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ABSTRACT

The method presented in this paper is part of a 3-step reconstruction methodology for the extrac-
tion of a polyhedron from a single view natural sketch. In particular, the current paper focuses on
the 2D geometric definition of the hidden part in a topologically reconstructed line drawing (inter-
mediate wireframe sketch) as this is generated from the given natural sketch. The proposed method
is based on the different topologic relations that exist in the hidden part of the intermediate sketch.
Contrarily to other approaches it employees the cross-section criterion to ensure that the final fully-
determined wireframe sketch is realizable. The proposed method is successfully applied to indicative
line drawings with various combinations of visible and hidden elements.
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1. INTRODUCTION

A sketch is considered as a primary tool for the
communication of ideas especially in the concep-
tual phase of design. The growing evolution and the
consistent efforts to properly found the new arising
Computer Aided Sketching (CAS) systems [5] estab-
lish the importance of 2D sketches in design oriented
disciplines. The ability of humans to realize the 3D
shape of a sketched object, even if the latter appears
ambiguous or contains geometric errors motivate
the researchers of multiple fields, such as Computer
Aided Design and Sketching, Geometric Modeling, and
Artificial Intelligence, to search for efficient methods
for the reconstruction of a 3D model from a given
single sketch.

The subject of this paper is related to the auto-
matic construction of a “Polyhedron from a Single
Natural Sketch”. In natural sketches, the topologic
and geometric determination of their hidden part
underline the main focus of the methods proposed
in [2], [4], [6], [8–10], [13]. In most works, a two-
step reconstruction methodology is followed, where,
firstly, the topologic reconstruction of a wireframe
sketch is achieved on the basis of the 2D sketch infor-
mation, and, secondly, a 3D polyhedron is determined
from this topologically reconstructed sketch. In par-
ticular, the 3D geometry of the polyhedron is derived
by exploiting the sketch topology according to an

optimization procedure with soft constrains [2], or
through the generation of a partial 3D object [6], [13].
In most studies, the final 3D model is the result of an
optimization–based procedure that weights the plau-
sibility of each image regularity between the sketch
and the inferred 3D model [3], [11]. The 2D geometry
of the hidden part of a wireframe sketch is not con-
sidered as a distinct problem and is only indirectly
specified through the reconstruction of the 3D model.

On the contrary, our “Sketch-to-Polyhedron”
methodology for the reconstruction of a 3D model
from a natural sketch proceeds in three distinct steps
[9]. In the first step, a topological valid intermediate
wireframe sketch is produced from the given natu-
ral sketch [8]. In the intermediate wireframe sketch
the geometry and topology of its visible junctions,
lines, and regions are precisely defined, while for its
hidden elements only the topological relations are
known. In the second step, the 2D geometry of the
hidden elements in the intermediate wireframe sketch
is specified. The second step results in a topologically
and geometrically defined wireframe sketch, whose
visible part is identical to the input natural sketch.
In the third step, a polyhedron is created on the basis
of the output wireframe sketch of the second step.

This paper focuses on the second step of the
aforementioned 3D reconstruction methodology and
presents a method for the definition of the 2D
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Fig. 1: (a) A natural sketch, and (b) its corresponding wireframe sketch, (c-d) the minimal completion strategy
results to the sketch in (d).

geometry of the hidden junctions and lines in an inter-
mediate wireframe sketch. The proposed method is
semi-automatic and is based on the different topo-
logic relations that exist in the hidden part of a
sketch. Contrarily to existing methods, by utilizing
the cross-section criterion [13] we are able to assert
the realizability of the produced wireframe sketch
(i.e., whether a sketch identifies with the projection
of a valid polyhedron). When multiple geometric solu-
tions exist for the hidden part, as a result of strict
ambiguities in the visible part, a constrained inter-
active approach is employed in order to provide a
unique realizable solution.

The proposed method is based on the algebraic
representation of the cross-section criterion that is
thoroughly described in [1] and [7]. In these works a
cross-section algebraic method is developed for test-
ing the realizability of a given wireframe sketch. In
this paper, the algebraic model is extended in order
to encompass wireframe sketches with incomplete
geometry (i.e., intermediate wireframe sketches). Fol-
lowing this new algebraic representation, the geome-
try of the hidden part is defined by verifying that the
produced wireframe sketch identifies with the projec-
tion of a valid polyhedron. This approach allows for
the development of more robust 3D reconstruction
algorithms for the third part of the aforementioned
methodology.

The structure of the paper is as follows: Section 2
briefly discusses the topologic relations of a sketch
and Section 3 describes the cross-section criterion
and its corresponding algebraic model. Section 4
introduces the geometric and algebraic framework of
the hidden-geometry problem and presents an algo-
rithmic implementation for its solution. The proposed
algorithm is tested with sketches with various number
of visible and hidden elements and its performance
is studied for sketches with perfect and imperfect
geometry (i.e., sketches with small errors in the visible
junction coordinates).

2. GEOMETRIC AND TOPOLOGICAL DESCRIPTION
OF SKETCHES

A sketch is a set of straight lines on a plane that
intersect at junctions. Non self-intersecting loops of
lines and junctions form the regions of a sketch.
Lines, junctions and regions are called “elements” of
a sketch. The sketch is considered to be the ortho-
graphic projection, on plane � : Z = 0, of a trihedral

solid (i.e., each vertex of it belongs to exactly three
faces) with planar faces. The solid is considered to be
in “general position” with respect to the projection
plane, i.e., no face or edge of the solid is perpendicu-
lar/parallel to � and the adjacent faces (edges) lie on
distinct planes. A “one-to-one correspondence” exists
between the lines (L), junctions (J ) and regions (R) of
a sketch and the edges (E), vertices (V ) and faces (F )
of a polyhedron.

