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ABSTRACT

This study deals with the design for manufacturing (DFM) of fractals created by a random walk called
iterated function system (IFS). In particular, the DFM of an IFS-created fractal called Barnsley’s fern-leaf
is considered. The IFS dedicated for creating virtual models of a fern-leaf uses a set of four strictly-
contracting affine mappings in the onto manner. The interactions among these mappings are studied
in detail in order to identify some data structures. Based on the identified data structures, a DFM
procedure is proposed. In the proposed DFM procedure, three out of the four mappings are employed
in both the onto and one-to-one manner. The proposed DFM procedure is applied to the redesign of
the shape (fern-leaf). Physical models of the redesigned fern-leaf are manufactured using both additive
and subtractive manufacturing technologies (3-D printing and milling). The factors affecting accuracy
of the physical models are also described. Although this study is limited to the shape of the fern-leaf,
other IFS-created shapes can be redesigned using the proposed DFM procedure. Nevertheless, this
study sheds some light on our understanding of how to develop more accurate physical models of
IFS-created fractals.

Keywords: iterated function system, fractals, design for manufacturing, CAD/CAM, additive manu-
facturing.

1. INTRODUCTION

Mandelbrot brought a mathematical entity called
fractal into our attention in the 1960s as a
means to modeling complex shapes in a realistic
manner [16–18]. Formally, a set whose Hausdorff-
Besicovitch dimension exceeds its topological dimen-
sion is called fractal, i.e., a set having a non-integer
Hausdorff-Besicovitch dimension is called fractal [11].
Hausdorff-Besicovitch dimension is popularly known
as fractal or power-law dimension. See [8, 18, 32] for
more details on the Hausdorff-Besicovitch dimension
and its derivatives. Generally, a self-similar (strictly
speaking, self-affine) shape under all scales of magni-
fication or dilution is considered a fractal [16, 18], and
a simple set of rules is good enough for creating the
shape, even though it looks very irregular and frag-
mented. Therefore, creating a fractal simply means
creating a set of points (point-cloud) that exhibits a
non-integer Hausdorff-Besicovitch dimension and, at
the same time, models an irregular and fragmented

shape that can be subdivided in parts wherein each
part is a reduced copy of the whole. In order to create
such a point-cloud a mathematical entity called Iter-
ated Function System (hereafter referred to as IFS) has
been introduced [1, 2, 6]. An IFS executes a recursive
mapping process and creates a point-cloud. In each
iteration, it randomly selects one out of a predefined
set of strictly-contracting affine mappings, and the
occurrences of the mappings are controlled by a set
of predefined probabilities or weights. See Section 3
for more details on how an IFS operates and creates a
point-cloud.

However, one of the remarkable features of IFS
is that it helps model natural and aesthetically valu-
able objects (e.g., leaf, tree, landscape, jewelry, and
architectural artifact) in a realistic manner [2]. For
this reason, it has earned a great deal of attention
from the computer-aided design and manufacturing
community. Even though an IFS can create an accu-
rate virtual model of an shape, it does not necessarily
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mean that a manufacturing technology can accurately
manufacture it. In order to manufacture an accurate
physical model of an IFS-created fractal, an appropri-
ate procedure for design for manufacturing (DFM) is
needed because it considers the needs of the under-
lying manufacturing technology while designing a
shape and makes necessary design changes [13]. The
objective of this article is to get some insights into the
DFM of IFS-created fractals. In particular, the DFM of
a special IFS-created fractal used for modeling fern-
leaf introduced by Barnsley [2] will be described. The
proposed DFM procedure emphasizes such aspects as
the nature of applying the mappings (onto or one-to-
one mapping), selection of the important mappings,
and sequencing of the mappings. The ultimate goal
is to controlling the distribution of the points in the
point-cloud, i.e., in the virtual model of the underlying
shape.

The remainder of this article is organized as
follows. Section 2 briefly describes some relevant
research works that deal with the design and man-
ufacturing of fractal objects and with the utilization
of the concept of fractal. Section 3 describes the for-
mal settings of an IFS and its application in modeling
such natural objects as tree and fern-leaf. Section
4 describes the proposed DFM procedure. Section 5
describes some useful results obtained while build-
ing physical models of a fern-leaf using the proposed
DFM procedure with the aid of both subtractive man-
ufacturing (i.e., milling) and additive manufacturing
(i.e., 3-D printing). Section 6 provides the concluding
remarks of this study.

2. RELATED WORKS

Like mathematicians, engineers have been research-
ing fractals since its reincarnation in the 1960s by
Mandelbrot. Among others, such issues as CAD mod-
eling of complex and aesthetically valuable objects
using fractals, visual presentation of fractals, manu-
facturability of the shapes modeled by fractals, sys-
tems engineering based on the concept of fractal (i.e.,
self-similarity), quantification of the complexity using
self-similarity (or fractal) dimension, and creation of
the random walks using fractals have been investi-
gated by numerous authors. Some of the selected
works are briefly described below.

