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ABSTRACT

In this work, we present a multi-objective approach for Topology Optimization applied to the design
of devices with several materials. The first stage consists of applying a Multi-Objective Ant Colony
Optimization (MOACO) to find tradeoff topologies with different material distributions. In the second
stage, we parameterize the boundaries of the topologies found by using NURBS. A Multi-objective
Genetic Algorithm is applied as a heuristic optimization engine to optimize the control points, weights
and knots of the curves in order to smooth and refine the boundaries of the topology. The main
advantage of a multi-objective approach is that the designer can identify, explore and refine a number
of tradeoff topologies. The proposed methodology is illustrated in the design of a C-core magnetic
actuator.

Keywords: topology optimization, NURBS, ant colony, genetic algorithms.

1. INTRODUCTION

Topology Optimization (TO) [2–5], [18] is a design pro-
cess by which new designs can be explored by opti-
mally distributing material in the design region. The
best designs are achieved according to the objectives
and constraints defined for the specific application.
Since pioneering works by Bendsoe and Kikuchi [4],
Topology Optimization methods have been applied to
various physical systems, including electromagnetic
devices and machines [2,3],[18].

Lin e Chao [15] presented an integrated approach
that supports structural topology and shape opti-
mization. First they employ homogenization or mate-
rial distribution methods. After that, the generated
gray level image is converted to a parameterized
structural model by means of an image interpretation
method. Finally, a shape optimization is performed to
get a fine-tuned configuration, ensuring satisfaction
of all design constraints. The integration is carried
out by first converting the geometry of the topologi-
cally optimized structure into smooth and parametric
B-spline curves and surfaces. This conversion is made
by using template matching. Then the B-spline curves
and surfaces are imported into a parametric CAD
environment to build solid models of the structure.

The control point movements of the B-spline curves
or surfaces are defined as design variables for shape
optimization, in which CAD-based design velocity
field computations, design sensitivity analysis (DSA),
and nonlinear programming are performed. The inter-
pretation of the gray level image created at the first
stage is the main limitation of this proposal.

Tang and Chang [19] proposed an integrated
design approach that has been demonstrated to be
feasible for structural optimization. The approach
consists of five main steps: design problem definition;
topology optimization using the homogenization
method or the Solid Isotropic Microstructure with
Penalty (SIMP) method; boundary smoothing tech-
niques; geometric reconstruction in Computer-Aided
Design (CAD) solid model form; and CAD-based
shape optimization. The integration is carried out
by first converting the geometry of the topologi-
cally optimized structure into smooth and paramet-
ric B-spline curves and surfaces. The proposed solid
model generation method requires significant user
interactions and decisions, especially when branches
are involved. Another drawback is that mesh dis-
tortions can occur, making the batch mode shape
optimization impossible.
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Campelo et al. [5] presented a hybrid methodol-
ogy for the design of electromagnetic devices that
employs a Clonal Selection algorithm for Topology
Optimization (TopCSA) in order to obtain an initial
design for a given device under consideration, fol-
lowed by an automatic generation of a parametric
model by means of image processing technique. The
shape optimization is performed with the Real-coded
Clonal Selection Algorithm using the control points
for the refinement and improvement of the design
solution.

Heo et al. [11] integrated shape and topology opti-
mization in the design of the rotor of a synchronous
reluctance motor (SynRM), using the sensitivity analy-
sis along with the level set method. Automated meth-
ods for Topology optimization and CAD are discussed
in [7,8], [14]. The optimization of parameterized CAD
models is studied in [17]. More studies on the integra-
tion between topology and shape optimization can be
found in [12,13].

An important limitation of previous studies is
dealing with one material (presence or absence of
material in the design region). In contrast to these
studies in the literature, we describe herein an inte-
grated topology and shape optimization approach
that can deal with multi-objective problems and
multi-material designs.

The methodology to represent the design region
as a grid and the allocation of material as a graph in
this grid was first proposed in [2] for single objec-
tive problems. This allows the representation of the
TO problem with multiple materials in a very simple
way. In addition, this reduces the topology optimiza-
tion to a problem of finding an optimal route in
the graph. Ant Colony Optimization (ACO) is a very
efficient heuristic for such a task and was applied
to solve mono-objective problems [2]. However, this
methodology in most cases results in a non-smooth
topology, which is not desirable in most of industry
applications.