A natural sketch (1(a)) is a sketch without hidden
elements and is considered to be drawn in the most
informative view, i.e., there is nothing at the “back of
the sketch” that cannot be directly inferred from its
visible part [13], [8]. A wireframe sketch (Fig. 1(b))
includes both visible and hidden elements. On the
basis of trihedral polyhedral properties, a wireframe
sketch is defined as follows [7]:

Definition 1. A wireframe sketch is a connected
graph that:

1. Every junction is adjacent to three lines (i.e., the
degree of each junction j is d(j) = 3).

2. Every line is adjacent to two regions.
3. Two adjacent regions of the sketch share

exactly one line or two-or-more collinear
lines. �

In a natural sketch, the visible lines and junc-
tions are categorized as internal or boundary. Internal
lines (�int) and junctions (jint) follow the properties
of Definition 1 (Fig. 2(a)). Boundary lines (�b) and
junctions are visible elements that are directly asso-
ciated with the hidden part of a wireframe sketch
(Fig. 2(a)). Boundary junctions are classified accord-
ing to the number of their adjacent visible lines, in
complete junctions jbc with degree 3, in L-junctions
jL with degree 2, and in T-junctions jT with degree 1.
In particular, T-junctions are visible junctions whose
actual position lies on the hidden part of the sketch
(Fig. 2(b)) and thus, they are considered to be adja-
cent to only one visible line. A boundary line that is
adjacent to two L-junctions is called an “L-chain” line
�L (Fig. 2(c)).

A wireframe sketch is produced from a given nat-
ural sketch, when to the latter’s boundary elements
appropriate hidden lines (�h) and junctions (jh) are
added (Fig. 2(a - b)). Following a “minimal completion”
strategy [8], [9] (1(c - d)) the topologic description for
the hidden part results in a wireframe sketch, with all
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Fig. 2: (a) The four categories of visible junctions in a natural sketch, and (b) the associated hidden junctions in
the corresponding wireframe sketch, (c) an “L-chain” boundary line and (d) the adjacent “L-chain” hidden region.

Wireframe Sketch �int:◦◦ �b :•◦ �ph:•◦ �h:•• Symbols

jint ◦◦ ◦ ◦: visible regions
jL ◦ ◦ • •: hidden regions

◦• •
•

jbc ◦ •◦ For the line columns ( ):
junctions can be joined
together to form a line

jT • ◦ (•)
◦ ◦•

jh •••
• ◦ (•)

Tab. 1: For each junction type (j), the number of dots in the corresponding line
column (�) indicate the number of the adjacent line types. The number of black/white
dots indicates the number of hidden/visible regions associated with the correspond-
ing junction. The line column (�) headers indicate the dot colors that describe each
line type. For each column all the possible combinations of dots (in pairs) form a
line (with the corresponding line type). A pair of dots in a cell indicates that two
junctions of this type can produce a line of the corresponding type.

hidden regions (rh) adjacent to at least one boundary
line and thus to one visible region (rv) (Fig. 2(b)). A
hidden region that is adjacent to an L-chain boundary
line �L is called an L-chain hidden region rL (Fig. 2(d))
and is the only hidden region rL that is adjacent
to exactly one visible line. T-junctions of a natural
sketch are considered as hidden junctions in the wire-
frame sketch (Fig. 2(b)). Consequently, the hidden
lines that are adjacent to a T-junction and belong in
one visible and one hidden region are called as par-
tially hidden lines (�ph). An “intermediate wireframe
sketch” is a minimal wireframe sketch, where (a) its
visible elements are topologically and geometrically
defined, and (b) its hidden part is only topologically
determined.

The topologic relations in a wireframe sketch pro-
duced from a natural sketch are presented in Tab.
1. For example, the j1 junction in (Fig. 2(b) is
an L-junction in the corresponding natural sketch
(Fig. 2(a)). Junction j1 is adjacent to the internal line
�1, to the boundary line �2 and to the partially hid-
den line �3. Moreover it is adjacent to two visible
regions r1 and r2, and to one hidden region r3. With
respect to Tab. 1, j1 corresponds to the first case of
the jL row, where an internal line (�int column) can be
formed by a combination of jint-jint, jint-jL, jL-jbc or

jint-jT junctions. Indeed, line �1 is an internal line that
belongs to the case of jint-jL (resp. j3-j1). On the same
manner, the boundary line �2 belongs to the case jL-jbc
(resp. j1-j2) of the �b column and the partially hidden
line �3 in the case jL-jT (resp. j1-jT ) of the �ph column.

2.1. Notations

A line between two adjacent regions ri and rj is
denoted as �ij . A line �ij with terminal junctions
vp(xp , yp) and vq(xq, yq) is written as �ij : kijx + mijy +
nij , with kij = yp − yq, mij = xq − xp , and nij = xpyq −
xqyp. The number of visible/hidden lines, regions,
and junctions in the sketch is respectively denoted as
Lv/Lh, Rv/Rh, and Jv/Jh.

