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ABSTRACT

Log-Aesthetic (LA) curve has been claimed as one of a most promising curve for design purpose.
However, LA curve has no shape variable which can be used to control its end curvatures directly.
Generalized Log-Aesthetic Curve (GLAC) which is the family of LA curve has ability to control its
curvature with an extra shape parameter. This paper highlights on designing two segments of GLACs
in the form of C- and S-shapes with curvature continuity using interior point method. Designers will be
able to design S-shapes and C-shapes by inputting control points, its direction of travel and estimated
end curvatures.
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1. INTRODUCTION

The success of a product released in the market or
the design of an architectural building depends not
just on its functionalities but it must be visually pleas-
ing [15]. For example, Museo Guggenheim in Spain is
regarded as the most influential modern architecture
in the world while Ferrari is famous for its elegant and
stunning look.

Product design such as in automotive, aircraft
industries, architecture designs & computer anima-
tions emphasizes on the usage of world class aes-
thetic curves such as logarithmic spiral & clothoid
(or cornu spiral). The importance of aesthetic shapes
to design industrial products leads to the studies of
planar aesthetic curves [9,10]. Aesthetic curves have
monotonic curvature profile & are regarded as of
high aesthetical value. The general function repre-
senting aesthetic curves are known as Log-Aesthetic
(LA) curve [12]. The formulation of LA curves pro-
duces logarithmic spiral, clothoid, Nielsen’s spiral &
circle involute depending on its Logarithmic Curva-
ture Graph’s (LCG) gradient α. Yoshida & Saito [17]
proposed a novel method to render LA curves interac-
tively using given endpoints & their respective tangent
vectors. Consequently, numerous research papers
have been published lately presenting works on LA
curves such as [11,16,13,5,14] and reference therein.

However, the standard formulations of LA curves
have weakness where its curvature cannot be control

directly using its shape variables. The standard form
1 represented by Yoshida & Saito cannot be used to
design LA curve with defined end curvatures. Thus, in
2013 Miura et al. [13] used standard form 2 to rep-
resent a method to design G2 continuous LA curves
by using 3 pieces of LA segment called LA triplets. It
has been successfully used in Rhino 3D CAD systems
for automobile design. However, Generalized Log-
Aesthetic Curve (GLAC) is the generalization of LA
curves which can be used to achieve the desired cur-
vature using the extra shape variable v[1,2,8] with less
effort. This extra shape parameter distinguishes GLAC
from LAC and GLAC has the aptitude to fix desired
curvature at the origin. GLAC produces LA curves,
Generalized Cornu Spiral (GCS), logarithmic spiral,
clothoid, Nielsen’s spiral & circle involute a [6]. The
vitality of GLAC is further elucidated in [7] where they
proved that the drawable region of GLAC is wider as
compared to LAC in which GLAC provides wider solu-
tion in which the LA curves could not. Recent research
on GLAC includes the extension of spatial GLAC [3].

This paper proposes G2 scheme to design S-shape
& C-shape GLACs. The result looks promising where
the designer may directly input the desired G2 Her-
mite data to obtain a GLAC spline with curvature
continuity. The next section elaborates on the formu-
lation & its respective algorithms. The final section
presents numerical examples for S-shape & C-shape
GLACs.
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2. G2 CONTINUOUS GLAC

GLAC is derived through the curve synthesis process
where the formulation of a curve is derived from a
well-defined curvature function. When the extra shape
parameter v is 0, GLAC becomes LA curves. GLAC has
the ability to dictate curvature values at the origin
& is suitable for interactive design [8]. Eqn. (1), (2)&
(3) presents the curvature, arc length & turning angle
function of GLAC respectively. GLAC is arc length
parametrized and {�, α, ν} ∈ R. are variables that can
be used to shape a segment of GLAC (Eqn. (4)).

κGLAC(s) =
{

e−�s + ν α = 0

(�αs + 1)
−1
α + ν otherwise

(1)

sGLAC(ρ) =

⎧⎪⎪⎨
⎪⎪⎩

1
�

log
[

1

ρ−1 − ν

]
if α = 0

1
�α

((ρ−1 − ν)−α − 1) otherwise

(2)

θGLAC(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
�

(1− e−�s)+ νs if α = 0

1
�

log[�s + 1]+ νs if α = 1

1
�(α − 1)

((�αs + 1)
α−1

α − 1)+ νs

otherwise

(3)

CGLAC(s) =
{∫ s

0
cos[θGLAC(u)]du,

∫ s

0
sin[θGLAC(u)]du

}
(4)

The overall shapes of GLAC have been identified
in [6] where it produces world class aesthetic spirals
such as clothoid & logarithmic spiral. The interactive
design of GLAC satisfying G1 Hermite data has been
proposed by Gobithaasan et al. [7] where its drawable
region has been proven to be much wider than the
leading LA curves.