Numerous authors have studied the issue of com-
plex shape modeling using fractals. For example, Pang
and Hui [24] have developed a methodology to gener-
ate numerous variants of visually appealing shapes by
integrating IFS with genetic algorithms. Rochman and
Vázquez [26] have developed a methodology based
on the fractal geometry to model complex shapes
for rapid prototyping. Wannarumon [40] has devel-
oped an expert system to automate the process of
generating art forms of jewelry wherein the basic
art forms are represented by IFS fractals. Wannaru-
mon et al. [38] and Wannarumon and Bohez [39] have

developed an approach that heuristically simulate the
parameters of IFS fractals with the aid of genetic
algorithms for jewelry shape modeling taking the
user-preferences into account. Chan and Hui [4] have
developed a method to automate the surface pat-
tern generation process using Lindenmayer-system
(an approach that also creates IFS fractals) and genetic
algorithms. Sun and Starly [33] have developed a
method to generate shapes having scaffolds (inter-
nally networked channels) using Lindenmayer-system
for bio-CAD and rapid prototyping.

In terms of computer graphics (virtual represen-
tation) of fractals, convex-hull creation has gained
a great deal of attention. For example, Martyn [20]
has developed an algorithm for approximating the
rectangular convex hulls of 2D affine IFS fractals,
ensuring a given accuracy. Martyn [19] has developed
an approach to realistic real-time rendering of 3-D IFS
fractals that requires both approximations of convex
hulls of IFS fractal subsets and estimations of normals
on a fractal surface. Mishkinis et al. [21] have devel-
oped an algorithm for approximating the curvilinear
convex hulls of 2D IFS fractals preserving the desired
accuracy.

In terms of manufacturing of fractals, the fol-
lowing works can be noted. Soo and Yu [31] have
developed a data structure called radial-annular tree
in order to create tool-paths for CNC machining of
some well-known fractals. Soo and Yu [30] have devel-
oped a data structure called radial-blossoming tree in
order to create the physical models of fractal objects
using rapid prototyping (additive manufacturing). Soo
et al. [29] have developed the traversal algorithms
to extract necessary information from the radial-
blossoming tree structure of a fractal object and have
shown its usefulness in fabricating the aesthetically
valuable objects by layered manufacturing. In order to
generate tool-path for layer manufacturing of fractal
objects, Chiu et al. [5] have developed a data structure
that creates the data of slab-grid pixels for each layer
of layered manufacturing. Li et al. [15] have developed
a voxel-based data structure to capture the geometric
information of a fractal object in order to fabricate
its physical model using layered manufacturing. Ullah
et al. [36] have reported the manufacturing defects of
fractal objects while producing them with the aid of
subtractive manufacturing (e.g., milling) and additive
manufacturing (e.g., stereolithography). They have
suggested the ways for creating defect-free physical
models of fractals. Omori et al. [23] have described a
general procedure to redesign an IFS fractal for the
sake of manufacturing.

The concept of self-similarity (or fractalness) has
also gained a great deal of attention. Particularly, such
issues as complexity quantification, random walk cre-
ation, and systems engineering have used the concept
of fractalness. For example, Brown et al. [3] have
shown that the complexity of an engineered surface
can be quantified using the quantity called fractal
dimension [18, 32, 8]. They have also shown that the
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variability in the fractal dimension identifies the peri-
odic components of the surface profiles, and the char-
acters of the surface roughness can be expressed as
a function of length-scale that is used to measure the
fractal dimension. Ullah et al. [34, 37] have shown that
the fractal dimension and roughness of a machined
surface are difficult to correlate, i.e., a low fractal
dimension may not necessarily mean a low surface
roughness. Purintrapiban and Kachitvichyanukul [25]
have shown that the fractal dimension can detect pat-
terns in process data of a manufacturing system. In
order to analyze the impact of operational sequences
on the product quality, Ruschin-Rimini et al. [27]
have developed an IFS fractal based methodology for
the visual analysis and classification of operational
sequences. Mizugochi et al. [22] have developed a
methodology for creating the fractal tool-path for pol-
ishing the metal molds and shown its effectiveness in
improving the surface finish. Griffiths [9] has devel-
oped a tool-path creation algorithm based on the
space-filling fractal called Hilbert curve [36], which
outperforms the conventional tool-path generation
process. Kumar et al. [14] have used fractal geome-
try based raster tool-paths for layered manufacturing
of porous objects. Shin et al. [28] have developed an
agile and flexible manufacturing system wherein the
control architecture is fractal (self-similar) in nature.
Fractals are used to design physical devices, too.
For example, Hohlfeld and Cohen [10] have shown
that the self-similar and origin symmetry fractals
help achieve frequency independent performance of
antennas that are used in telecommunication.

3. IFS-CREATED FRACTALS

This section describes the formal settings of the IFS-
created fractals (i.e., point-clouds on an x-y plane).
This section also describes two examples (tree and
fern-leaf) of virtual model creation using IFS. The
objective is twofold: 1) to define the necessary math-
ematical operations and 2) to elucidate the general
features of the IFS-created point-clouds while repre-
senting a shape.

