
373

Applying Database Optimization Technologies to Feature Recognition in CAD

Zhibin Niu1, Ralph R. Martin2, Malcolm Sabin3, Frank C. Langbein4, and Henry Bucklow5

1Cardiff University, mind3str@gmail.com
2Cardiff University, ralph@cs.cf.ac.uk

3Numerical Geometry Ltd., malcolm.sabin@btinternet.com
4Cardiff University, frank@langbein.org

5TranscenData Europe Ltd. jhb@transcendata.com

ABSTRACT

In engineering analysis, CAD models are often simplified by removing features, enabling meshing to
be quicker and more reliable; the resulting smaller meshes in turn lead to faster analysis. Finding
features by hand is tedious, and there is a need to automate this process. A declarative approach
to feature recognition allows engineers to define features relevant to a particular problem, without
detailing how they are to be found. Here, we show that a declarative feature definition can be turned
into an SQL query, and database engine coupled to a CAD modeler can be used to find instances of
entities satisfying the predicates which make up features. A key benefit of doing so is that database
optimization techniques built into a modern database can effectively execute the SQL query in an
acceptable time to find features. We present experiments to show the benefits of various database
optimization techniques. We determine how the time taken to find features scales with number of
features and model size, using different optimizations. We also give results for real industrial models.

Keywords: computer-aided design, feature recognition, declarative language, SQL, database optimiza-
tion

1. INTRODUCTION

Features are regions within an object’s shape which
are relevant to some point of view, such as its func-
tion or its manufacture. Computer-aided engineering
(CAE) often performs analysis or simulation based
on a CAD model, which requires meshing the model.
Real industrial models have many small details, or
features, and in many cases, their effect on analy-
sis is minor. Suppressing such details allows mesh-
ing to be both quicker and more robust, and as a
mesh with fewer, larger elements results, the time
needed for analysis is also reduced. Feature recog-
nition can be used to help find candidate features
for removal [12]. Computer-aided process planning
(CAPP) uses feature recognition to process low-level
geometrical information such as edges and faces to
derive manufacturing information in the form of high-
level entities like holes and slots, as a precursor
to generating a sequence of manufacturing instruc-
tions [8]. Finding features by hand is tedious for large
models: automatically finding features is preferable.
Feature recognition has been a topic of interest for

many years and much research has been devoted to
this topic [8].

Our approach to feature recognition is based on
a high-level declarative feature definition language,
which allows engineers to define new kinds of fea-
tures. A declarative approach has the benefit of allow-
ing the engineers to concentrate on what constitutes
a feature, as they do not need to provide an algorithm
saying how to find it. Different applications need dif-
ferent definitions of features: parts of a shape which
are important for machining may be quite different
to those which can be ignored for structural anal-
ysis, and features important for heat analysis may
be quite different again. It is infeasible to hard-code
all possible useful features, and this must be left to
engineers.

In our method, features are defined in terms of
entities (such as faces and edges, or subfeatures),
and predicates (functions with Boolean results, e.g.
whether two faces are adjacent) that the entities must
satisfy. The definition is turned into an SQL query,
and a database engine is coupled to a CAD modeler

Computer-Aided Design & Applications, 12(3), 2015, 373–382, http://dx.doi.org/10.1080/16864360.2014.981468
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

mailto:mind3str@gmail.com
mailto:ralph@cs.cf.ac.uk
mailto:malcolm.sabin@btinternet.com
mailto:frank@langbein.org
mailto:jhb@transcendata.com
http://www.cadanda.com

374

to find instances of entities satisfying the predicates
which make up features. The purpose of this paper is
to show that such an approach is feasible, and that in
particular, the database optimization techniques built
in to a modern database can effectively execute the
query in an acceptable time — a direct translation of
the declarative form would be far too slow without
optimization. Database optimization techniques auto-
matically determine a suitable set of sub-queries and
an appropriate order to execute them in. We build on
the work of Gibson [6], who also used a declarative
approach, but devised his own set of optimizations
for use in a hand-coded feature finder, rather than
leveraging database technology.

The rest of this paper is organized as fol-
lows: Section 2 briefly discusses related work on
feature recognition and database optimization, as
well reviewing Gibson’s approach. Section 3 explains
our declarative feature definition language, while
Section 4 details our feature finder. Section 5 presents
experimental results while Section 6 gives conclusions
and discusses future work.