It is vital in product design to achieve G2 con-
tinuity when modelling aesthetic shapes to avoid
unwanted jerks and oscillations. In this paper, we pro-
pose an algorithm for GLAC satisfying G2 continuity
and generate C & S-shapes. Practitioners will be able

to control curvatures at both ends for design pur-
poses and at the same time decide where exactly they
want an inflection point to occur (for the case of S-
shape). However, the output end curvatures are scaled
end curvatures given by user. Interior point methods
employed to satisfy the constraints in which suit-
able values of

{
θd , �, s

}
are identified to fit given G2

Hermite data.

2.1. Function & Bounds for G1 & G2 Continuous
GLAC

An overall study of GLAC shapes has been studied
in detail in order to find proper bounds of GLAC
which can be used for design [6]. Hence, we employ
the bounds as constraints in the proposed algorithm
to satisfy given inputs. Tab. 1 describes the con-
straints exist for

{
θd , �, s

}
when ν > 0 & −1 < ν < 0.

These constraints will be used to find the values for
free parameters

{
θd , �, s

}
. Eqn. (5) presents the total

winding angle of GLAC in Cartesian plane which is the
objective function f (x) in this minimization problem.

f (x) = θ(s)

= cos−1

⎡
⎣ Re[CGLAC(s)]√

Re[CGLAC(s)]2 + Im[CGLAC(s)]2

⎤
⎦ (5)

2.2. Configuration for the Placement of Control
Points

The S-shape & C-shape consists of two GLACs
(GLAC1& GLAC2) having control points{P0, P1, P2, P3,
P4} joined with G2 continuity. GLAC1 & GLAC2 are
the curve segments with control points

{
P0, P1, P2

}
&

{
P2, P3, P4

}
respectively and both segments are

joined at P2 where they possess the same curvature
value.

2.2.1. S-shape G2 continuous GLAC

A S-shape GLAC has an inflection at the joint (κ (s) =
0). We use −1 < ν < 0 for S-shape of GLAC since it
gives upper bound which is the point of inflection [6].

α � s θd

ν > 0 −1 < ν < 0
C-shape C-shape S-shape

α < 0 0 ≤ � ≤ −1
αs

0 ≤ � ≤ (−ν)−α − 1
αs

� = (−ν)−α − 1
αs

s > 0 θe < θd ≤ 2θe

α = 0 � ≥ 0 0 ≤ � ≤ − log [−ν]
s

� = − log [−ν]
s

s > 0 θe < θd ≤ 2θe

α > 0 � ≥ 0 0 ≤ � ≤ (−ν)−α − 1
αs

� = (−ν)−α − 1
αs

s > 0 θe < θd ≤ 2θe

Tab. 1: Constraints for G2 continuous GLAC.

Computer-Aided Design & Applications, 12(2), 2015, 192–197, http://dx.doi.org/10.1080/16864360.2014.962431
© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


194

(a) (b)

Fig. 1: Configuration for the placement of control points for G2 data (S-shape): (a) GLAC1& (b) GLAC2.

The inputs are
{
P0, P4, α, θe1, θe2, κ0, κ1

}
and κ0 & κ1 is

the curvature at the origin o f both curve segments.
Fig. 1 depicts the configuration for the place-

ment of control points for GLAC1& GLAC2. Fig. 2
describes configuration of GLAC1 & GLAC2 forming
S-shape with G2 continuity. The point P0 & P4 is posi-
tioned at the origin (denoted as pa & pe). The point of
the inflection P2 which is the joint will be placed at
θe1 & θe2 (denoted as pc1 & pc2). The point P1 & P3will
be found in the range of θe1 < θd1 ≤ 2θe1& θe2 < θd2 ≤
2θe2 on the horizontal axis (denoted as pb & pd )
to satisfy the condition ‖ P0P1 ‖≤‖ P1P2 ‖& ‖ P2P3 ‖≤‖
P3P4 ‖ using the interior point method. Note that
point P1 & P3will have κ (s) = 0 (point of inflection) as
the arc length falls on the upper bound of GLAC. By

Fig. 2: Configuration for joining GLAC1& GLAC2
forming S-shape.

applying transformations, GLAC2 will be placed such
that pc2 = pc1 & satisfies the tangent continuity. The
S-shape is formed and the control points are denoted
as

{
Pa, Pb, Pc , Pd , Pe

}
. Finally, the formed S-shape will

be scaled and transformed back to original position
such that

{
Pa, Pe

} = {
P0, P4

}
.

2.2.2. C-shape G2 continuous GLAC

The joint P4will have the same curvature (κ1)
and the inputs are

{
P0, P4, α, θe1, θe2, κ0, κ1, κ2

}
. Note

that, curvature at the point P0 & P4 is κ0 & κ2. The
condition κ0 > κ1 > κ2 is important when selecting
values for control the curvature as the curvature
decreases as s > 0.