3. THE CROSS-SECTION CRITERION

The cross-section criterion is a sketch realizability cri-
terion, i.e., it asserts whether a sketch identifies with
the projection of a valid polyhedron. Given a wire-
frame sketch S (Fig. 3(a)) with L lines, J junctions
and R regions, a cross-section of S is an arrangement
of lines {Lfk

: k = 1, ..., R} that represents the regions
{Rk : k = 1, ..., R} of S. If every pair of cross-section lines
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Fig. 3: (a) A cross-section generated from a sketch. (b) A compatible with sketch cross-section. (c) Cross-section
compatibility for two regions Ri and Rj and the corresponding cross-section lines.

Lfi
and Lfj

(Fig. 3(c)), that correspond to adjacent
regions Ri and Rj , intersect at a point Pij on (the
extension of) the common line �ij of Ri and Rj , the
cross-section is called compatible with S (Fig. 3(b-c)).
A detailed description of the Cross-section criterion
can be found in [1], [7], [12].

Whiteley [14] was the first to establish the real-
izability of a wireframe sketch. The authors of [12]
rewrote Whiteley’s theorem as follows:

Theorem 1. (Cross-Section Criterion) A wireframe
sketch is realizable if and only if it has a compatible
cross-section, where the cross-section lines Lfi

and Lfj

of the adjacent regions Ri and Rjare not identical. �

On the basis of the cross section Theorem 1 the
following two Corollaries can be derived.

Corollary 1. Given a polyhedron, two non-adjacent
parallel faces Fi and Fj of it correspond to two parallel
cross-section lines Lfi

and Lfj
. �

Corollary 1 is a necessary condition for the paral-
lelism of two faces, but it can also robustly indicate
which faces intersect.

Corollary 2. [9]: Let S be a wireframe sketch and
CS/CS ′ two compatible cross-sections of it. The inter-
section point Pij , with i, j ∈ {1, ..., R} of two cross-
section lines Lfi

and Lfj
in CS, and the intersection

point Pij
′, of the corresponding cross-section lines L′

fi

and L′
fj

in CS ′, are both on (the extension of) the same

line �ij . �

3.1. Algebraic Model of the Cross-Section Criterion

This section describes an algebraic model of the
geometric cross-section criterion, combined with an
algebraic representation of all the constraints that
assert sketch’s realizability (i.e., cross-section com-
patibility with a sketch) [1]. This algebraic represen-
tation serves as a tool for an efficient computational
implementation of the cross-section criterion, and it
forms the basis upon which an algorithmic method is
developed for the generation of a cross-section from
a given sketch.

Definition 2. (Cross-Section Compatibility) Let S be
a wireframe sketch with R regions, L lines and J junc-
tions (Figure 4(b)). A compatible with S cross-section is
a set of lines {Lfi

} such that:

(A) Each cross-section line Lfi
that corresponds to

region Ri , is written in the form: bix + aiy +
ci = 0, with i = 0, ..., R − 1.

(B) The cross-section lines Lfi
and Lfj

of two adja-
cent regions Ri and Rj are not identical.

(C) For each region Ri , its adjacent sketch lines �ij
intersect the cross-section line Lfi

.
(D) Each line �ij of S that is adjacent to regions Ri

and Rj , and the corresponding to these regions
cross-section lines Lfi

and Lfj
intersect at a

point Pij . �

Properties (B) and (C) are introduced, with the fol-
lowing Theorem 2, as constraints for the generation
of a cross-section from a sketch [1].

Theorem 2. A set of lines{Lfi
} satisfies the properties

(B), (C) of Definition 2 if and only if the following hold
true:

(C1) aibj �= ajbi ,
(C2) kijai − mijbi �= 0,

where i, j ∈ [0, ..., R − 1] correspond to the two regions
Ri and Rj that are adjacent to the sketch line �ij : kijx +
mijy + nij . �

Property (D) is related to the compatibility of the
cross-section with a sketch and is employed for the
construction of the following cross-section system.

�st ↔ eqst : (ctas − csat )kst

+ (csbt − ctbs)mst + (atbs − asbt )nst = 0

�ps ↔ eqps : (cpas − csap)kps

+ (csbp − cpbs)mps + (apbs − asbp)nps = 0

�pt ↔ eqpt : (cpat − ctap)kpt

+ (ctbp − cpbt )mpt + (apbt − atbp)npt = 0

..........................................................
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Fig. 4: (a) The generation of cross-section line Lfp
on the basis of lines Lfs

and Lft
, (b-c) the cross-section lines

of the bold marked hidden regions R1, R2 and R3 can be used for the determination of regions’ common hidden
junction.

�pq ↔ eqpq : (cpaq − cqap)kpq

+ (cqbp − cpbq)mpq + (apbq − aqbp)npq = 0

.........................................................

�km ↔ eqkm : (ckam − cmak)kkm

+ (cmbk − ckbm)mkm + (akbm − ambk)nkm = 0

�dm ↔ eqdm : (cmad − cdam)kdm

+ (cdbm − cmbd)mdm + (ambd − adbm)ndm = 0
(3.1)

The unknowns of system (3.1) are the coefficients
(bi , ai , ci) of the cross-section lines Lfi

, i = 0, ..., R − 1.
Each equation eqij corresponds to a line �ij of the
sketch, where i, j ∈ [0, ..., R − 1]. Thus, system (3.1)
includes 3 ∗ R unknowns and L equations. Combined
with the constraints (C1) and (C2) of Theorem 2 the
Cross-Section Problem (CSP) is defined. In [6] a Cross-
Section Calculation Algorithm (CSCA) has been pre-
sented to obtain the unknown coefficients (bi , ai , ci =
1). In this paper, CSCA is expanded to solve CSP in
terms of the unknown triplet (bi , ai , ci). An overview
of the CSCA is presented below.