As mentioned earlier, an IFS is a useful means for
creating virtual models of a fragmented and irregular
shape in terms of point-clouds so that the point-
clouds exhibit a non-integer Hausdorff-Besicovitch
dimension, i.e., the virtual models or point-clouds
become a fractal [1, 6]. Sometimes, the natural and
aesthetically meaningful objects (e.g., tree, leaf, land-
scape, mountain, cloud, jewelry, and architectural
artifacts, and alike) can realistically be modeled by
IFS-created fractals [2, 7, 18, 29]. However, two main
constituents of an IFS are as follows.

• A set of strictly-contracting affine mappings of
the form, xi = ajxi−1 + bjyi−1 + ej, yi = cjxi−1
+ djyi−1 + fj, j = 1, . . . ,n (n is the number of
mapping), i = 1, . . . ,N.

• A set of probabilities {pj | j = 1, . . . ,n}, p1
+ . . . + pj + . . . + pn = 1, to control the occur-
rences of each mapping. Since p1 + . . . + pj
+ . . . + pn = 1, pj acts as the relative weight
of j-th mapping in N iterations.

An IFS starts its operation from a given point
(xi=0,yi=0) called seed, and ultimately results a point-
cloud consisting of N + 1 points {(xi,yi) | i =
0, . . . ,N }. The points are created recursively by the
random application of the affine mappings xi = ajxi−1
+ bjyi−1 + ej, yi = cjxi−1 + djyi−1 + fj, j = 1, . . . ,n,
and preserving, at the same time, the relative weights
of the mappings given by their probabilities {pj | j
= 1, . . . ,n}. Thus, an IFS can be defined by the set-
tings in equation (1). As seen from equation (1), to
run an IFS one needs to set the seed, number of itera-
tions, the vectors of the parameters and probabilities
(i.e., weights) of n affine mappings, i.e., (x0,y0), N,
(aj,bj,cj,dj,ej,fj), j = 1, . . . ,n, and (pj | j = 1, . . . ,n),
respectively. The probabilities (pj | j = 1, . . . ,n) are
used to calculate the cumulative probabilities, as fol-
lows: cpj = p1 + . . . + pj, j = 1, . . . ,n. Needless to
say, cpn = 1. From the calculated cumulative prob-
abilities, mutually exclusive intervals are calculated,
as follows: w1 = [0,cp1), . . . , wj = [cpj−1,cpj), . . . ,
wn = [cpn−1,cpn]. This means that the intervals wj,
j = 1, . . . ,n, divide the interval [0,1] into n mutually
exclusive intervals so that w1 + . . . + wn = [0,1].
Therefore, if a random number denoted as ri, i =
1, . . . ,N, in the interval [0,1] belongs to wj, then the
corresponding mapping is used to generate a point
(xi,yi) from the previous one (xi−1,yi−1) so that xi =
ajxi−1 + bjyi−1 + ej + , yi = cjxi−1 + djyi−1 +
fj. The process is repeated for all i = 1, . . . ,N. It is
worth mentioning that to ensure a point-cloud gener-
ated by the process defined in equation (1) be a fractal
(i.e., a set of points having non-integer Hausdorff-
Besicovitch dimension), all the affine mappings in
equation (1) must be strictly-contracting ones (i.e., the
eigenvalues of the mappings have modulus less than
one) [6].

Input Setting :

Seed : (x0, y0) Iterations : N

Mapping : (aj , bj , cj , dj , ej , fj) j = 1, . . . , n

Probabilites : (pj |j = 1, . . . , n)

Calculation :

cpj = p1 + . . .+ pj j = 1, . . . , n

w1 = [0, p1), . . . , wj = [cpj−1, cpj), . . . , wn

= [cpn−1, cpn)

Iteration :

For i = 1, . . . , N (1)

random number : ri ← [0, 1]

Computer-Aided Design & Applications, 12(3), 2015, 241–255, http://dx.doi.org/10.1080/16864360.2014.981452
© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


244

If ri = w1 xi = a1xi−1 + b1yi−1 + e1

yi = c1xi−1 + d1yi−1 + f1

. . .

If ri = wj xi = ajxi−1 + bjyi−1 + ej

yi = cjxi−1 + djyi−1 + fj

. . .

If ri = wn xi = anxi−1 + bnyi−1 + en

yi = cnxi−1 + dnyi−1 + fn

For example, Tab. 1 lists the inputs (mapping
parameters and probabilities) of the IFS that create a
point-cloud in accordance with equation (1) represent-
ing the shape of a tree. As listed in Tab. 1, six affine
mappings are used to create a point-cloud {(xi,yi) | i
= 0, . . . ,N } for modeling the shape (tree). The rela-
tive weights of the mappings (pj) are also listed in
Tab. 1. Figure 1 shows four models (point-clouds)
of the shape (tree). Needless to say, the models are
created by applying equation (1) under the conditions
listed in Tab. 1 and the seed (xi=0,yi=0) is equal to

j

1 2 3 4 5 6

aj 0.05 0.05 0.459677455 0.46985757 0.432912361 0.421371001
bj 0 0 −0.321343358 −0.15396579 0.275191087 0.257074686
cj 0 0 0.385612029 0.170979132 −0.250173715 −0.353477693
dj 0.6 −0.5 0.383064546 0.422841029 0.476203597 0.306451637
ej 0 0 0 0 0 0
fj 0 1 0.6 1.1 1 0.7
pj 0.25 0.05 0.22 0.13 0.13 0.22

Tab. 1: Settings of IFS for creating models of a tree.