Fig. 3 illustrates the configuration for the place-
ment of control points for GLAC1 & GLAC2. Fig. 4
describes the configuration of GLAC1 & GLAC2 form-
ing C-shape with G2 continuity. For GLAC1 the
point P0 will be placed at the origin (denoted as pa)
meanwhile for GLAC2, P4 will be placed at θe2
(denoted as pe). For GLAC1, point P2 is positioned at
θe1 (denoted as pc1) & at origin for GLAC2 (denoted
as pc2). Points P1 & P3(denoted as pb & pd ) will be
searched in the range of θe1 < θd1 ≤ 2θe1 & θe2 < θd2 ≤
2θe2 to satisfy the condition ‖ P0P1 ‖≤‖ P1P2 ‖& ‖
P2P3 ‖≤‖ P3P4 ‖ using the interior point method. By
applying transformations, GLAC2 will be placed such
that pc2 = pc1and satisfies the tangent continuity.
Note that, the curvature at the point pc2 and pc1are
the same. At this stage, the C-shape is formed and
the control points are denoted as

{
Pa, Pb, Pc , Pd , Pe

}
.

(a) (b)

Fig. 3: Configuration for the placement of control points forG2 data(C-shape): (a) GLAC1& (b) GLAC2.
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Finally, the formed C-shape will be scaled and trans-
formed back to original position such that

{
Pa, Pe

} ={
P0, P4

}
.

Fig. 4: Configuration for joining GLAC1& GLAC2
forming C-shape.

2.3. The Algorithm for G2 Continuous GLAC

Algorithm 1 presents the path to generate desired
S-shape & C-shape of G2 continuous GLAC. Observe
that in GLAC, we can obtain shapes with flexible cur-
vature at origin by manipulating the shape variable ν.
To control the curvature at the other end, we use inte-
rior point method by adding Eqn. (1) as one of its
constraints.

2.3.1. Algorithm for G2GLAC: S-shape & C-shape

Algorithm 1
REMARK: Endpoints {P0(X0, Y0), P4(X4Y4)} are given
with a preferred α, θe1, θe2, κ0 & κ1 (additionally κ2 for
C-shape). Let P0(X0, Y0) & P4(X4Y4) be the start point
of interactive GLAC1 & GLAC2 for S-shape. For C-
shape, P0(X0, Y0) & P4(X4Y4) will be the starting point
& endpoint of interactive GLAC1 & GLAC2. {θd1, �1, s1}
& {θd2, �2, s2} are searched through the primal dual
interior point method correspond to θe1 & θe2 which
gives pc1 & pc2 with κ(s) = 0 for S-shape. For C-shape,
pc1 & pe will be searched satisfying κ(s) = κ1 & κ(s) =
κ2. S-shape & C-shape of GLAC segments is formed
such that it satisfies the tangent & curvature continu-
ity at the joint via transformation. The curve is then
plotted corresponding to the original control points
via transformation.
INPUT: P0, P4, α, θe1, θe2, κ0, κ1 (additionally κ2 for C-
shape).

OUTPUT: AS shape or C-shape of GLAC segment.
BEGIN

Step 1 Transform the input points such that:
i. P0 is at (0,0)& set as p0(x0, y0),

ii. Place P4 at first quadrant & set as
p4(x4, y4).

Step 2 Calculate: ν1 ← (κ0 − 1) & ν2 ← (κ1 − 1)

Step 3 Calculate total winding angle from origin:
θp4 ← cos−1 [ x4√

x2
4+y2

4

].

Step 4 Define: Eqn. (1), Eqn. (3), Eqn. (4) & Eqn.
(5).

Step 5 Set constraints such as: Range for
{θd , �, s}, θGLAC(s) = θd & θ(s) = θe (addi-
tionally κGLAC(s) = κ1 & κGLAC(s) = κ2 for
C-shape) (Refer Tab.1).

Step 6 Search {θd1, �1, s1} & {θd2, �2, s2} via pri-
mal dual interior point method.

Step 7 Determine:
i. {pa(xa, ya), pc1(xc1, yc1)} & {pe(xe, ye),

pc2(xc2, yc2)} (or {pc2(xc2, yc2), pe(xe, ye)}
for C- shape),

ii. pb(xb, yb) & pd(xd , yd) via tangent line.
Step 8 Transform GLAC2 segment such that

pc2 = pc1 & satisfies the tangent continu-
ity with pc1. Set the current points as
{Pa, Pb , Pc , Pd , Pe}.

Step 9 Calculate:
i. Total winding angle from origin: θPe

←
cos−1 [ Xe√

X 2
e +Y 2

e

],

ii. Scaling factor: r ←
√

(x0−x4)2+(y0−y4)
2

√
(xa−xe)

2+(ya−ye)
2
.