Let Rs , Rt and Rp be three adjacent regions of
a sketch S (Fig. 4(a)). The coefficients of the cor-
responding cross-section lines Lfs

, Lft
and Lfp

are
included in the equations of system (3.1). The calcula-
tion of two unknown triplets (bs , as , cs) and (bt , at , ct ),
fixes the position of the cross-section lines Lfs

and
Lft

and enables the calculation of (bp , ap, cp) as fol-
lows. According to Definition 2, the cross-section line
Lft

: btx + aty + ct = 0 intersects with sketch line �pt :
kptx + mpty + npt at point

Ppt =
(

atnpt − ctmpt

btmpt − kptat
,

ctkpt − btnpt

btmpt − kptat

)
(3.2)

Similarly, lines Lfs
:bsx + asy + cs = 0 and �ps :

kpsx + mpsy + npsintersect at point

Pps =
(

asnps − csmps

bsmps − kpsas
,

cskps − bsnps

bsmps − kpsas

)
(3.3)

Points Ppt and Pps define the cross-section line Lfp

of region Rp , and the coefficients (bp, ap , cp) of Lfp
can

be calculated in terms of point coordinates
⎧⎪⎨
⎪⎩

bp = ypt − yps

ap = xps − xpt

cp = xptyps − xpsypt

Thus, for the calculation of cross-section line Lfp
, on

the basis of Eqns. (3.2)-(3.4), only two of the sketch
lines that are adjacent to region Rp are used, i.e.,
lines �pt and �ps . The connected graph of a wireframe
sketch allows for the development of an incremen-
tal procedure that calculates all unknowns of system
(3.1) with respect to initial values provided for two
unknown triplets as a starting point [7] (i.e., initial-
ized triplets are chosen to correspond to adjacent
regions and thus are associated with a single equation
of (3.1)). For the determination of each cross-section
line Lfi

, CSCA employs only two of the equations
that include triplet (bi , ai , ci), leaving in total Ueq =
L/3 − 1 “unused” equations of system (3.1). Indeed,
the six initially determined values reduce the number
of equations (to be used) to L − 1 and the number of
unknowns to 3R − 6. For the latter to be calculated,
only 2R − 4 equations are employed. Combining Euler
Formula (R − L + J = 2) with relation L = 3 J/2 that
associates junctions and lines in a graph of degree
three, one can easily prove that the number of unused
equations equals to Ueq = L − 1 − (2R − 4) = L/3 − 1.

4. GEOMETRIC DEFINITION OF THE HIDDEN
JUNCTIONS

This section focuses on the calculation of the coor-
dinates of the hidden junctions jh and T-junctions
jT located in the hidden part of the intermediate
wireframe sketch. The number of hidden junctions
Jh equals to the number of jh and jT in a sketch.
The Hidden Junctions Geometry (HJG) method that
is presented here is based on the cross-section cri-
terion (Definition 2), Theorem 1 and on Corollaries
1&2. The input of the method is the intermediate wire-
frame sketch, i.e., the geometry and the topology of
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the visible part of the sketch and the topologic rela-
tions of its hidden part. The output of the method
is a geometrically defined position for each hidden
junction together with a cross-section that verifies the
realizability of the produced wireframe sketch.

The HJG method proceeds in two steps. The first
step focuses on the construction of a cross-section
from the input intermediate wireframe sketch (see
Section 4.1). In particular, a cross-section line is gener-
ated for each visible and hidden region of the sketch
except for the L-chain hidden regions rL. For a hidden
region rh that is adjacent to at least two visible lines,
the cross-section line Lfh

can be defined on the basis
of sketch’s visible geometry. On the contrary, for a
hidden region rL, its corresponding cross-section line
LfL

cannot be directly determined, since rL is adjacent
to only one boundary line �L. Thus, the cross-section
line of each rL is determined at the second step along
with the geometric definition of each hidden junc-
tion (see Section 4.2). The input of the second step is
the intermediate wireframe sketch and a compatible
cross-section associated with it.

4.1. Hidden Junctions Geometry: Cross-Section
Generation

The cross-section criterion is applied to the intermedi-
ate wireframe sketch. In complete analogy to system
(3.1), a cross-section system (4.1) is generated from
the sketch on the basis of the latter’s visible lines
(Tab. 1). The boundary lines �L are excluded from
system (4.1) equations. The visible lines that are adja-
cent to a T-junction are included in (4.1), where the
coordinates of the visible T-junction are used in the
corresponding equations.

�st ↔ eqst : (ctas − csat )kst

+ (csbt − ctbs)mst + (atbs − asbt )nst = 0

�ps ↔ eqps : (cpas − csap)kps

+ (csbp − cpbs)mps + (apbs − asbp)nps = 0

�pt ↔ eqpt : (cpat − ctap)kpt

+ (ctbp − cpbt )mpt + (apbt − atbp)npt = 0

.....................................................