(a) (b)

(c) (d)

Fig. 1: IFS-created models of a tree.
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(a) (b) (c)

Fig. 2: IFS-created models of a fern-leaf for a small number of points.

(a) (b) (c)

Fig. 3: IFS-created models of a fern-leaf for a large number of points.

(0,0) for all models. As seen from Fig. 1, the more
the number of points is, the clearer the shape is (com-
pare the trees consisting of 500, 1000, 2000, and 3000
points). However, the models of the tree shown in
Fig. 1 provide some valuable insights into the IFS-
created fractals. For example, all the trees in Fig. 1 are
confined to a definite area on the x-y plane, i.e., inter-
vals [-1,1] along the x-axis and [0,2] in the y-axis. This
is because of the contracting nature of the mappings
as defined by the parameters listed in Tab. 1. Another
remarkable feature is the detailedness. Even though
the visual appearance of the shape (tree) improves as
the number of points increases, there is no guarantee
that the detailedness of the shape improves with an
increase in the number of points as perceived from
the models in Fig. 1. The other remarkable feature
is that the visual appearance of the shape becomes
independent of the number of points after a certain
number of points. For example, compare the models
of the tree corresponding to 2000 and 3000 points.
These two models look almost the same.

However, the abovementioned features are seen in
the cases of other IFS-created fractals. For example,
see the case of an IFS-created fractal called fern-leaf
introduced by Barnsley [2]. Table 2 lists the settings
of the parameters and Figs. 2–3 illustrate four models
of the shape (fern-leaf).

In the case of a fern-leaf, four affine mappings are
needed instead and the seed (xi=0,yi=0) is equal to
(0,0). As seen from Figs. 2–3, the more the number of
points is, the clearer the shape is (compare the fern-
leaf models consisting of 500, 1000, 2000, and 3000,
5000, and 10000 points). The shape is always con-
fined to an interval [-3,3] along the x-axis and [0,10]
along the y-axis, irrespective of the number of points.
This is because of the contracting nature of the map-
pings as defined by the parameters in Tab. 2. For a
small number of points, the shape is hard to recog-
nize to be a fern-leaf, whereas for a large number of
points, the shape is easy to recognize to be a fern-
leaf (Fig. 3). From the models corresponding to 5000
and 10000 points in Fig. 3, it is clear that the whole
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J aj bj cj dj ej fj pj

1 0 0 0 0.16 0 0 0.01
2 0.85 0.04 −0.04 0.85 0 1.6 0.85
3 0.2 −0.26 0.23 0.22 0 1.6 0.07
4 −0.15 0.28 0.26 0.24 0 0.44 0.07

Tab. 2: Settings of IFS for creating models of a
fern-leaf.

leaf can be subdivided into parts, each of which is a
reduced copy of the whole, and the process continues
in an endless manner. However, when the subdivision
continues beyond a certain degree of contraction, the
shape is hard to recognize and becomes a point-filled
area rather than a reduced copy of the whole.

4. DFM OF FERN-LEAF

This section describes some of the useful results
regarding the DFM of the described shape (fern-leaf).
Here, DFM means creating a set of points that mod-
els a fern-leaf that is easy to manufacture either by
subtractive manufacturing (e.g., milling) or additive
manufacturing (e.g., 3-D printing). It is worth mention-
ing that the main inspiration of the DFM described
below is taken from some of the previous works of
the authors and others [5, 15, 23, 29–31, 36].

Before describing the proposed DFM, consider
the manufacturing of the shape (fern-leaf) by using
end-milling operations, as schematically illustrated in
Fig. 4. As seen from Fig. 4, tool-paths have been gen-
erated from a point-cloud of fern-leaf (Figs. 2–3), i.e.,
from the points (xi,yi), i = 0,1, . . . . A typical result of
the physical model is shown in the bottom section
of Fig. 4. The tool diameter and the depth of cut
have been varied to see how they affect the accuracy
of the physical model. It is difficult to manufacture

the intended shape (fern-leaf) due to the presence of
the closely packed points in some areas in the model
(point-cloud) as seen from Fig. 4.