2. RELATED WORK

2.1. Feature Recognition

Martin gives the following definition: “A feature is a
semantic group (modeling atom), characterized by a
set of parameters, used to describe an object which
cannot be broken down, used in reasoning relative to
one or more activities linked to the design and use of
products and production systems” [14]; also see [2].
Feature recognition is thus used to detect structures
with certain topological and geometrical properties.
It is distinct from partitioning the model, as features
can overlap, and parts of the model may not be within
any feature. Since the seminal work on geometric
model analysis and classification by Kyprianou [11],
much work has considered feature extraction. Babic’s
review [1] classifies approaches to feature recognition
into approaches based on (i) syntactic pattern recogni-
tion, (ii) state transition diagrams, (iii) logic rules and
expert systems, (iv) graph-based approaches, (v) con-
vex hull and cell based volumetric decomposition, (vi)
hint-based approaches, and (vii) hybrid approaches.
In general, relations or connections between compo-
nents of a feature are used to build up features from
substructures. However, as noted, different applica-
tions need different definitions of features: parts of a
shape which are important for machining differ from
those which can be ignored for analysis, for example.
It is infeasible to hard-code all possible useful fea-
tures and engineers must be allowed to define new
kinds of features for a task in hand.

Gibson thus proposed the use of declarative fea-
ture definitions [5–7], which have the benefit of
stating what features are rather than needing an
algorithm to find them. In his architecture, features
are defined in a language with similarities to EXPRESS

[15]. A feature-finding method directly derived from
such a definition is generally infeasibly slow, however,
so Gibson investigated six strategies for optimizing
the feature finding process (as detailed later). These
optimizations demonstrated significant benefits on
2D models. Our work builds on Gibson’s work, again
using a declarative feature definition language. How-
ever, we convert the feature definition into an SQL
database query which is then input into a feature
finder which combines a CAD modeler with a rela-
tional database. Note that SQL is also a declarative
language. In this way, our aim is to leverage the
extensive research into query optimization which is
embodied in modern databases. Primitive geometric
and topological queries are passed from the database
engine to the CAD modeler.

2.2. Relational Database Query Optimization

In a relational database, the same query can typ-
ically be translated in many different ways into a
sequence of elementary operations; although the out-
put is identical, the time taken can differ greatly [10].
Our system automatically translates the user’s feature
definition into an SQL query. Within the database this
SQL string is analyzed into tokens (e.g., SELECT FROM)
and assigned meaning by a parser, turning the feature
definition into a relational calculus expression. The
query optimizer further transforms the expression
tree into several different forms (i.e. possible query
plans) with equivalent results, and determines which
is likely to be most efficient by estimating the cost.
Query optimizers are a core part of database manage-
ment systems, and have been widely studied. Among
them, System-R was a pioneer [4], being one of the
earliest databases to support SQL. Its use of dynamic
programming to select the best query plan has been
adopted by most commercial databases [3].

Query optimization comprises two stage: rewriting
and planning [10]. The former rewrites the declar-
ative query in the expectation that the new form
may be more efficient. An example of this kind is
sargable rewriting (i.e. transformation to take advan-
tage of an index). Planning transforms the query at a
procedural level, using relational algebra transforma-
tions [4] such as generalizing join sequences, outer
join optimization, group-by and join shuffling opti-
mizations, view merging, merging nested subqueries,
and using semi-join-like techniques to optimize multi-
block queries. The most important job of the query
planner is to determine which form of the query
generated by such transformations is most efficient.

We have chosen to use SQLite as the database
engine in our system, as source code is readily avail-
able. This allows it to be interfaced to the CAD
modeler, in this case CADfix [13]. It has a com-
pact but effective query optimizer [9]: it provides
sargable rewriting including BETWEEN and OR opti-
mizations, and provides algebraic space and method-
structure space transformations such as reordering

Computer-Aided Design & Applications, 12(3), 2015, 373–382, http://dx.doi.org/10.1080/16864360.2014.981468
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

375

joins, subquery flattening, automatic indexing and
group-by optimizations. SQLite 3.8 uses a nearest
neighbor heuristic leading to an efficient polynomial-
time algorithm to select the best plan.

2.3. Comparison with Gibson’s Optimization
Approach

In our approach, feature definitions are essentially
translated into nested for-all loops, iterating over
each named entity. The loops check the predicates
and output only combinations of entities meeting
the predicates, as directed by export statements. In
principle, all possible combinations of entities and
predicates should be tested. Directly doing so would
take a time exponential in the number of entities, so
is infeasible in all but the most trivial of cases.