�pq ↔ eqpq : (cpaq − cqap)kpq

+ (cqbp − cpbq)mpq + (apbq − aqbp)npq = 0

�dm ↔ eqdm : (cmad − cdam)kdm

+ (cdbm − cmbd)mdm + (ambd − adbm)ndm = 0
(4.1)

System (4.1) includes Lv − LL equations, where LL
is the number of “L-chain” lines. The equations of sys-
tem (4.1) are a subset of the L equations that appear
in system (3.1), since system (4.1) refers to the visible
part of the wireframe sketch that is represented by

(3.1). The unknowns of system (4.1) are the triplets
(bi , ai , ci), with i ∈ [0, ..., R − 1] − {rL}. The number of
the unknowns is 3(R − RL), where RL is the number
of rL regions. In particular, excluding lines �L from
system (4.1), the triplets (bL, aL, cL) that correspond
to hidden regions rL are also excluded from the set of
unknowns. Thus, system (4.1) includes only unknown
triplets that appear to at least two equations, estab-
lishing the existence of a solution on the basis of
CSCA. A cross-section is generated from the inter-
mediate wireframe sketch and its compatibility with
the sketch is evaluated with respect to a predefined
accuracy level.

According to property (D) of Definition 2 the inter-
section point Pij of cross-section lines Lfi

: bix + aiy +
ci = 0 and Lfj

: bjx + ajy + cj = 0, should lie on line
�ij : kijx + mijy + nij and satisfy:

∣∣∣∣
(

ciaj − cjai

aibj − ajbi

)
kij +

(
cjbi − cibj

aibj − ajbi

)
mij + nij

∣∣∣∣ ≤ μ (4.2)

For perfect sketches that contain no error in their
junctions positions it holds μ = 0. However, small
round-off errors can appear in junctions coordinates
(x + E , y + E) during computer-based sketching under
finite precision or due to numerical processes that
apply at a sketch’s digitization stage. In that case,
an acceptable level of accuracy must be set for test-
ing the cross-section compatibility with the sketch.
For numerical precision errors E ≤ 5 ∗ 10−6, we set an
upper limit for μ on the order of O(10−4) (see related
discussion in [6]). If the cross-section is found com-
patible, the geometric definition of the hidden part
proceeds with the second step of the method, other-
wise the sketch is considered as non-realizable and
the process terminates.

4.2. Hidden Junctions Geometry: Hidden
Junctions Position Calculation

The second step of the proposed methodology com-
mences with the initial intermediate wireframe sketch
and the cross-section produced during the first step.
The output of this step consists of the geometric
definition of the sketch hidden part together with a
cross-section that verifies its realizability. This step
is presented in three phases: Firstly, the geomet-
ric framework of the proposed method is detailed,
followed by an algebraic representation of the geo-
metric concept in the second phase. The presentation
of the second step concludes with the algorithmic
implementation of the theoretical scheme (HJCalc
Algorithm) and its application to different test cases.

4.2.1. Geometric framework

For the definition of the position of a hidden junction
jh (or jT ) the following procedure is applied. Let R1,
R2, and R3 be three adjacent hidden regions (Fig. 4(b))
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Fig. 5: (a) Make Parallel Procedure: regions rk and rL correspond to parallel faces Fk and FL, (b) UDPosition
Procedure: the cross-section line LfL

is determined with respect to fixed point P1,L and the multiple constraint
positions of P2,L, (c - e) different solutions for the hidden part as a result of the LfL

’s different slopes.

that include a junction jh and let �1,2, �1,3, and �2,3
be the three adjacent to jh hidden lines (Fig. 4(b-c)).
For the sake of clarity, let lines �1,2,�2,3, and �1,3 be
adjacent respectively to an already known junction j1,
j2, and j3 (note: more complicated arrangements of
lines are considered below). Given the cross-section
lines Lf1

, Lf2
, and Lf3

of the above regions, Corollary 1
establishes that each pair of these lines will intersect,
respectively at points P1,2, P2,3, and P1,3 (Fig. 4(c)).
Properties (C) and (D) of Definition 2 indicate that
these points must be on the extension of the corre-
sponding sketch lines �1,2, �2,3, and �1,3. Thus, line
�1,2(resp. �2,3/�1,3) is defined by the point P1,2 (resp.
P2,3/P1,3) and the junction j1 (j2/j3) (Fig. 4 (b)). Hidden
junction jh is the intersection point of �1,2, �2,3, and
�1,3. Corollary 2 ensures that the position of a hidden
junction is the same for any cross-section generated
by the sketch.

For the generation of a cross-section line LfL
of

an L-chain hidden region rL, we study two differ-
ent approaches an automatic approach (Make Paral-
lel Procedure) and an interactive approach (UDPosi-
tion Procedure). The automatic approach is based on
Corollary 1 and on the fact that a sketch includes par-
allel lines that imply parallel faces of the correspond-
ing 3D model (Theorem 2 in [8]). Specifically, given the
geometry and topology of an intermediate wireframe
sketch, the key idea is to force cross-section line LfL

to become parallel to a line Lfk
, where Lfk

is the cross-
section line of a visible region rk , which along with
rL may correspond to parallel faces Fk and FL. The
region rk is determined as follows (Fig. 5(a)): Firstly,
the visible region rvL that is adjacent to �L is identi-
fied. Afterwards, all visible lines are searched in order
to find a line �k parallel to �L that belongs to at least
one region rk different to rvL. If such a line is detected,

then rk and Lfk
are selected for the definition of LfL

.
Otherwise, LfL

is determined through the alternative
interactive approach.

According to the interactive approach, the user
controls the slope of the cross-section line LfL

and
different alternative solutions for the corresponding
hidden part are obtained (Fig. 5(b-e)). However, in
order to produce feasible solutions this procedure
is constrained. In particular, the slope of LfL

is con-
straint by the elements that are associated with rL
and the known cross-section lines that should inter-
sect with LfL

(Fig. 5(b)). In the example of Fig. 5(b)
the slope of LfL

is constraint by (i) the point P1,L,
which is the intersection point of �L and Lf1

(that is
already known), must also be on line LfL

, and (ii) the
point P2,L which is on the extension of the hidden line
�2,L. In particular, �2,L and the adjacent not-specified
hidden junction jh belong in region r2 and rL, thus
P2,L must be on both Lf2

and LfL
. Since, the line Lf2

is
already known, the different slopes of LfL

are obtained
by sliding the point P2,L along line Lf2

(Fig. 5(b-d)).
These different slopes of LfL

result in solutions for
the hidden part associated to the junction jh.

