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Functional Surface Reconstruction from Unorganized Noisy Point Clouds
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ABSTRACT

As point clouds have become an important representation of objects in reverse engineering, surface
reconstruction from point clouds has consequently been an active research topic over many years. In
this paper a new procedure for surface reconstruction directly from point clouds is proposed. Similar
to many reported works, boundary points of functional surfaces are firstly detected by the extended
difference of normals operator. After the points belonging to the same functional surface are grouped
by a simple algorithm, a B-spline surface is fitted to these points so as to generate an editable NURBS
surface. Experimental results shown in this literature demonstrate the feasibility of the proposed
method to reconstruct curved surface with high curvature.

Keywords: surface reconstruction, point cloud processing, difference of normals.

1. INTRODUCTION

Nowadays, it becomes easily to obtain large and com-
plex object models composed of point clouds sam-
pled from real-world objects with the help of high
precision 3D scanners. Reconstructing the geometry
from the raw point clouds has consequently been an
active research topic in reverse engineering over the
last decades. A more recently review can be found
in [10, 14]. Generally speaking, reported methods can
be divided into two groups regarding whether feature
curves are explicitly extracted from point clouds.

In the first group, feature curves are explicitly
extracted and surface reconstruction via feature curve
extraction has become a strategy. Among the reported
efforts Salman et al. [12] find points close to features
by the approach of principal component analysis
(PCA) and feature curves are subsequently recovered
by clustering feature points and connecting a subset
of them. However, due to the use of implicit surfaces
during surface reconstruction, their approach cannot
handle non-manifolds or manifolds with boundaries.
Gauss map clustering is adopted in [15, 16] for fea-
ture point detection. The authors first use a global
threshold to detect feature points that are close to
sharp features and then a more precise iterative selec-
tion process is performed so as to obtain the exact
feature points. In [3] feature points are detected
by Gaussian-weighted graph Laplacian and feature
curves are constructed by Reeb graph. In [4] the
authors first detect feature points by voronoi-based
method. The feature direction information is then

determined by PCA and corner points are simultane-
ously distinguished. A filter is then applied to remove
noisy points that are detected as feature points before
feature curves are constructed. In [2], an algorithm to
extract closed sharp feature lines is proposed which
applies a first order segmentation to extract candi-
dates feature points and process them as a graph to
recover the sharp feature lines. In [8] moving least-
squares approximation is used to estimate the local
curvatures and their derivatives at a point by means
of an approximating surface. The neighbor informa-
tion is computed by a Delaunay tessellation and ridge
and valley points are detected as zero-crossings.

Works focusing on feature preserving surface
reconstruction without feature curves rebuilding have
also been studied. Reported works include [9, 17] and
so on. However, volume based reconstruction method
expects the surface to be input as a point cloud
with oriented normal vectors [9]. Voxel-based surface
reconstruction algorithm can handle non-manifolds
and boundaries but not sharp features [17].

Although various reconstruction methods have
been reported, many problems still remain to be
addressed due to geometry shape complexity. More-
over, surface reconstruction becomes harder in the
presence of noise. For example, Delaunay tetrahedral-
ization based methods work well for smooth surface
reconstruction. Unfortunately, they may fail when
dealing with noisy point clouds. In addition, the level
set method is proved powerful and attractive when
it comes to surface reconstruction. Nevertheless,
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Fig. 1: Proposed method: (a) Input noisy point cloud, (b) Detected boundary of a functional surface by EDN, (c)
Points corresponding to the same functional surface, and (d) Reconstructed functional surface.

finding a set of functions to form an implicit surface
is difficult, especially for a free form surface.

In this paper, a new procedure for functional sur-
face reconstruction directly from unorganized point
cloud is introduced. The input to our algorithm is
unorganized noisy point cloud captured from a piece
of functional surface (Fig. 1 (a)), which suffers data
missing and noise. A multi-scale operator named
extended difference of normals (EDN) combining with
a simple filter is applied to the input for obtain-
ing boundary of the functional surface (Fig. 1 (b)).
The input is then clustered according to the detected
boundary by a simple algorithm (Fig. 1 (c)) and each
cluster constructs a functional surface by fitting a
B-spline surface to itself (Fig. 1 (d)).