Gibson also adopted a declarative approach to
feature finding, and suggested six ways to reduce
computational complexity [6]. These are

Strength reduction Loop re-sequencing Entity
classification Assignment Indexing Featuretting.

Instead, we rely on optimization methods built-in
to databases to enable feature finding to run at a suit-
able speed. In fact, in part, Gibson has rediscovered
(or reinvented) a subset of the kinds of optimizations
used to answer database queries, as we now explain.

Gibson’s strength reduction moves tests with fixed
results outside loops to avoid repeatedly comput-
ing the same result. Loop re-sequencing reorders the
order in which nested loops are executed. Similar
steps are used in database query processing, where
they are referred to as algebraic transformations
which re-order joins and tables.

Indexing is a further significant optimization con-
sidered in database optimization and by Gibson.
However, its use in databases is more advanced: for
example, SQLite supports automatic index creation,
and uses sophisticated forms of indexing such as
R−/R+ tree indexes. Other databases such as Post-
greSQL go further and support B-tree, hash, GiST, and
GIN indexes. We intend to investigate indexing more
fully in our future work.

Gibson also has some unique approaches which
are not used in database engines. The first one is
entity classification which splits the for-all loop into
two parts: a simple search with only one predicate
and the remaining parts in which the simple predicate
is replaced by a result list. This allows preprocess-
ing of some basic relations e.g., size relations, and
uses the results list to replace the full relation. Fea-
turetting is similar to entity classification, where a
subfeature query and a main query are executed sep-
arately. The difference is that featuretting rewrites
a feature definition as a root (common) feature and
a group of featurettes (subfeatures) and perform
searches locally. Furthermore, the root feature has to
have at least two WITH clauses if featurettes are to

be used. On the other hand, databases generally pro-
cess a complete query; even if there are subqueries,
the database does not preprocess them, but flattens
the input into a long query. This allows indexes to
be used locate results. Finally, in Gibson’s assignment
optimization, when WHERE clauses contain equality
conditions, nested loops to find two things which are
then set equal can be replaced by a single loop. This
treats equality predicates as assignment statements
to reduce the search space. This is also unused in
database query optimization.

Database optimization relies heavily on cost esti-
mation to choose the best transformation of the
original SQL request to deduce a query plan. However,
Gibson’s methods correspond more to a rule-based
system which rewrites the feature definition at the
declarative level. From the point of view of trans-
formations, Gibson’s strength reduction and loop
re-sequencing are forms of join sequencing used in
database optimization. Some database optimizations
have no equivalents in Gibson’s work, e.g. outer join
optimization [4] which reorders joins and outer joins
for speed. Merging nested subqueries is an important
rewriting method to deal with sub-conditions, while in
Gibson’s work, similar expressions (subfeatures) are
handled by entity classification and featuretting.

In summary, while Gibson’s approach and use
of database optimization clearly have some ideas in
common, they also have differences, and each consid-
ers some ideas the other lacks. This is because they
were originally intended for solving different prob-
lems; Gibson’s ideas are specific to feature finding in a
CAD system, while database query optimization must
deal with a very wide range of queries.

3. DECLARATIVE FEATURE DEFINITION

We next explain how features are defined in our sys-
tem and the form of our declarative language. As
noted, a declarative approach has the benefit that the
engineer can clearly separate ‘what a particular fea-
ture is’ from the more difficult issue of ‘how to find
such a feature’. The declaration is automatically con-
verted into a naive algorithm for funding the feature,
and then the query optimizer tackles the harder job of
turning that into an efficient algorithm with reduced
complexity. We adopt the general form of feature
definition shown below.

DEFINE FEATURE NAME AS ENTITY1, ENTITY2...: TYPE; ...
SATISFYING PREDICATE(ENTITY1, ENTITY2, ...); ...
EXPORT ENTITY1, ENTITY2....END

First, a name is given for this kind of feature. Next,
various entities are defined which must be present in
the feature. Each entity is either of a CAD modeler
primitive data type, such as a vertex, edge, face, or
surface, or is a sub-feature e.g. a CYLINDRICAL-HOLE.
This type restricts the search domain. For exam-
ple E1,E2:EDGE means E1 and E2 are edges, and

Computer-Aided Design & Applications, 12(3), 2015, 373–382, http://dx.doi.org/10.1080/16864360.2014.981468
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

376

Fig. 1: Notch feature and definition.

