternates at points (s0, t1), (s0, t2), (s0, t3) and (s0, t4)

Hence, it is sufficient to compute −FF
t at any one of

the points (S0, ti) in order to orient all the edges Ce
j

for j = 1, 2, . . . , k.

5.4. Computing Faces CF

We now come to the computation of the faces in CF .
This is done in several steps, starting with computing
the loops which bound the faces in CF . Observe that
the curves of contact at initial and final time instants
may form part of boundary of a face CF

i . Once the loop

bounding CF
i is computed, curves of contact at a few

discrete time instants are computed and interpolated
to obtain an approximation to CF

i which is then used

to obtain a procedural parametrization of CF
i (see [4,

13]).

5.4.1. Computing curves of contact CF (t)

Recall from Section 4 that CF (t) = σ F (FF (t)). Tracing
of the p-curve of contact FF (t) begins at one of its
bounding vertices which belong to one of the edges
Fe

i , where, e is a co-edge bounding F . The march-
ing continues using the Newton-Raphson solver until
the other bounding vertex is reached. A discrete set
of points on FF (t) is obtained which is interpolated
and used to obtain the procedural parametrization of
FF (t), similar to Fe.

5.4.2. Computing loops bounding CF

We use Theorem 11 for computing the loops which
bound faces CF . Algorithm 2 takes as input one of the
co-edges bounding a face CF

1 which serves as the first
co-edge in the loop. A free co-edge and a free vertex
are maintained and the next co-edge in the loop is
searched for. This is repeated till the loop is closed.

Computer-Aided Design & Applications, 12(2), 2015, 181–191, http://dx.doi.org/10.1080/16864360.2014.962430
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

189

Fig. 10: (a) A face F of ∂M bound by four co-edges. (b) A corresponding face CF
1 (c) Prism with domains di for

co-edges ei .

The method GetNextCoedge described in Algori-
thm 3 takes as input a free co-edge and a free
vertex and returns the co-edge bounding CF

1 adja-
cent to the free co-edge via the free vertex. Let I =
[t0, t1] be the sweep interval. The three cases are as
follows.

Algorithm 2 CreateLoop(freeCoedge)

loop← ∅
startVertex← start(freeCoedge)
endVertex← end(freeCoedge)
append freeEdge to loop
while startVertex = freeVertex do

(nextFreeCoedge, nextFreeVertex)←
GetNextCoedge(freeCoedge, freeVertex)
(freeCoedge, freeVertex)← (nextFreeCoedge,
nextFreeVertex)
append freeCoedge to loop

end while
return loop

Algorithm 3 GetNextCoedge(freeCoedge, freeVertex)

if freeCoedge ∈ CF (0) ∪ CF (1)

(nextFreeCoedge, nextFreeVertex)←
GetAdjEdgeToCoc(freeVertex)

else if freeVertex ∈ CF (0) ∪ CF (1)

(nextFreeCoedge, nextFreeVertex)←
GetCoc(freeVertex)

else
srcVert← Source(freeVertex)
srcCoedge← Source(freeCoedge)
nextSrcCodge ← AdjacentCodge(srcCoedge,

srcVert)
(nextFreeCoedge, nextFreeVertex)←
AdjSweptEdge(nextSrcEdge, freeVertex)

end if
return (nextFreeCoedge, nextFreeVertex)

Case (i): If the free co-edge belongs to C(t0) or
C(t1), then the method GetAdjEdgToCoc returns the
co-edge adjacent to C(t0) or C(t1) respectively, via the

free vertex. For instance, in Fig. 10, if CF
i5

(t0) is the

free co-edge and q is the free vertex, the co-edge Ce4
i6

is returned.
Case (ii): If the free co-edge does not belong to

C(t0)/C(t1) but free vertex belongs to C(t0) or C(t1)

(vertex p in Fig. 10), the method GetCoc returns the
component of CF (t0) or CF (t1), respectively, adjacent
to the free vertex (CF

i5
(t0) in Fig. 10).

Case (iii): The vertex z and co-edge e correspond-
ing to the free vertex and free co-edge respectively
are obtained by the method Source. Thereafter, the
method AdjacentCoedge returns the co-edge e′ of ∂M
adjacent to e via z. Finally the method AdjSweptEdge
returns the co-edge corresponding to the co-edge e′
adjacent to the free vertex. For instance, in Fig. 10
if the free co-edge and free vertex are Ce1

i2
and Cz

i3
respectively, then the co-edge adjacent to Ce1

i2
via Cz

i3
is searched for amongst the co-edges corresponding
to co-edge e2, e2 being adjacent to e1 via z in ∂M .

5.4.3. Computing orientation of CF

In the brep format, each face F of ∂M is oriented so
that the unit normal points in the exterior of the solid
M . If N (x) is the unit outward normal at a point x ∈
F , the unit outward normal to F(t) at y = γx(t) ∈ F(t)
is N̂ := A(t) ·N (x). Further, since TCF

i
(y) = TF(t)(y) and

the interior of the swept volume is Vo = ∪t∈I M (t)o, it
follows that the unit outward normal to face CF

i at y

is given by N̂ (y) .
This completes the details of all the steps in the

main algorithm.
The implementation has been tested for over 40

solids with number of faces between 5 and 25 and
with fairly complex trajectories. Figure 11 illustrates
some of the outputs. For all instances, the time taken
to output the solid has ranged between half and
three minutes for a machine with 2.0 GHz quad-core
processor and 2 GB RAM. A more elaborate and full
implementation, which solves for sharp and smooth
solids and for local and global intersections as well is
in the pipeline.