4.2.2. Algebraic representation of geometric
framework

Following the solution of system (4.1), a cross-section
system (4.3) is generated from the intermediate wire-
frame sketch on the basis of the hidden lines (Tab. 1).
System (4.3) includes equations that correspond to (i)
the boundary lines �L that were excluded from sys-
tem (4.1), and (ii) each visible line that is adjacent to
a T-junction. In this system, T-junctions are consid-
ered as hidden junctions and their true position in
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Eq. Types

Unknowns Type 0 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

(xh, yh)or(xTh, yTh) 0 1 1 2 2 0 1
(bL, aL, cL) 0 0 1 0 1 1 2
Total Number of Unknowns 0 2 5 4 7 3 8

Tab. 2: The equation types of system (4.3) are generated on the basis of the system’s
unknowns. The table lines show the number of unknown pairs (xh, yh)or(xTh, yTh) or
unknown triplets (bL, aL, cL) in each equation type and the total number of unknowns in
the equation.

the wireframe sketch is to be calculated:

�qn ↔ eqqn : (cnaq − cqan)(yh0 − y0) + (cqbn − cnbq)

× (x0 − xh0) + (anbq − aqbn)(xh0y0 − yh0x0) = 0

�qd ↔ eqqd : (cdaq − cqad)(yh0 − y1) + (cqbd − cdbq)

× (x1 − xh0) + (adbq − aqbd)(xh0y1 − yh0x1) = 0

�dn ↔ eqdn : (cnad − cdan)(yh0 − y3) + (cdbn − cnbd)

× (x3 − xh0) + (anbd − adbn)(xh0y2 − yh0x2) = 0

.....................................................

�td ↔ eqtd : (cdat − ctad)(yThi − yr−1)

+ (ctbd − cdbt )(xr−1 − xThi) + (adbt − atbd)

× (xThiyr−1 − yThixr−1) = 0

�me ↔ eqme : (ceam − cmae)(yhi − yr )

+ (cmbe − cebm)(xr − xhi) + (aebm − ambe)

× (xhiyr − yhixr ) = 0

�mk ↔ eqmk : (ckam − cmak)(yhi − yr+1)

+ (cmbk − ckbm)(xr+1 − xhi) + (akbm − ambk)

× (xhiyr+1 − yhixr+1) = 0

.........................................................

�ke ↔ eqke : (ceak − ckae)(yhi − yhj)

+ (ckbe − cebk)(xhj − xhi) + (aebk − akbe)

× (xhiyhj − yhixhj) = 0 (4.3)

The unknowns of system (4.3) are the coordi-
nates of each hidden junction jh and jT , and all
triplets (bL, aL, cL) that were excluded from system
(4.1). Thus, system (4.3) includes Lh + LL + JT equa-
tions and 2(Jh + JT ) + 3 ∗ RL unknowns, where JT is
the number of T-junctions in the sketch. For the solu-
tion of system (4.3), the equations of the system are
analyzed and classified into seven (7) different types
(Tab. 2) with respect to the number and the categories
of the included unknowns.

Equation Type 0 occurs when all the unknowns of
an equation are calculated. This type is used to assert
that a solution is achieved. Equations of Type 1 and
Type 3 are the simplest equations, since they are gen-
erated from a hidden line that is adjacent to two non

“L-chain” hidden regions. Equation of Type 1 is asso-
ciated to a hidden line that is adjacent to one visible
and one hidden junction (Fig. 6(a)), while the line that
generates a Type 3 equation is adjacent to two hidden
junctions (Fig. 6(c)). A Type 2 equation is associated
with a hidden line which is adjacent to one visible
junction and belongs to one rL region (Fig. 6(b)).
The lines that generate the equations of Type 4 and
5 belong also in rL region. Type 4 corresponds to a
hidden line that is adjacent to two hidden junctions
(Fig. 6(d)), while Type 5 corresponds to a boundary
line �L (Fig. 6(e)). An equation of Type 6 corresponds
to a hidden line that is adjacent to one visible junction
and to two rL hidden regions (Fig. 6(f)).

Similarly, the coordinates of each hidden junc-
tion (unknowns (xh, yh) or (xTh, yTh)) are classified
into 4 Types. More specifically, an unknown pair that
belongs to 2 or 3 equations of Type 1 is of Type A
(Fig. 6(g)), the unknowns that belong to one equation
of Type 1 is of Type B, while the rest unknowns are
classified as Type C (Fig. 6(h)). An unknown of Type B
also belongs to an equation of Type 2, 4, or 6 and it is
associated with three triplets (bi , ai , ci). More specifi-
cally, in the case of a minimal intermediate wireframe
sketch, a Type B unknown is included in at least
one equation of Type 2. Finally, the coordinates of
a junction are considered of Type E when they are
calculated.