Fig. 2: Alternative notch definition.

that all edges of the model should be considered as
candidates for E1 and E2.

The predicates after SATISFYING refer to one or
more entities, and indicate various relationships that
the entities should satisfy. Single entity predicates
concern geometric properties e.g. DIHEDRAL(EDGE1,
CONVEX), and continuity e.g. DIHEDRAL(EDGE1,
TANGENTIAL), while binary predicates concern such
issues as equality of entities e.g. DIFFERENT_ID
(EDGE1,EDGE2), and bounds e.g. BOUNDS(EDGE1,
FACE1) (meaning EDGE1 is part of the boundary of
FACE1. Currently, the system can handle the entities
FACE, EDGE, POINTS, SURFACE and has predicates
including: VALENCY,BOUND,DIHEDRAL, LOWER_ID,
DIFFERENT_ID, GEOM, HIGHER_ID, LIES_IN.

The EXPORT clauses indicates which entities are
externally visible to other definitions. This allows a
feature declaration to be built up using (hierarchical)
subfeatures; exporting only relevant entities of sub-
features limits the amount of data to be processed.

To illustrate these ideas, Fig. 1 gives the definition
for a notch feature. All edges and faces of the notch
feature must be present, as must be the adjacent
faces. The bounds predicates filter out edges of the
model which do not belong to notch faces. The
LOWER_ID relationships prevent the same notch from
being found multiple times by symmetry (permuting
the labeling of edges and faces would otherwise result
in the same notch being found with different identifi-
cations for the various edges and faces involved). The
DIFFERENT_ID predicates prevent unwanted solu-
tions where the same entity is found for things which
should obviously be distinct. The convexity predi-
cates are essential characters of a notch. Only if all
5 edges and 4 faces agree with the various predi-
cates can the feature finder declare the presence of a
notch feature.

Note that the declarative approach does not lead to
unique definitions—the same feature may be defined
in more than one way, and without optimization,

different definitions would lead to faster or slower
ways of returning the same results. If the query opti-
mizer were powerful enough, all definitions would be
optimized to the same optimal plan taking the same
time. In practice, this does not happen (as we show
later), and so the engineer needs to help. (A sim-
ilar problem exists in the declarative programming
language PROLOG, where programmers must consider
procedural aspects of their programs as well as the
declarative meanings). A natural in which the engi-
neer can produce a more efficient definition is to
define features in terms of subfeatures. Doing so also
helps the engineer break the complex task of feature
definition into smaller subtasks. This approach helps
to filter the original entities level by level, leaving only
feature-relevant data for the next stage of processing.

For example, a notch feature includes two adjacent
triangular faces. We can define a ‘triangle-face-pair’
as a subfeature. Triangular faces are further subfea-
tures of a triangle-face-pair. Using subfeatures has
similar effects to Gibson’s (automatic) featuretting [6],
an optimization technique used to ensure that each
search only applies to a local domain, By doing so,
later searches only need consider a smaller set of
entities, resulting in lower computational complexity.

Fig. 2 gives another way to describe a notch fea-
ture as a series of subfeatures. Notches are defined in
terms of triangle pairs. Triangle pairs are based upon
triangle bounds. Triangle bounds depend upon trian-
gle faces. These are found and remembered in a table,
and information is propagated back up the hierarchy.
Lower level subfeatures are more general and have
simpler predicates.

4. FEATURE FINDER

We now describe how our system uses declarative
feature definitions to find features. We start with an
overview, and then consider further details.

Computer-Aided Design & Applications, 12(3), 2015, 373–382, http://dx.doi.org/10.1080/16864360.2014.981468
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

377

Fig. 3: Feature recognition framework.

4.1. Overview

The interface to the feature finder works is a
command interpreter which interactively reads and
executes imperative user commands. These are used
to define a feature, load a CAD model, find instances
of a feature, etc. After instances of a feature are
found, details such as its edges and faces may be out-
put, either as text, or as highlighting on a drawing of
the original 3D model.

The structure of our feature finder is shown in
Fig. 3. It is built around SQLite, an open-source
database, and calls CADfix, a CAD modeler. The front
end reads and interprets the command languages. A
local cache of database tables is used to store certain
frequently used data such as entities which may be
components of the final feature.