Step 10 Scale to r & transform the whole curve by
using θp4 & θPe

such that Pe = p4.
Step 11 Transform the whole curve back to origi-

nal position.
Step 12 OUTPUT.

END

3. NUMERICAL EXAMPLES

Fig. 5 & Fig. 6 shows various examples of S-shape & C-
shape of G2 continuous GLACs along with its control
points. The inputs of the figures are shown in Tab. 2
& Tab. 3. To note, the constraints are easily satisfied
during the parameter searching and the existence of
solutions is proven to be far wider than the LA curves
[7]. Although the final end curvatures change due to
scaling, the G2 continuity is achieved successfully.

Practitioners will be able to adapt GLAC easily for
aesthetic design as it is feasible to achieve G2 contin-
uous GLAC. This aptitude helps practitioners to set
estimated curvatures for the joining of two pieces of
GLAC segment. Moreover, obtaining an inflection with
GLAC is not difficult either. A condition for an inflec-
tion to occur in GLAC has been identified [6] and it
helps to obtain S-shapes easily.
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Fig. 5: S-shape of GLAC with G2 continuity.

Input Output

α {P0, P4} {θe1, θe2} {κ0, κ1} {ν1, ν2} {θd1, θd2} {�1, �2} {s1, s2}
0 {(2,3),(1,−2)} {1,0.7} {0.98,0.72} {−0.02,−0.28} {1.25,0.98} {0.71,0.36} {5.46,3.46}
2 {(−1,2),(1,−1)} {0.7,0.7} {0.8,0.76} {−0.2,−0.24} {0.89,0.9} {1.78,1.32} {6.72,6.16}
0.5 {(2,4),(−1,−1)} {0.5,0.7} {0.84,0.76} {−0.16,−0.24} {0.66,0.95} {1.07,0.54} {2.78,3.82}
1 {(−2,4),(−1,3)} {1.5,1} {0.89,0.7} {−0.11,−0.3} {1.87,1.35} {0.7,0.37} {11.54,6.25}
−1 {(1,3),(4,5)} {1.5,1.5} {0.94,0.81} {−0.06,−0.19} {2.19,2.19} {0.2,0.14} {4.67,5.42}
−3 {(1,−3),(4,5)} {1,1.5} {0.95,0.85} {−0.05,−0.15} {1.72,2.5} {0.13,0.07} {2.46,4.16}

Tab. 2: Details of input & output for 5 (from left to right).

Input Output

α {P0, P4} {θe1, θe2} {κ0, κ1, κ2} {ν1, ν2} {θd1, θd2} {�1, �2} {s1, s2}
0 {(−2,4),(1,3)} {1,0.8} {1.1,0.7,0.2} {0.1,−0.3} {1.85,1.33} {0.24,0.21} {2.09,3.15}
0.3 {(0,4),(−1,3)} {1,0.8} {1.2,0.9,0.3} {0.2,−0.1} {1.9,1.35} {0.2,0.42} {1.83,2.49}
1 {(0,4),(−1,3)} {0.4,1} {1.05,0.85,0.11} {0.05,−0.15} {0.77,1.5} {0.3,0.61} {0.81,4.65}
2 {(1,2),(−1,2)} {1,0.5} {1.15,0.75,0.2} {0.15,−0.25} {1.86,0.82} {0.42,0.88} {2.06,2.22}
−0.5 {(−1,−3),(1,2)} {0.5,0.5} {1.22,0.74,0.29} {0.22,−0.26} {0.92,0.86} {0.58,0.29} {0.95,1.72}
−3 {(3,3),(3,−2)} {0.6,0.8} {1.03,0.88,0.3} {0.03,−0.12} {1.16,1.4} {0.1,0.14} {1.21,2.11}

Tab. 3: Details of input & output for Fig. 6 (from left to right).

Fig. 6: C-shape of GLAC with G2 continuity.

4. CONCLUSION AND FUTURE WORK

GLAC produces well-known aesthetic curves that can
be utilized for aesthetic product design. GLAC has
been proven far more capable of achieving the solu-
tions compared to leading LA curves due to its flex-
ibility [7]. LA curves have less degree of freedom as
compared to GLAC & are troublesome when prac-
titioners want to control the curvature. Hence, this

paper proposes an algorithm to generate GLAC seg-
ment which satisfies G2 Hermite data to a certain
extend. The extra shape parameter that distinguishes
GLAC from LA curves helps to estimate the end cur-
vatures which enable practitioners to join curves with
G2 continuity regardless of the scaling effect of final
end curvatures. One of our future works includes
redefining the curvature function in such a way that
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curvature continuous Log Aesthetic Spline (LAS) can
be created with minimal effort.
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