Computer-Aided Design & Applications, 12(2), 2015, 181–191, http://dx.doi.org/10.1080/16864360.2014.962430
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

190

Fig. 11: Examples of solid sweep.

6. CONCLUSION

We have explicated the complete brep of the solid
sweep as a primitive solid modeling operation and
provided a novel algorithmic framework for its com-
putation. Our algorithm marches over the entities of
the brep of the input solid in the order increasing
dimension, constructs corresponding entities of the
output brep and simultaneously resolves the intri-
cate issues of incidences and orientations locally.
We show several illustrative examples generated by
a pilot implementation of our algorithm to demon-
strate the robustness of the method. Coupled with
our earlier work ([4]), this algorithm readily extends
to ‘non-simple’ sweeps which involve local/global
self-intersections. In another direction, the frame-
work also extends to sweeps of solids with sharp
features.

REFERENCES

[1] Abdel-Malek, K.; Blackmore, D.; Joy, K.: Swept
Volumes: Foundations, Perspectives and Appli-
cations, International Journal of Shape Model-
ing, 12(1), 2006, 87–127.

[2] Abdel-Malek, K.; Yeh, H.J.: Geometric repre-
sentation of the swept volume using Jaco-
bian rank-deficiency conditions, Computer-
Aided Design. 29(6), 1997, 457–468.

[3] ACIS 3D Modeler, SPATIAL, http://www.spatial.
com/products/3d_acis_modeling

[4] Adsul, B.; Machchhar, J.; Sohoni, M.: Local and
Global Analysis of Parametric Solid Sweeps,
Cornell University Library arXiv. 2013. http://
arxiv.org/abs/1305.7351

[5] Blackmore, D.; Leu, M.C.; Wang, L.: Sweep-
envelope differential equation algorithm and

Computer-Aided Design & Applications, 12(2), 2015, 181–191, http://dx.doi.org/10.1080/16864360.2014.962430
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.spatial.com/products/3d_acis_modeling
http://www.spatial.com/products/3d_acis_modeling
http://arxiv.org/abs/1305.7351
http://arxiv.org/abs/1305.7351
http://www.cadanda.com

191

its application to NC machining verification,
Computer-Aided Design. 29(9), 1997, 629–637.

[6] Erdim, H.; Ilies, H. T.: Classifying points
for sweeping solids, Computer-Aided Design.
40(9), 2008, 987–998.

[7] Kinsley Inc. Timing screw for grouping and
turning. https://www.youtube.com/watch?v=
LooYoMM5DEo

[8] Lee, S. W.; Nestler, A.: Complete swept volume
generation, Part I: Swept volume of a piece-
wise C1-continuous cutter at five-axis milling
via Gauss map, Computer-Aided Design. 43(4),
2011, 427–441.

[9] Lee, S. W.; Nestler, A.: Complete swept vol-
ume generation, Part II: NC simulation of
self-penetration via comprehensive analysis

of envelope profiles, Computer-Aided Design.
43(4), 2011, 442–456.

[10] Markot, R.; Magedson, R. L.: Procedural method
for evaluating the intersection curves of two
parametric surfaces, Computer-Aided Design,
23(6), 1990, 395–404.

[11] Peternell, M.; Pottmann, H.; Steiner, T.; Zhao, H.:
Swept volumes, Computer-Aided Design and
Applications. 2(5), 2005, 599–608.

[12] Rossignac, J.; Kim, J. J.; Suh, K. C.; Joung, C. B.:
Boundary of the volume swept by a free-form
solid in screw motion, Computer-Aided Design.
39, 2007, 745–755.

[13] Sohoni M.: Computer aided geometric design
course notes. http://www.cse.iitb.ac.in/∼
sohoni/336/main.ps

Computer-Aided Design & Applications, 12(2), 2015, 181–191, http://dx.doi.org/10.1080/16864360.2014.962430
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

https://www.youtube.com/watch?v=LooYoMM5DEo
https://www.youtube.com/watch?v=LooYoMM5DEo
http://www.cse.iitb.ac.in/~sohoni/336/main.ps
http://www.cse.iitb.ac.in/~sohoni/336/main.ps
http://www.cadanda.com

	1. INTRODUCTION
	2. THE BOUNDARY REPRESENTATION OF THE SWEPT VOLUME
	3. THE COMPUTATIONAL FRAMEWORK
	4. TOPOLOGICAL ANALYSIS OF E
	5. COMPUTATION OF THE BREP OF E
	5.1. Computing Vertices Cz
	5.2. Computing Co-edges Ce
	5.3. Orienting Co-edges Ce
	5.4. Computing Faces CF
	5.4.1. Computing curves of contact CF(t)
	5.4.2. Computing loops bounding CF
	5.4.3. Computing orientation of CF

	6. CONCLUSION
	References