Therefore, an appropriate approach is needed to
manage the distribution of the points in the point-
cloud of a fern-leaf without destroying its fractalness
(i.e., the whole leaf can be subdivided into small leafs,
each of which is a reduced copy of the whole). One
of the useful approaches is to find out a definite
data structure in the point-cloud, as pursued by some
authors (e.g., see the works in [5, 15, 29–31]). The
other alternative is to redefine the underlying affine
mappings [36]. However, the ultimate goals remain
the same, as follows:

• How to control the distribution of points in the
point-cloud
• How to control the levels of subdivisions
• How to create a set of non-crossing tool-paths
• How to create the accurate convex-hulls

In order to achieve the abovementioned goals,
some mapping experiments have been conducted.
Some of the useful results are described below.

Recall the four mappings underlying Barnsley’s
fern-leaf. Table 2 lists their parameters. Each mapping
can be used to define an iterative process. Equations
(2)-(5) define the four possible iterative processes. In
particular, equation (2) defines the iterative process
for creating a point-cloud solely by using the first
mapping in accordance with the parameters listed
in Tab. 2. Equation (3) defines the iterative process
for creating a point-cloud solely by using the second
mapping in accordance with the parameters listed
in Tab. 2. Equation (4) defines the iterative process
for creating a point-cloud solely by using the third
mapping in accordance with the parameters listed
in Tab. 2. Equation (5) defines the iterative process
for creating a point-cloud solely by using the last
mapping in accordance with the parameters listed in

Fig. 4: Physical model building process of a fern-leaf using milling [36].
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Tab. 2.

Input setting :

seed : (x0, y0) = (0, 0) iterations : N

Iteration :

For i = 1, . . . , N xi = 0 yi = 0.16yi−1

(2)

Input setting :

seed : (x0, y0) = (0, 0) iterations : N

Iteration :

For i = 1, . . . , N

xi = 0.85xi−1 + 0.04yi−1

yi = −0.04xi−1 + 0.85yi−1 + 1.6

(3)

Input setting :

seed : (x0, y0) = (0, 0) iterations : N

Iteration :

For i = 1, . . . , N

xi = 0.23xi−1 − 0.26yi−1

yi = 0.23xi−1 + 0.22yi−1 + 1.6

(4)

Input setting :

seed : (x0, y0) = (0, 0) iterations : N

Iteration :

For i = 1, . . . , N

xi = −0.15xi−1 + 0.28yi−1

yi = 0.26xi−1 + 0.24yi−1 + 0.44

(5)

Figure 5 shows the scatter plots of the point-
clouds that have been created in accordance with the
equations (2)-(5), respectively, for 100 iterations. As
seen from Fig. 5, all the mappings are strict con-
tractions onto them. As seen from Fig. 5(a), the first
mapping (equation (2)) has a fixed point (0,0), and
after the first iteration it reaches its fixed point. As
seen from Fig. 5(b), the second mapping (equation (3))
has a fixed point near (2.654,9.962), and it takes a rel-
atively large number of iterations to reach its fixed
point. The point-cloud remains in the region x ≥ 0.
As seen from Fig. 5(c), the third mapping (equation
(4)) has a fixed point near (-0.608,1.872), and it takes
a relatively less number of iterations to reach its fixed
point. The point-cloud remains in the region x ≤ 0.
As seen from Fig. 5(d), the last mapping (equation (5))
has a fixed point near (0.154,0.631), and it takes a
relatively less number of iterations to reach its fixed
point. The point-cloud remains in the region x ≥ 0.

From the described mapping experiments, it is
clear that the second-, third-, and fourth-mappings
are the most informative mappings, whereas the other
mapping is less informative and can be ignored for
the sake of DFM. The third- and fourth-mappings keep
the points in two particular regions (see the location

of the points in Fig. 5(c) (the left-hand-side of x = 0)
and Fig. (d) (the right-hand-side of x = 0)). In order
to see the interactions among the mappings, some
other mapping experiments defined in equation (6)
have been conducted.

Input Setting :

Seed : (x0, y0) = (0, 0) Iterations : N

Mappings : Mk = (ak , bk , ck , dk , ek , fk) k = 1, . . . , K

Generator :

For i = 1, . . . , N xi = 0.85xi−1 + 0.04yi−1

yi = −0.04xi−1 + 0.85yi−1 + 1.6

For i = 0, . . . , N xgi = xi ygi = yi

Trans − 1 :

Selection : M1 k = Mk ∃k{1, . . . , K}
M1 k = (a1 k , b1 k , c1 k , d1 k , e1 k , f1 k)

For i = 0, . . . , N x1i = a1 kxgi + b1 kygi + e1 k

y1i = c1 kxgi + d1 kygi + f1 k

. . .