The core of the feature finder includes a tokenizer
and parser system to analyze the user’s input. A
translator turns feature definitions into SQL queries;
these are passed to the database engine for execu-
tion when a request is made to find features. When
the database engine executes the SQL query (after
optimization), requests for basic geometric and topo-
logical information are passed to the CAD modeler
(rather than being looked up in a table on disk, like
a database engine would normally do); such infor-
mation may be cached, to save repeatedly querying
the CAD modeler. Other commands may be passed
directly to the CAD modeler, such as requests to load
CAD models, or be executed directly, such as requests
to save feature definitions to disk. A list of commands
is shown in Fig. 4.

In detail, when the user issues a FIND command,
assuming a corresponding feature definition has been
entered, the SQL query is sent to the database engine,
where it is broken down into a set of simple queries
concerning entities and predicates, and it is decided
whether these should be answered by the CAD mod-
eler, or the local database cache. The query is pro-
cessed by a rewriter, and transformed by the algebraic

space module and method structure module sepa-
rately. The planner then chooses the plan expected to
be cheapest to execute, to retrieve all entities which
satisfy the predicates and hence correspond to fea-
tures. The command PRINT can output textual details
of the features found, or SHOW can be used to highlight
the features on a drawing of the original 3D model.

Fig. 4: Command language.

There are various ways to rewrite SQL queries and
to transform them in algebraic space, i.e. diverse ways
to express the same kind of feature, as we consider
further in the next section. Unsurprisingly, alterna-
tive plans differ in efficiency, as we show in our
experiments.

4.2. Converting a Declaration Into SQL

A translator is used to turn a feature definition into
SQL; both are expressed declaratively, so this is rel-
atively straightforward. When the translator reads
DEFINE...AS, it recognizes . . . as the feature type.
The clause AS...SATISFYING is translated into an
SQL SELECT...FROM clause. Within it, the types of
entities such as FACE and EDGE are basic informa-
tion provided by the CAD modeler. The predicates
in the clause SATISFYING...EXPORT are turned into
a WHERE clause, with predicates connected by AND.
Finally, EXPORT...END, determines the output, which
is specified using SELECT. As an example, one way

Computer-Aided Design & Applications, 12(3), 2015, 373–382, http://dx.doi.org/10.1080/16864360.2014.981468
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

378

Fig. 5: Notch definition as SQL.

to rewrite the original notch definition is shown in
abbreviated form in Fig. 5:

Lists of all faces, edges, and vertices and their
bounding relationships are repeatedly used in search-
ing, so they are cached as tables of faces, edges,
etc. Alias names are given to multiple entities from
the same table, for example using F1,F2,... for
FACE entities. This allows such must-have entities to
be expressed via a self-join structure in SQL, gen-
erating the search space for the query. The predi-
cates are expressed using WHERE clauses, and work
as filters to retain only those records that meet the
specified criteria. Predicates are translated into SQL
clauses one by one following the feature definition.
For example, the inequality predicate DIFFERENT_ID
is translated into <>. Predicates like BOUNDS(E1,F1)
are converted to EXISTS(SELECT BOUNDS.EDGE...
clauses as shown above. The Boolean result indicates
whether the desired BOUNDS relation exists or not.

4.3. Tools

SQLite has been chosen as the database engine in our
system, for the pragmatic reasons that it free, has
open source, and has clearly structured code which
facilitates linking it to the CAD modeler to build a
feature recogniser. SQLite supports a range of query
optimization approaches, such as reordering joins,
automatic indexing, and subquery flattening. It is easy
to revise the code to turn optimizations on and off, to
assess their effects.

CADfix is used as the CAD modeler. It is a com-
mercial geometry translation and repair package pri-
marily intended for 3D model data exchange between
different engineering systems and applications. It
supports import of CAD models in multiple formats.
It already provides some defeaturing tools, although
we do not make use of these. We use CADfix (via its
API) to read and repair CAD models (to ensure con-
sistent, connected topology), and to interrogate their
topology and geometry. It is also used to draw the fea-
tures found, and could be used for further processing
such as defeaturing.

5. EXPERIMENTS

We now describe various experiments carried out to
determine if an approach to feature finding based
on database optimization is viable, and in particu-
lar whether the automatic query optimizer in SQLite

can enable features to be found at a reasonable
speed. In particular, we consider three questions: does
database optimization help, and if so how much?
How powerful is SQLite database optimization? Is this
relevant to real models?