4.2.3. Hidden junction calculation algorithm

This section presents the Hidden Junction Calculation
Algorithm (HJCALC) that is developed for the solution
of system (4.3). The input of the algorithm is system
(4.3), the intermediate wireframe sketch and a corre-
sponding compatible cross-section. The outputs are
the coordinates of each hidden and T- junction that
completely define the final wireframe sketch, and the
values of all triplets (bL, aL, cL) that define the cor-
responding cross-section lines. HJCALC proceeds as
follows:

Hidden Junction Calculation Algorithm (HJCALC)
STEP 1: Identify Equation Types; Identify

Unknown Types;
STEP 2: Check for equations of Type �= 0. IF exist

continue with STEP 3, ELSE exit with a
solution.
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(a) (b) (c) (d)

jA

jA

(e) (f) (g) (h)

Fig. 6: (a) – (f) The bold marked lines indicate the sketch lines that generate an equation respectively of (a) Type
1, (b) Type 2, (c) Type 3, (d) Type 4, (e) Type 5, and (f) Type 6, (g) junctions that their unknown coordinates are
of Type A, and (h) unknown pairs of Type B and C correspond to junctions that are adjacent to “L-chain” hidden
regions.

Fig. 7: (a) A simple case with unknowns of Type A, (b-d) the derived system (4.3) for these sketches includes
unknowns of all types and the Make Parallel procedure is employed for the determination of the included L-chain
region(s), (e) system (4.3) of this sketch does not include an unknown of Type A, and the user – interaction was
necessary for the determination of the hidden part, and (f) the derived system includes unknowns of all types,
but for the determination of the L-chain hidden region the UDPosition was employed.

STEP 3: Type_A = Find_TypeA ((xhi , yhi)); IF
Type_A = true, Find equations of Type 1
that include (xhi , yhi); Solve linear system
with respect to (xhi , yhi); Return to STEP 1.
IF Type_A = false, Continue to STEP 4.

STEP 4: Type_B = Find_TypeB ((xhi , yhi)); IF
Type_B = true, Find the equation of Type
2 that include (xhi , yhi) and (bLj , aLj , cLj).

IF (Calculate = Make_Parallel ((bLj ,
aLj , cLj))) = true, Return to STEP 1,
ELSE Calculate = UDPosition((bLj , aLj , cLj));
Return to STEP 1. �

HJCALC Algorithm is an iterative procedure that
terminates when all unknowns in system (4.3) are
determined. During the first iteration, all unknowns
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of Type A are calculated. In each iteration, the types
of equations and the types of unknowns change on
the basis of the calculated unknown variables. In
particular, when a pair (xhi , yhi) of Type A is calcu-
lated the corresponding equations change from Type
1 to Type 0 or from Type 3 to Type 1. When a
triplet (bLj , aLj , cLj) is calculated the corresponding
equations change from Type 2 to Type 1 or from Type
4 to Type 3 or from Type 5 to Type 0 or from Type
6 to Type 2. In turn, the associated unknown pairs
(xhi , yhi) change from Type B to Type A, and from Type
C to Type B. Thus, each time an unknown is calculated
and at least one hidden junction becomes a junction
of Type A or B. The algorithm is applied to selected
sketches that include all the studied unknown and
equation types as well as different combinations of
them. The test case results are presented in Fig. 7.

5. CONCLUSIONS

This paper presented a framework under which the
geometry of the hidden part in a wireframe sketch
can be determined. Contrarily to other approaches,
the employment of the cross-section criterion estab-
lishes that, for a given realizable natural sketch, the
produced wireframe sketch will correspond to a valid
trihedral solid model whose orthographic projection
is the given sketch. The proposed system (4.3) is an
algebraic representation of the geometric constraints
that should be satisfied in the hidden part of a min-
imal and realizable wireframe sketch. For natural
sketches with strong ambiguities, the hidden geome-
try problem is under-constrained and more algebraic,
geometric, or heuristic constraints must be defined
with respect to system (4.3). The “Make Parallel” and
“UDPosition” procedure are two examples of such
constraints. The first one is a fully-automated proce-
dure while the second one is based on the user inter-
action to address ambiguities in the hidden geometry.
Although the final decision for the hidden geometry
relies on the user selections, all possible alternatives
are constrained to conclude to a valid and realizable
solution. In future work, more constraints are to be
studied and employed to facilitate the hidden geome-
try determination process and include possible richer
structures.

ACKNOWLEDGMENTS

The research of Ph. Azariadis has been co-financed
by the European Union (European Social Fund -
ESF) and Greek national funds through the Opera-
tional Program “Education and Lifelong Learning” of
the National Strategic Reference Framework (NSRF)
- Research Funding Program: THALES (MIS 379516),
Investing in knowledge society through the European
Social Fund.

REFERENCES

[1] Azariadis, P.; Kyratzi, S.; Sapidis S.N.: A hybrid-
optimization method for assessing the real-
izability of wireframe sketches, 3D Research,
4(1), 2013, Article: 3, http://dx.doi.org/10.
1007/3DRes.01(2013)3

[2] Cao, L.; Liu, J.; Tang, X.: What the Back of
the Object Looks Like: 3D Reconstruction from
Line Drawings without Hidden Lines, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 30(3), 2008, 507–517, http://dx.
doi.org/10.1109/TPAMI.2007.1185

[3] Company, P.; Contero, M.; Conesa, J.; Piquer, A.:
An optimisation-based reconstruction engine
for 3D modeling by sketching, Computers &
Graphics, 28(6), 2004, 955–979, http://dx.doi.
org/10.1016/j.cag.2004.08.007