Trans − q :

Selection : Mqk = Mk ∃k{1, . . . , K}
Mqk = (aqk , bqk , cqk , dqk , eqk , fqk)

For i = 0, . . . , N xqi = aqkxq−1i + bqkyq−1i + eqk

yqi = cqkxq−1i + dqkyq−1i + fqk

. . . (6)

As defined in equation (6), the second-mapping of
the original settings (Tab. 2) is applied recursively
(onto basis) (exactly like it is in equation (3)) to cre-
ate a set of points called generator-points denoted
as (xgi,ygi), i = 0, . . . ,N. Afterwards, a series of
transformations denoted as Trans-q, q = 1,2, . . . ,N
continues, wherein the points are created on the
one-to-one basis (not on the onto basis). The three
sets of mapping parameters used in these transfor-
mations are listed in Tab. 3. Thus, it is true that
Mqk ∈ {Mk=1, Mk=2, Mk=3}, ∀q ∈ {1, . . . ,N } so that
Mk=1 = (0.85,0.04,-0.04,0.85,0,1.6) (the parameters of
the second-mapping in the original settings), Mk=2
= (0.2,-0.26,0.23,0.22,0,1.6) (the parameters of the
third-mapping in the original settings), or Mk=3 =
(-0.15,0.28,0.26,0.24,0,0.44) (the parameters of the
fourth-mapping in the original settings).

Let the sets of points created by the process
defined in equation (6) be A0 = {(xgi,ygi) | i = 0, . . . ,N }
and Aq = {(xqi,yqi) | i = 0, . . . ,N }, q = 1, . . . ,N, and
T = (t0, t1, . . . ,tq, . . . ,tN) be the vector represent-
ing the sequence of the sets of mapping parameters,
wherein t0 = 1 and tq = 1, 2, or 3 if Mqk = Mk=1,
Mk=2, or Mk=3, respectively, for all q = 1, . . . ,N.
Let the set of points A = A0 ∪ . . . Aq ∪ . . . ∪ AN
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(a) (b) (c) (d)

Fig. 5: Natures of the four mappings underlying Barnsley’s fern-leaf.

k ak bk ck dk ek fk

1 0.85 0.04 -0.04 0.85 0 1.6
2 0.2 -0.26 0.23 0.22 0 1.6
3 -0.15 0.28 0.26 0.24 0 0.44

Tab. 3: Mapping parameters for the DFM of a
fern-leaf.

be the point-cloud. (The points corresponding to Aq
∪ . . . ∪ AN can be renamed depending on their rela-
tive position with respect to A0 as describe below.)
The sequential order of the sets of mapping param-
eters determines whether or not the point-cloud (i.e.,
A) will be useful enough for the intended purpose (i.e.,
DFM of the shape (fern-leaf)). Keeping this in mind,
numerous forms of T have been considered and the
underlying point-clouds have been observed. It has
been found that the sequence of the sets of mapping
parameters T = (1, 2 or 3, 1, 1, . . . ) helps create
useful point-clouds as shown in Fig. 6.

As seen from Fig. 6(a), T = (1, 2, 1, 1, . . . ) results
the sets of points A0, A1 L, A2 L, A3 L, . . . . This means
that the points of A0 move to the lowest-left corner
of A0 due to the application of the set of mapping
parameters corresponding to Mk=2, creating a set of
points A1 L (Aq=1). These points move upward due to
the successive applications the same set of mapping
parameters corresponding to Mk=1, creating the sets
of points A2 L (Aq=2), A3 L (Aq=3), . . . , respectively.
On the other hand, T = (1, 3, 1, 1, . . . ) results the
sets of points A0, A1R, A2R, A3R, . . . ., as seen from
Fig. 6(b). This means that the points of A0 move to the
lowest-right corner of A0 due to the application of the
mapping parameters corresponding to Mk=3, creating
a set of points A1R (Aq=1). These points move upward
due to the successive applications of the same set
of mapping parameters corresponding to Mk=1, cre-
ating the sets of points A2R (Aq=2), A3R (Aq=3), . . . ,
respectively.

The points in the set A0 serve as the level-1 model
of a fern-leaf, whereas the points in the sets A1 L,
A2 L, . . . ,ANL and A1R, A2R, . . . ,ANR collectively serve

(a) (b)

Fig. 6: Point-clouds corresponding to T = (1,2 or 3,1, . . . ).

Computer-Aided Design & Applications, 12(3), 2015, 241–255, http://dx.doi.org/10.1080/16864360.2014.981452
© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com


249

Fig. 7: Creating level-3 model of a fern-leaf.

as the level-2 model of a fern-leaf. It is worth mention-
ing that the each set of points (points on each curved
line shown in Fig. 6) contains only 35 points, i.e.,
N = 34. It is observed that the distance between two
consecutive points becomes very short after the 10-th
iteration. One may use any number of points to create
the level-1 and level-2 models, but the results will be
similar to that of in Fig. 6, unless a different formu-
lation of T is chosen. In synopsis, the sequences of
mapping parameters T = (1,2 or 3,1,1, . . . ) can con-
trol the shape of a fern-leaf and the distributions of
the points in the point-cloud (i.e., model).

However, it is not difficult to create the level-3
model of a fern-leaf and beyond. As an example, Fig. 7
schematically illustrates the procedure for creating
the level-3 model of a fern-leaf.