2. PROPOSED METHOD

2.1. Boundary Points Detection

Given a point cloud P = {pi ∈ R3}, where i = 1, 2, · · · , m
and m indicates the number of points, the normal n(p)
for each point p ∈ P is often estimated ahead of any
point processing technique. When n(p) is computed,
some neighbors N ⊆ P of p are always needed. A com-
mon way to define N is by N = {q ∈ P|dis(p, q) < r},
where r indicates a user defined threshold and dis()
represents the Euclidean distance. To select a rea-
sonable threshold r, the average distance d̄ between
points of P is computed by the following equation

d̄ =
∑m

1 argminq∈P ,q �=pi
dis(pi , q)

m
(2.1)

where pi ∈ P .
The estimated normal ň(p) at p is usually not the

exact n(p), that is, ň(p) ≈ n(p). For one thing, the noisy
points contained in P may affect the estimation. For
the other thing, even for a clean point cloud the neigh-
bors N ⊆ P used for normal estimation may also affect
the computation, which heavily depends on the loca-
tion of p. An example is given in Fig. 2. The red dots
indicate point p whose normal is going to be esti-
mated and the blue ones represent the neighbors used
for n(p) estimation. The green arrows show the esti-
mated normal ň(p) and the pink arrow represents the
difference between the estimated normals obtained
by using different number of neighbors. From this
example we can see for the points close to local ridges
and valleys their estimated normals are different if

different number of neighbors are used for normal
estimation. Evaluating the difference between the esti-
mated normals brings us a multi-scale operator n1

d
(difference of normals (DN)), which was first reported
in [5] and used for feature point detection

n1
d = |ň(p, rs) − ň(p, rl)| (2.2)

Fig. 2: Difference of normals: estimated normals may
be different due to the different number of neighbors
used for normal estimation.

where rs , rl ∈ R, rs < rl signify the radii and ň(p, r)

presents the estimated normal at p with radius r.
Provided a threshold δ, point p is regarded as

a feature point if and only if n1
d(p, rs , rl) > δ holds.

Although the result depends on the selection of rs and
rl , the points close to local ridges and valleys have
more chance to be regarded as feature points than
the others. In addition, to some extent, rs determines
how close the points from local ridges and valleys will
be disregarded during feature point detection and rl
determines how far away the points from local ridges
and valleys have the chance to be detected as feature
points.

From the above discussion we know the exact fea-
ture points are likely to be neglected by DN operator
because they are usually on the local ridges and val-
leys. To solve this problem, a variant of DN (VDN) is
given as

n2
d = max|ň(p, r , Ni) − ň(p, r , Nj)| (2.3)

where i, j = 1, 2, · · · g, i �= j, Ni ⊂ N (p), Nj ⊂ N (p),

Ni ∩ Nj = ∅,
∑g

1 Ni = N (p) and g is a user defined
threshold.

The meaning of this operator is that N(p) is divided
into g groups and each group Ni ⊂ N (p) is used to
estimate n(p). The difference of ň(p) is then evaluated
and used to determine whether p is a feature point. A
2D illustrator is given in Fig. 3, where red dots indi-
cate p and blue ones signify the neighbors of p used
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for normal estimation. In Fig. 3 (a) the left two neigh-
bors are used to compute ň1(p) and the right two ones
are used for ň2(p) in Fig. 3 (b). The red arrow in Fig. 3
(c) indicates the difference between the two estimated
normals shown in Fig. 3 (a) and Fig. 3 (b), respectively.

Fig. 3: Variant of difference of normals operator: (a)
the left two blue dots are used for normal estimation,
(b) the right two blue dots are used for normal esti-
mation, (c) the difference between the two estimated
normals.

An example is given in Fig. 4 in which the red dot
enclosed by black circle indicates p. The neighbors
N(p) of p are divided into 4 groups and each group
is represented by a color in this example.