5.1. Benefits of Database Optimization

In declarative feature recognition, as already noted,
directly finding a feature from a definition uses
nested loops, with time complexity O(nk) in a model
with n entities, for features composed of k entities
(for simplicity ignoring the fact that entities have
different types). Clearly, for large models, and any
realistic value of k, this is infeasible, and the ques-
tion is whether the database optimization techniques
can significantly improve upon this.

In the first experiment we generated a family of
artificial models with an increasing number of blocks,
each containing a notch feature of the kind defined
earlier (see Fig. 6). A similar experiment was also
performed using through-hole features. The notch
definition has 9 entities and 17 predicates, while
the through-hole definition has 11 entities and 24
predicates.

Fig. 6: Model with 8 notched blocks.

SQLite was modified to allow its built-in optimiza-
tion approaches (re-ordering joins, sub-query flatten-
ing, and automatic indexing) to be turned off and on,
to understand their effects on performance. Fig. 7
considers the models in a family, and gives a log-log

Computer-Aided Design & Applications, 12(3), 2015, 373–382, http://dx.doi.org/10.1080/16864360.2014.981468
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

379

–3

–2

–1

0

1

2

3

4

1 1.5 2 2.5 3 3.5 4 4.5

lo
g 10

 (T
im

e
ta

ke
n

in
 s

ec
on

ds
)

log10 (Number of edges)

Full optimization
Enable reorder joins

Enable automatic index
Enable subquery flattening

Disable all optimization

Fig. 7: Query optimization performance compare.

plot of time taken in seconds to find the features of
the given type in each model, versus the total num-
ber of edges in that model. Turning all optimizations
off clearly gives the worst performance, while turn-
ing all optimizations on is best, as hoped. With full
optimization the program can analyze a model with
18000 edges in about 5 minutes, which is a realistic,
acceptable value for a real feature-finding applica-
tion. However, in the same time, it can only analyze
a model with 1100 edges if the only optimization is
used is reordering joins, dropping to a model of 70
edges if no optimization is used. Subquery flattening
has little effect in this experiment and the curve when
this is the only optimzation used is almost coincident
with the un-optimized result.

While clearly the benefits of query optimization
depend on the model size, already in this example
they have enabled us to process models which are
250 times larger. A better way to quantify this is to
consider the slope of the log-log plot which gives the
exponent p assuming that the time taken by each
version of feature finding is dominated by t = αnp.

Slopes using different optimization approaches
for the notch feature and through-hole feature are
shown in Tab. 1. For the notch feature, the fully opti-
mized program has (approximately) a time complexity
O(n2), while the un-optimized one has a much higher
complexity, O(n6). Reordering joins by itself helps
significantly, reducing the slope to about 3, while
automatic indexing by itself has less impact, reduc-
ing the slope to about 5. We can loosely say, for notch
features, that we get 1 order of complexity of bene-
fit from indexing and 3 orders from reordering joins.
For through hole features, the query optimization

provided less benefit, due to the somewhat differ-
ent definition used, reducing complexity from about
O(n3.7) to O(n2.3).

Optimization Notch Throughhole

All 2.0 2.3
Reorder joins 2.8 3.4
Automatic indexing 5.0 2.6
Subquery flattening 6.0 3.5
None 6.0 3.7

Tab. 1: Slopes for various optimizations.

The estimated slopes allow us to predict how time
taken varies as model size increases. A model with a
single notch takes about 5 seconds to process, unop-
timized, while even the model shown with 8 notches
would take 5 × 86 seconds ≈ 2 weeks, illustrating our
assertion that a declarative approach without opti-
mization is infeasible. On the other hand, with all
optimizations turned on, a much larger model (about
18000 edges) can be analyzed in a feasible time (about
5 minutes). Reordering joins is the most powerful
optimization, then automatic indexing is also useful,
but sub-query flattening has little effect.

5.2. Optimality of Database Optimization

A separate question we can ask concerns how power-
ful database optimzation is at turning a sub-optimal
query into an optimal query plan. As noted, there are
various ways the same feature may be defined, which

Computer-Aided Design & Applications, 12(3), 2015, 373–382, http://dx.doi.org/10.1080/16864360.2014.981468
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

380

-3

-2

-1

 0

 1

 2

 3

 4

 1 1.5 2 2.5 3 3.5 4 4.5

lo
g 1

0(
T

im
e

ta
ke

n
in

 s
ec

on
ds

)

log10(Number of edges)

Full optimization-Origianl definition
Full optimization-Subfeature definition
No optimization-Subfeature definition