As seen from Fig. 7, the points in the sets A1 L,
A2 L, . . . ,ANL and A1R, A2R, . . . ,ANR must be mapped
by the mapping Mk=2 in a one-to-one basis for

creating the points of the lowest-left (or the first-left)
leaf (around the points of A1 L) of the level-3 model.
The sets of points of the first-leaf of the level-3 model
are denoted as A1D1 L . . . A1DNL and A1U1 L . . . A1UNL.
In the subscript, the letter “D” denotes “down” and
“U” denotes “up” with respect to the points of A1 L
(i.e., around the points in the first-left leaf of the
level-2 model). This convention is true for other
cases described below. The points A1D1 L . . . A1DNL
and A1U1 L . . . A1UNL must successively be mapped
by the same mapping Mk=1 to get the points of the
other leafs of the level-3 model. This means that the
sequence of the sets of mapping parameters T = (1,2
or 3,2,1,1, . . . ) creates the points of the level-3 model
in the left-hand-side of the level-1 model. On the other
hand, the sequence of the sets of mapping parameters
T = (1,3 or 2,3,1,1, . . . ) creates the points of the leafs
of the level-3 model in the right-hand-side leaf of the
level-1 model.

Fig. 8: DFM of a fern-leaf up to level-3.
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Fig. 9: Physical models of a fern-leaf up to level-3 produced by milling (N = 34).

The modeling result obtained by applying the
described procedure (Fig. 7) is shown in Fig. 8.
Particularly, the scatter plot in the left-hand-side of
Fig. 8 shows some of the points of the level-2 model,
whereas the two scatter plots in the middle of Fig. 8
show the corresponding points of the level-3 model.
The correspondence of the points in the respective
levels is shown by the purple and blue colors. The
right-hand-side plot in Fig. 8, on the other hand, is
the entire point-cloud, i.e., the level-3 model, of a
fern-leaf for N = 34. As seen from the point-cloud,
some of the regions in the model are still covered by
points. Reducing the number of points (i.e., keeping N
as small as possible), can help reduce the point-filled
regions. (See the next section for the details.) In other
words, not only the sequential order of the mappings
(i.e., the nature of T ) but also the number of iterations
(N ) is an important issue for the DFM of a fern-leaf, in
particular, and IFS-created fractals, in general.

5. MANUFACTURING

This section describes some of the results obtained
while creating the physical models of the redesigned
fern-leaf with the aid of both subtractive manufac-
turing (i.e., milling) and additive manufacturing (i.e.,
3-D printing). It is worth mentioning that sometimes
the additive manufacturing becomes highly energy
intensive (i.e., less environmentally-friendly) and the
alternative process, i.e., the subtractive manufactur-
ing, can be used to manufacture the model instead
[35]. Thus, both options, additive and subtractive
manufacturing, must be explored for getting a better

insight into the physical model building process of
IFS-created fractals.

The model-building results corresponding to the
subtractive manufacturing (i.e., milling) are described
first as follows. Figures 9–10 shows some of the
physical models that have been built by a desktop
CNC milling machine available at the Kitami Insti-
tute of Technology. Each set of points as described in
the previous section (A0, A1 L, . . . ,ANL, A1R, . . . ,ANR,
A1D1 L, . . . ,A1DNL, A1U1 L, . . . ,A1UNL, A1D1R, . . . ,A1DNR,
A1U1R, . . . ,A1UNR, . . . .) has been used to create a sin-
gle tool-path. Figure 9 shows the physical models
of the level-1 and level-2 (full) and level-3 (partial)
models corresponding to N = 34 (see Fig. 8). It has
been observed (Fig. 9) that the cutter diameter affects
the models when the cutter approaches the end of
each tool-path. As a result, the physical models are
accurate to some extend and defective to some other
extend. Nevertheless, the overall quality of the model
is much better than that of in Fig. 4. However, reduc-
ing the number of points in each set of points (reduc-
ing N ) can eliminate the areas affected by the cutter
diameter. In order to see this possibility, several phys-
ical models have been produced by choosing different
values of N. Two examples of such results are shown
in Fig. 10 wherein the point-clouds and the corre-
sponding physical models are shown side by side for
N = 7 (7-point models) and 9 (9-point models). As
seen from Fig. 10, the cutter diameter affected regions
still exist in the case of 9-point model, whereas there
are no such regions in the case of 7-point model.
Thus, in order to produce a defect-free physical model
of the shape (fern-leaf), one needs to choose a suit-
able scale of magnification and the number of points
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Fig. 10: Level-3 physical models of a fern-leaf produced by milling for N = 7 and 9.

underlying each set of points or tool-path (i.e., the
value of N ).

The results shown up to this point do not involve
any commercial CAD/CAM systems. However, one
may take the help of commercial CAD systems for
creating the 3-D CAD models from the point-clouds. If
the created CAD models are accurate enough, then the
models can be used for manufacturing physical mod-
els using the additive manufacturing or other means.
In order to explore this possibility, a set of exper-
iments has been conducted. In these experiments,
a commercially available software package has been
used. The package can operate on a given point-cloud
and creates a 3-D surface/mesh (3-D CAD model).
Figure 11 shows some of the point-clouds and the
corresponding 3-D CAD models of a fern-leaf.