Fig. 4: Neighbors grouping. A point p is given as a
red dot enclosed by black circle and its neighbors
used for normal estimation are divided into 4 groups,
which are represented by difference colors.

The grouping procedure used in this study is
achieved by Algorithm 1, in which bold character p
indicates the vector of coordinates of p.

The thinking behind this algorithm is that we use
two perpendicular planes γ1(p, n1) through p with
normal n1 and γ2(p, n2) through p with normal n2 to
divide N(p) and 4 sections are generated by γ1 and γ2.
Points in each section compose of a group. Note that
n1 is obtained by applying PCA to V.

Combining the two operators DN and VDN, we get
an extend difference of normals (EDN) operator nd ,
which inherits the advantage of multi-scale operator
and avoids ignoring the points on local ridges and
valleys.

nd(p, rs , rl) = αn1
d(p, rs , rl) + β max(n2

d(p, rs), n2
d(p, rl))

(2.4)

where α and β are two user defined coefficients and
0 ≤ α ≤ 1 , 0 ≤ β ≤ 1, α + β = 1.

For point p ∈ P , it is going to be regarded as a fea-
ture point when nd(p, rs , rl) > δ holds. By this means
the boundary points B = {p ∈ P|nd(p, rs , rl)〉 > δ} are

obtained. Note that B indicates a broad bound of
the functional surface with noisy points (Fig. 5 (a)).
To get the exact boundary, a simple filter is first
adopted to remove the outliers by checking the
point density, which was introduced in [11] (Fig. 5
(b)). The exact boundary points are then approx-
imated by using Algorithm 2. Depending on the
user defined threshold ru, the approximation always
needs several times computation. Fig. 5 (c) and (d)
show the results after one and two times computa-
tion, respectively. After several times computation,
we get the approximation boundary as shown in
Fig. 1 (b).

That the detected feature points are on the two
sides of the exact boundary guarantees the feasibility
of Algorithm 2.

2.2. Point Cloud Clustering

After obtaining the approximated boundary points B̂
of a functional surface, we cluster the input points
according to B̂, which is achieved by the following
algorithm.

The meaning of this algorithm is that we divide
P-B̂ into two groups according to B̂, that is, inside
and outside. And the points enclosed by B̂ are used
for later surface reconstruction. The example given in
Fig. 1 (c) shows the inside points T ⊂ P (blue dots) and
boundary points B̂ (red dots).
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Fig. 5: Exact boundary approximation: (a) detected boundary points by EDN, (b) boundary points after outlier
removal, (c) one time exact boundary approximation, (d) two times exact boundary approximation.

Fig. 6: Example for boundary point detection: (a) front view, (b) ideal boundary, (c) top view.

2.3. Functional Surface Reconstruction

For surface reconstruction, fitting method plays an
important role. So far quantity of works have been
reported which include [1, 6, 7, 13]. Here we fit a

B-spline surface to point set T using point-distance-
minimization strategy and finally we can get the
desired functional surface as shown in Fig. 1 (d).

3. EXPERIMENTAL RESULTS

Note that the operators given in this literature can
be performed iteratively. Given a point cloud P, a set
of boundary points B can be obtained by applying
an operator to P. After that, the operator is applied
to B for refined feature point detection. Repeat this
procedure and we can get a better result in many
cases.

An example for boundary point detection of a
functional surface is given in Fig. 6 (a), which contains
26975 points. The ideal result is to divide this point
cloud into two groups and the boundary is given in
Fig. 6 (b). However, Fig. 6 (c) shows the challenge for
any feature point detection algorithm.

The results got by DN and VDN are given in Fig. 7.
Fig. 7 (a), Fig. 7 (b) and Fig. 7 (c) show the results got
by using DN operator on model given in Fig. 7 (a) with
1, 2 and 3 times computation respectively. Fig. 7 (d),
Fig. 7 (e) and Fig. 7 (f) show the results got by using
VDN operator on the same model with 1, 2 and 3
times computation respectively. It is clear that VDN
is better than DN for this example. The parameters
used for this computation are rs = 1.5d̄, rl = 10d̄ and
δ = 20◦.