No optimization-Original definition

Fig. 8: Using alternative notch feature definitions.

give equivalent output, but do not take the same time
to run; indeed, that is the whole basis for optimza-
tion. Section 3 introduced just two ways to define
a notch feature, using an all-in-one definition, and
a subfeature-based definition. Now, if the database
optimizer were powerful enough, then in principle it
should be able to optimize both definitions to the
same optimal form, and hence both would take the
same time after optimiztion. Thus, we conducted a
second experiment to determine to what extent the
input feature definition affects the final optimized
performance. We again used notch features. Query
optimization was turned on or off for both definitions
discussed earlier. Fig. 8 and Tab. 2 give the results of
this test.

Optimization Definition Slope

None All-in-one 6.0
Full All-in-one 2.0
None Subfeatures 1.81
Full Subfeatures 1.76

Tab. 2: Slopes for various definitions.

Clearly, the original all-in-one definition was highly
inefficient, and query optimization has significantly
improved it. However, a subfeature definition based
approach is better still. The number of entities in
a feature determines the level of loop nesting, and
hence the slope of the log time complexity graph if no
optimization is done. The original notch definition is
made up of 9 of entities, so the all-in-one definition

if executed naively would have time complexity
O(n9); in practice, we somewhat lower. The subfea-
ture approach’s naive time complexity is ultimately
O(n6), and again we see better in practice, even with
optimization turned off.

Nevertheless, we can see that, as expected, the
subfeature definition is more efficient than the all-in-
one definition. Secondly, for the subfeature approach,
query optimization has still improved upon the input
query, but much less than for the all-in-one approach,
as it was more efficient to start off with.

From this experiment, we can draw two further
conclusions. Firstly, although database optimization
can speed up feature finding, it does not turn the
input query into an optimal query: even after database
optimization was used, the two definitions took dif-
ferent times to find features. (This is certainly true
for SQLite; other database engines may be better at
optimization).

Secondly, this in turn implies that the engineer
must construct his feature definition carefully. While
database optimization can turn a poor definition into
a much better execution plan, and can also slightly
improve even a good plan, careful thought when
constructing the feature definition is also beneficial.

5.3. Real Industrial Models

Previous experiments in this paper considered artifi-
cial models, and real industrial models may be very
complex and cause feature finders to behave differ-
ently. For example, in our previous tests, the number
of features went up with model size, but this may or
may not happen in real models—there may just be a

Computer-Aided Design & Applications, 12(3), 2015, 373–382, http://dx.doi.org/10.1080/16864360.2014.981468
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

381

few features of a given kind on a very complex model.
To explore how the feature finder system performs
on at least some simple real industrial models, we
used it to find SLOT features on a CPU heatsink, a car-
bine, and a switch, as shown in Figs 9–11. Results are
summarized in Tab. 3.

Fig. 9: CPU heatsink.

Fig. 10: Carbine.

Fig. 11: Switch.

For the simplest model, the carbine, optimized fea-
ture finding took only 0.05s; without optimization
the time taken was over 14 hours. The more com-
plex switch and CPU heatsink models required 0.2s

and 7s respectively, and would have taken too long
to process without optimization. Using database opti-
mization in combination with a declarative approach
to feature definition is thus potentially applicable to
real world problems.

Model CPU heatsink Carbine Switch

Number of edges 2388 84 330
Number of slots 24 6 9
Optimized query 6.94s 0.05s 0.22s
Unoptimized query – 52092s –

Tab. 3: Time taken to find slots in real models.

6. CONCLUSIONS AND FUTURE WORK

This work has considered a declarative approach to
feature recognition, coupled with database optimiza-
tion to enable such definitions to be processed in an
acceptable time. An advantage of this approach over
the similar earlier approach by Gibson is that we get
‘for free’ all the insight that has gone into database
optimization. Results show that, as hoped, database
optimization provides significant improvements to
the time complexity of feature finding, leading to
results in an acceptable time. However, optimization
does not always provide an optimal result: different
ways of defining the same feature have different per-
formance even after optimization. We note that SQLite
is a light-weight database, and does not support some
advanced features such as recursive SQL and various
kinds of advanced indexing; it also has more power-
ful optimizations. Our next steps are to transfer the
current workbench to PostgreSQL and to investigate
the benefits of its stronger optimization, advanced
indexing, and recursive SQL.