Two point-clouds placed at different heights in the
z-axis have been used to create a surface or mesh
(convex or concave) as seen from Fig. 11. Irrespec-
tive of the number of points in a point-cloud, the
mesh/surface models are not as accurate as expected.
Sometimes, the distribution of the points affects the
3-D CAD model. For example, consider the second
case from the top in Fig. 11. The model not even
includes all points of the given point-cloud while cre-
ating a concave mash model. In all cases, however,
the right-hand-side segments of the shape remain rel-
atively less accurate. The accuracy can be improved
either by using a point-cloud up to the level-2 (the
first case from the top in Fig. 11) or by using a model
having reduced number of points up to the level-3 (the
second case from the top in Fig. 11). As shown in the
last case in Fig. 11, instead of using the point-cloud
directly, a grid of rectangular cells on the x-y plane
can be considered. The cell height can be determined
by whether or not at least a point of the point-cloud
belongs to it. This grid-based modeling also produces

less accurate 3-D CAD model, as seen from the last
case from the top in Fig. 11. One advantage of the
grid-based modeling is, however, that the detailed-
ness in the inner section of the leaf can somewhat be
preserved.

The above mentioned results imply that the point-
cloud as such is not good enough for creating accu-
rate 3-D CAD model of a fern-leaf. Further modifica-
tions are needed. One of the options is to representing
the outermost boundary of the point-cloud using a
set of triangles. The triangles can be organized as a
collection of facets [12]. The facets can be used to
create an STL file [12]. The STL file can further be
processed using a commercially available CAD or RP
system. The triangulation can be applied to the level-2
or -3 models as preferred.

In order to see the applicability of the abovemen-
tioned triangulation process, an experiment has been
conducted, as schematically illustrated in Fig. 12. As
seen from Fig. 12, triangles have been created repre-
senting the top, bottom, and side surfaces defined
by the two sets of point-clouds placed at two dif-
ferent heights along the z-axis. The points shown in
Fig. 12 correspond to all points in the set A0 and
the last points in the sets A1 L, A2 L, . . . ,ANL and A1R,
A2R, . . . ,ANR, for N = 34 (see Section 4). The trian-
gles have been organized in the form of facets and
an ASCII-STL file has been created using the facets. A
CAD package has been used that reads the STL file
displays the underlying 3-D model as shown in the
upper-right corner in Fig. 12. As seen from Fig. 12,
this time the 3-D CAD model is much more accu-
rate compared to those shown in Fig. 11. Particularly,
the right-hand-side of the 3-D model does not suffer
the problem that is observed in the 3-D CAD models
shown in Fig. 11. This means that this time the con-
vex hull is much more accurate. The data stored in the
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Fig. 11: 3-D CAD models of a fern-leaf.

Fig. 12: Physical model-building process of a fern-leaf using additive manufacturing.

STL file has also been used to manufacture a physi-
cal model using a 3-D printer available at the Kitami
Institute of Technology, as shown in the bottom-left
corner in Fig. 12. As seen from Fig. 12, the RP model
resembles the 3-D CAD model.

However, the (shape) accuracy of the physi-
cal model can further be improved by adding
some selected points taken from the level-3 model.
For example, the outermost points in the bottom-
left/right leafs of the level-3 model (i.e., the last points
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in the sets A1D1 L . . . A1DNL and A1D1R . . . A1DNR)) (see
Fig. 7) can be added to the points shown in Fig. 12, to
improve the shape-accuracy of the bottom segment of
the physical model. This possibility is open for further
research. One can produce multiple physical models
of a fern-leaf. The scales of the models can be varied
as preferred. This issue also remains open for further
study.

6. CONCLUDING REMARKS

A set of mapping experiments reveals some data
structures in an IFS-created fractal shape called fern-
leaf. These data structures help develop an effective
procedure for DFM. Particularly the levels of subdi-
vision of a fern-leaf can easily be controlled by the
presented DFM procedure. Both one-to-one and onto
mappings are involved in the presented DFM proce-
dure. The presented DFM procedure is shown equally
effective for both additive manufacturing technology
(3-D printing) and subtractive manufacturing tech-
nology (milling) in order to manufacture physical
models of a fern-leaf. The data points belonging to
all three levels of the redesigned virtual model of
a fern-leaf are needed to manufacture its physical
models. Although the scope of this work is limited
to the shape of a fern-leaf, the presented DFM pro-
cedure can be applied to other IFS-created fractals
(e.g., tree, dragon) for manufacturing more accurate
physical models. In this case the mapping procedure
defined in equation (6) (i.e., a combination of onto
and one-to-one mappings among some selected ones)
will help solve the problem. Further research can be
carried out to delve into this possibility.

Unlike the design and manufacturing systems that
deal with the Euclidian geometry based shapes, the
design and manufacturing systems that deal with the
fractal geometry based shapes are in the phase of
development. Thus, it is worth delving into the devel-
opment of cost-effective and user-friendly systems
intended for the design and manufacturing of frac-
tal geometry based shapes. This study is one of the
endeavors toward materializing such systems.
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