[4] Company, P.; Piquer, A.; Contero, M.; Naya,
F.: A survey on geometrical reconstruction as
a core technology to sketch-based modeling,
Computer and Graphics, 29(6), 2005, 892–904,
http://dx.doi.org/10.1016/j.cag.
2005.09.007

[5] Contero, M.; Varley, P.; Aleixos, N.; Naya F.:
Computer-aided sketching as a tool to pro-
mote innovation in the new product develop-
ment process, Computers in Industry, 60(8),
2009, 592–603, http://dx.doi.org/10.1016/j.
compind.2009.05.018

[6] Grimstead, I. J.; Martin, R. R.: Creating solid
models from single 2D sketches, Proceedings
of the third ACM symposium on Solid modeling
and applications (SMA ’95), 1995, pp. 323–337,
http://dx.doi.org/10.1145/218013.218082

[7] Kyratzi S.; Azariadis P.; Sapidis N.S: Realizabil-
ity of a Sketch: An Algorithmic Implementation
of the Cross-Section Criterion, Computer Aided
Design and Applications, 8(5), 2011, 665–679,
http://dx.doi.org/10.3722/cadaps.2011.
665-679

[8] Kyratzi, S.; Sapidis, N.: Extracting a polyhe-
dron from a single view sketch: Topological
construction of a wireframe sketch with min-
imal hidden elements, Computers and Graph-
ics, 33(3), 2009, 270–279, http://dx.doi.org/10.
1016/j.cag.2009.03.001

[9] Kyratzi, S.; Sapidis, N.: 3D Object modeling
using sketches, Information Resources Man-
agement Journal, 24(4), 2011, 27–29, http://dx.
doi.org/10.4018/irmj.2011100102

[10] Lee, T. Y; Fang, F.: A new hybrid method for 3D
object recovery from 2D drawings and its vali-
dation against the cubic corner method and the
optimisation-based method, Computer-Aided
Design, 44(11), 2012, 1090–1102, http://dx.doi.
org/10.1016/j.cad.2012.06.001

[11] Lipson, H.; Shpitalni, M.: Optimization-based
reconstruction of a 3D object from a sin-
gle freehand line drawing, Computer Aided

Computer-Aided Design & Applications, 12(3), 2015, 355–365, http://dx.doi.org/10.1080/16864360.2014.981466
© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1007/3DRes.01(2013)3
http://dx.doi.org/10.1007/3DRes.01(2013)3
http://dx.doi.org/10.1109/TPAMI.2007.1185
http://dx.doi.org/10.1109/TPAMI.2007.1185
http://dx.doi.org/10.1016/j.cag.2004.08.007
http://dx.doi.org/10.1016/j.cag.2004.08.007
http://dx.doi.org/10.1016/j.cag.2005.09.007
http://dx.doi.org/10.1016/j.cag.2005.09.007
http://dx.doi.org/10.1016/j.compind.2009.05.018
http://dx.doi.org/10.1016/j.compind.2009.05.018
http://dx.doi.org/10.1145/218013.218082
http://dx.doi.org/10.3722/cadaps.2011.665-679
http://dx.doi.org/10.3722/cadaps.2011.665-679
http://dx.doi.org/10.1016/j.cag.2009.03.001
http://dx.doi.org/10.1016/j.cag.2009.03.001
http://dx.doi.org/10.4018/irmj.2011100102
http://dx.doi.org/10.4018/irmj.2011100102
http://dx.doi.org/10.1016/j.cad.2012.06.001
http://dx.doi.org/10.1016/j.cad.2012.06.001
http://www.cadanda.com


365

Design, 28(8), 1996, 651–663, http://dx.doi.
org/10.1145/1281500.1281556

[12] Ros L.; Thomas F.: Geometric Methods for
Shape Recovery from Line Drawings of Poly-
hedra, Journal of Mathematical Imaging and
Vision, 22(1), 2005, 5–18, http://dx.doi.org/10.
1007/s10851-005-4779-4

[13] Varley, P.: Automatic Creation of Boundary-
Representation Models from Single Line Draw-
ings. Ph.D. Thesis, Cardiff University (2002).

[14] Whiteley W.: Weavings, Sections and Projec-
tions of Spherical Polyhedra, Discrete Applied
Mathematics, 32(3), 1991, 275–294, http://dx.
doi.org/10.1016/0166-218X(91)90004-G

Computer-Aided Design & Applications, 12(3), 2015, 355–365, http://dx.doi.org/10.1080/16864360.2014.981466
© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://dx.doi.org/10.1145/1281500.1281556
http://dx.doi.org/10.1145/1281500.1281556
http://dx.doi.org/10.1007/s10851-005-4779-4
http://dx.doi.org/10.1007/s10851-005-4779-4
http://dx.doi.org/10.1016/0166-218X(91)90004-G
http://dx.doi.org/10.1016/0166-218X(91)90004-G
http://www.cadanda.com

	1. INTRODUCTION
	2. GEOMETRIC AND TOPOLOGICAL DESCRIPTION OF SKETCHES
	2.1. Notations

	3. THE CROSS-SECTION CRITERION
	3.1. Algebraic Model of the Cross-Section Criterion

	4. GEOMETRIC DEFINITION OF THE HIDDEN JUNCTIONS
	4.1. Hidden Junctions Geometry: Cross-Section Generation
	4.2. Hidden Junctions Geometry: Hidden Junctions Position Calculation
	4.2.1. Geometric framework
	4.2.2. Algebraic representation of geometric framework
	4.2.3. Hidden junction calculation algorithm


	5. CONCLUSIONS
	ACKNOWLEDGMENTS
	References