ACKNOWLEDGEMENTS

This work was supported by the Framework Pro-
gramme 7 Initial Training Network Funding under
Grant No. 289361 “Integrating Numerical Simulation
and Geometric Design Technology”.

REFERENCES

[1] Babic, B.; Nesic, N.; and Miljkovic, Z.: A review of
automated feature recognition with rule-based
pattern recognition, Computers in Industry,
59(4), (2008), 321–337.

[2] Babic, B. R.; Nesic, N.; and Miljkovic, Z.: Auto-
matic feature recognition using artificial neural
networks to integrate design and manufactur-
ing: Review of automatic feature recognition
systems., AI EDAM, 25(3), (2011), 289–304.

[3] Chamberlin, D. D.; Astrahan, M. M.; Blasgen,
M. W.; Gray, J. N.; King, W. F.; Lindsay, B. G.;

Computer-Aided Design & Applications, 12(3), 2015, 373–382, http://dx.doi.org/10.1080/16864360.2014.981468
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com

382

Lorie, R.; Mehl, J. W.; Price, T. G.; Putzolu, F.;
et al.: A history and evaluation of System R,
Communications of the ACM, 24(10), (1981),
632–646.

[4] Chaudhuri, S.: An overview of query optimiza-
tion in relational systems, in Proceedings of
the seventeenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems,
ACM, 1998, pages 34–43.

[5] Gibson, P.; Ismail, H.; and Sabin, M.: A fea-
ture recognition project, in Proceedings of the
fifth IFIP TC5/WG5. 2 international workshop on
geometric modeling in computer aided design
on Product modeling for computer integrated
design and manufacture, Chapman & Hall, Ltd.,
1997, pages 179–190.

[6] Gibson, P.; Ismail, H.; and Sabin, M.: Optimisa-
tion approaches in feature recognition, Interna-
tional Journal of Machine Tools and Manufac-
ture, 39(5), (1999), 805–821.

[7] Gibson, P.; Ismail, H.; Sabin, M.; and Hon, K.:
Interactive programmable feature recognisor,
CIRP Annals-Manufacturing Technology, 46(1),
(1997), 407–410.

[8] Han, J.; Pratt, M.; and Regli, W. C.: Manufac-
turing feature recognition from solid models:

a status report, Robotics and Automation, IEEE
Transactions on, 16(6), (2000), 782–796.

[9] Hipp, R.: Sqlite optimizer, https://www.sqlite.
org/optoverview.html, 2013.

[10] Ioannidis, Y. E.: Query optimization, ACM Com-
puting Surveys (CSUR), 28(1), (1996), 121–123.

[11] Kyprianou, L. K.: Shape classification in
computer-aided design., Ph.D. thesis, Univer-
sity of Cambridge, 1980.

[12] Lee, K.; Armstrong, C. G.; Price, M. A.;
and Lamont, J.: A small feature suppres-
sion/unsuppression system for preparing b-
rep models for analysis, in Proceedings of the
2005 ACM symposium on Solid and physical
modeling, ACM, 2005, pages 113–124.

[13] Ltd, T. E.: CADfix 9.0., http://www.transcendata.
com/products/cadfix, 2013.

[14] Martin, P.: Some aspects of integrated prod-
uct and manufacturing process, in A. Bramley;
D. Brissaud; D. Coutellier; and C. McMahon, edi-
tors, Advances in Integrated Design and Man-
ufacturing in Mechanical Engineering, pages
215–226, Springer Netherlands, 2005.

[15] Spiby, P. and Schenck, D.: Express language ref-
erence manual, ISO TC184/SC4 Document N,
14.

Computer-Aided Design & Applications, 12(3), 2015, 373–382, http://dx.doi.org/10.1080/16864360.2014.981468
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

https://www.sqlite.org/optoverview.html
https://www.sqlite.org/optoverview.html
http://www.transcendata.com/products/cadfix
http://www.transcendata.com/products/cadfix
http://www.cadanda.com

	1. INTRODUCTION
	2. Related work
	2.1. Feature Recognition
	2.2. Relational Database Query Optimization
	2.3. Comparison with Gibson's Optimization Approach

	3. Declarative Feature Definition
	4. Feature Finder
	4.1. Overview
	4.2. Converting a Declaration Into SQL
	4.3. Tools

	5. Experiments
	5.1. Benefits of Database Optimization
	5.2. Optimality of Database Optimization
	5.3. Real Industrial Models

	6. Conclusions and future work
	Acknowledgements
	References