A better result can be got by sequentially applying
DN and VDN operators to the model, which contains
less undesired points (Fig. 8). The result is got by
applying 1 time DN operator on model shown in Fig. 7
(f). However, it is difficult to judge when DN or VDN
should be applied during feature point detection.

A substitution is to combine DN and VDN, namely,
EDN. Fig. 9 shows the results of boundary detection
by EDN with different coefficients of α and β. For
the example given in Fig. 1 (a) DN brings us a more
acceptable result while VDN for that given in Fig. 6.
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Fig. 7: Boundary detection with operators DN and VDN. Top row: results got by DN operator; bottom row: results
got by VDN operator. From left to right: 1, 2 and 3 times iterative computation.

Fig. 8: Boundary point detection by two operators:
(a) front view, (b) top view.

The parameters used for computation is the same as
the above example. The parameters α and β used in
this example are α = 1.0, β = 0.0 for the first column
and α = 0.4, β = 0.6; α = 0.6, β = 0.4 and α = 0.0, β =
1.0 for the second, third and fourth column respec-
tively. The parameters used for this test are rs = 1.5d̄,
rl = 20d̄ and δ = 20◦. Compared with those shown in

Fig. 7 and Fig. 8, although the results got by EDN are
not so much desirable, they can be used for exact
boundary point approximation.

Fig. 10 shows the procedure of functional surface
reconstruction. Starting from Fig. 9 (f), exact bound-
ary points are first approximated by Algorithm 2.
Fig. 10 (a), (b) and (c) show the approximation results
after performing one, two and three times Algorithm
2 respectively. Fig. 10 (d) shows the boundary points
extracted from Fig. 10 (c), which are used to construct
the boundary curve of the functional surface. After
manually removing the undesired boundary points,
the approximated boundary of functional surface is
constructed (Fig. 10 (e)) and used for point cloud clus-
tering by Algorithm 3. Finally, the functional surface
is reconstructed (Fig. 10 (f)).

Fig. 11 gives another example of boundary detec-
tion by EDN. The original point cloud is given in
Fig. 11 (a), which contains 1678267 points. Fig. 11 (b),
(c) and (d) are the results by EDN for boundary points

Fig. 9: Boundary detection by EDN with different coefficients.
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Fig. 10: Procedure of functional surface reconstruction.

Fig. 11: Boundary detection by EDN: (a) original point cloud, (b), (c) and (d) detected boundary points with
different coefficients.

detection with different coefficients. The parameters
used for this test are rs = 1.5d̄, rl = 30d̄ and δ = 20◦.
α = 0.0, β = 1.0; α = 0.3, β = 0.7 and α = 0.6, β = 0.4
are used for Fig. 11 (b), (c) and (d) respectively. For
Fig. 11 (b), it is indeed the result got by DN opera-
tor. Although it looks fine, lots of details are lost as
that shown in this example, where is highlighted by
red curves. Currently, the computation takes almost
5 minutes on a computer with I7 3770 CPU and 32G
RAM.

4. CONCLUSION AND DISCUSSION

In this paper, a new procedure for functional surface
reconstruction directly from an unorganized point
cloud is proposed. First, a multi-scale operator by
extending the difference of normals operator is used
to detect the boundary points of functional surface.
The proposed method makes it possible to detect
the boundary points of functional surfaces without
losing too many details. The points corresponding
to the same functional surface are then grouped
and used to reconstruct the curved functional sur-
face. Although the feasibility of the proposed method
is proved by experimental results, modifications
and improvements should be made in the future
to make the proposed method more robust and
efficient.

First of all, the proposed method was preliminarily
tested on model with single functional surface. In case
a complex model is handled (Fig. 11), an algorithm
to automatically group the detected boundary points
should be studied, with which the proposed method
can be made more user friendly. In addition, the
proposed method is currently time consuming. How
to make it more efficient is another research topic.
Moreover, even though an iterative computation can
refine the detected boundary points, some undesired
points are still inevitable included as shown in the
given examples. Improving the proposed method by
introducing an algorithm for undesired noisy point
removal is another topic for our future study.
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