In this paper, we present an automated and inte-
grated multi-objective approach for topology and
shape optimization, using multi-objective evolution-
ary algorithms. The first stage consists of applying
a multi-objective Ant Colony Optimization (MOACO)
to find tradeoff topologies with different material dis-
tributions. In the second stage, we parameterize the
boundaries of the topologies found by using NURBS.
Multi-objective genetic algorithms are applied as a
heuristic optimization engine to optimize the con-
trol points of the curves in order to smooth and
refine the boundaries of the topology. The main
advantage of this multi-objective approach is that
the designer can identify, explore and refine a num-
ber of tradeoff topologies. Extending it to a multi-
objective context makes the solution of topology
optimization much more flexible and easier from the
designer perspective. The shape optimization step
using genetic algorithms will be held to overcome
the low smoothness and some numerical instabilities

usually obtained by the results of the Multi-Objective
Ant Colony Optimization (MOACO). In order to have
more flexibility in handling the boundaries of the
topologies in the parameterized model, Non-Uniform
Rational B-Spline (NURBS) will be used. The method-
ology is illustrated in the design of a c-core mag-
netic actuator. The results show the adequacy of the
proposed approach to topology optimization.

2. MAIN BODY

The design region of a Topology Optimization prob-
lem is represented by a finite and bounded d-
dimensional subset � ⊂ R

d, with d = 2 or 3, in which
c ∈ � denotes a cell within this geometric space.
Each cell c is associated with one out of n possi-
ble states. By considering the state of a given cell as
the material properties at that point, then the gen-
eral multi-objective TO problem can be defined as
finding the optimal distribution of material in the
cells of the design region that minimizes the objective
functions while satisfying the problem constraints,
which are mathematical representations of the system
requirements and limitations.

In the proposed approach we extend the ACO
method proposed in [2] to solve multi-objective topol-
ogy problems. Although there are a number of studies
on using genetic algorithms for topology optimiza-
tion, the definition of a suitable representation for
the genome and genetic operators is very cumber-
some. With ACO, we can represent the design region
as a grid and the allocation of material as a graph
in this grid, thus reducing the topology optimiza-
tion to a problem of finding an optimal route in this
graph. The resulting topologies represent tradeoff
topology designs, more precisely, approximations of
the Pareto-optimal solutions of the multi-objective TO
problem. These topologies are coarse initial designs,
that should be smoothed and refined, nonetheless,
the designer can have a first overview of the design
possibilities.

Next, when the designer chooses one topology
from the tradeoff set, we identify the boundaries
of the regions with different materials by using a
boundary detection algorithm. The points along each
boundary are used to fit and define a NURBS curve
for that boundary. The control points, the knots and
weights of the NURBS curves are then optimized by
means of multi-objective GA, using the same objective
and constraint functions of the original problem, but
in a different search space. In this way, another set
of tradeoff solutions is generated around the topol-
ogy chosen by the designer. This new Pareto front
represents possible refinements of the initial coarse
topology identified in the previous stage.

The final design can be selected out of the tradeoff
solutions by using any decision-making methodology.
The designer can go back to the solutions identified
in the first stage, select another topology from this
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set and perform the NURBS parameterization and GA
optimization on this topology, in order to analyze
other design alternatives.

In the next sections the main steps of the sug-
gested approach to the topology and shape optimiza-
tion will be detailed.

2.1. Ant Colony Optimization

The Ant Colony Optimization (ACO) was introduced
by M. Dorigo in 1992 and has been used to solve
many combinatorial optimization problems, includ-
ing multi-objective ones [20]. It is based on the
foraging behavior of some real ants that deposit
pheromone along their paths when returning to their
nest after successfully finding a food source. The
path can be used by the other ants and eventually
they can find the shortest path between the food
source and the nest. Inspired by this behavior, the
ACO uses a pheromone model to construct candidate
solutions and to bias future sampling towards high
quality solutions. Algorithm 1 summarizes the ACO
metaheuristic [10].

Figure 1 illustrates the graph representation of the
design space to deal with topology optimization prob-
lems proposed in [2]. The scheme in Fig. 1 can reduce
the topology optimization to a problem of finding an
optimal route in the graph, for which the ACO is a
very efficient heuristic.

On this graph scheme, each edge, el , l = 1, . . . , u
represents a material property on the cell cij of the
topological matrix representation of the discretized
design space. In principle, this approach can handle
several materials. A route in this graph, representing
a valid topology in the design space, is constructed
by applying the AntBasedSolutionConstruct() routine.
The route is performed from the first to the last cell
in this directed graph using only one edge in each cell.
Note that the nodes of the route are in a fixed order,
thus the components of the route are the edges which
represent the several available materials

Here, this approach was extended for multi-
objective problems and the main difference is the

Fig. 1: Graph representation of the design space.

way that the pheromone update occurs. The proposed
MOACO can be explained by the flowchart of Fig. 2
that shows the steps detailed bellow:

• Initialization: First define the number na of ants,
the number u of available materials, the maxi-
mum number ncmax of cycles that is the stop
criterion and the initial value of the pheromone
on each edge el of the cell cij as τ

el
ij = τ0 = 1

u
for all cells of the topological matrix representa-
tion. Also the parameters that will be used in the
probabilistic rules (α, β and the initial heuristic
values η0) and in the pheromone updating pro-
cesses (ρ, Q , rmax) are provided. Another input
data should be the structure that represents
the discretized design space in the combinato-
rial optimization problem (COP) model. In this
work we have chosen to use one colony and one
pheromone structure due to its simplicity and
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Fig. 2: Flowchart of the proposed MOACO.

to the good results obtained at the experimenta-
tions done.
• AntBasedSolutionConstruct(): Since the graph

representation is a directed graph, each ant
starts from the first node and makes its tour to
the last one. The probability p

sp ,ek

ij of the ant sp

to choose the edge (material) ek on the cell cij is
defined as:

p
sp ,ek

ij =
τ

ek
ij∑

el∈N (sp)

τ
el
ij

, ∀ek ∈ N (sp) (2.1)

where the set N (sp) is a neighborhood structure
which contains the components ek that once
used to extend the solution created by sp and
make this extended solution still feasible. The
heuristic information η0 was not considered in
the definition of the probability p

sp ,ek

ij such as in

other ACO algorithms.
• Daemon Actions(): Four actions were imple-

mented. The first two, the local search by vis-
ibility information and a filtering strategy, are
implemented as proposed in [2].
1. The local search procedure using visibility

information was applied at every ncv cycles.
This was done by taking randomly some ant
tour (solution) sp and using its material dis-
tribution over the design space (topology)
to change the probability of choosing an
edge. The new probabilistic rule is defined
using the information about the material
surrounding each cell cij and the heuristic
value η(cil) is a positive number that indi-
cates the number of neighbor cells of cij
that have the same material. The new rule
is formulated as:

p
sp ,ek

ij =
τ

ek
ij .[η(cij)]

β

∑
el∈N (sp)

τ
el
ij .[η(cil)]

β
, ∀ek ∈ N (sp) (2.2)

From this particular solution chosen, the
AntBasedSolutionConstruct() is performed
using the probabilistic rule in Eqn. 2.2 where
the heuristic values are considered. At the
end of the construction, a new solution is
created with an expected smoother shape.

2. The filtering strategy is a simple mean filter-
ing mechanism applied at every nfs over the
pheromone matrix with the goal of reduc-
ing the amount of trail intensity variation
between adjacent cells, and then promoting
the generation of smooth topologies.

3. A third mechanism to enforce smoothness
in a different way is applied at every ncaf
cycles. The mechanism is performed in nt
randomly chosen solutions at the set Sbest
of best solutions found in the current cycle.
Then an averaging filter is applied randomly
t1 times over the topology defined by this
solution. The averaging filter is performed
using a mask 2× 2 and changing the mate-
rials to the value that appears more often in
the mask.

4. At last, also an elitism strategy was used.
After all solution construction and daemon
actions are performed, all routes are evalu-
ated. The new solutions are added to those
in the set of the global best solutions found
Sgbest and then the new Pareto ranking is
assigned. The best nfr Pareto ranked solu-
tions are stored in an archive with fixed size.
If the number of points at the first front
is greater than the size of the archive, the
crowding distance is used to select which
ones will remain at the archive.

• PheromoneUpdate(): In order to update the
pheromone model for the multi-objective TO,
the method combines the Pareto dominance
depth ranking (considering the ants tour in
Sgbest ) and information about the time the ants
were inserted into Sgbest . The higher the rank
and the longer a solution is in the archive, the
smaller is the pheromone increase. In this way,
the influence of solutions that are present in
Sgbest for many iterations is reduced to avoid
premature convergence to these solutions. The
variation �τ

spel

ij in the quantity of pheromone

laid on edge el on cell cij by the ant performing
the sp tour at the end of one iteration is given by

�τ
spel

ij =

⎧⎪⎨
⎪⎩

rmax − rsp + 1,

min(tp, 10)
·Q , if el ∈ sp

0, otherwise

(2.3)

where Q is a positive constant, rmax is the max-
imum rank allowed for solutions in Sgbest , rsp

is the rank of the particular solution sp ∈ Sgbest
and tp is the time (number of cycles) that the
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particular solution sp is in the archive. If a solu-
tion sp just entered the archive, then we assume
that tp = 1. Note that solutions with lower ranks
contribute more to increasing the pheromone
amount and the longer a solution is in the
archive the less it contributes according to Eqn.
2.3. Then the update of the pheromone trail of
all components is done by:

τ
el
ij ← (1− ρ)τ

el
ij +

∑
sp∈Sgbest/cij∈sp

�τ
spel

ij (2.4)

The parameter ρ is the pheromone evapo-
ration rate. The pheromone trail is normalized
and corrected for all values smaller than a lower
bound.

• Stop criterion: the criterion used was the max-
imum number of cycles ncmax, but other usual
criteria are a predefined maximum execution
time or when the stagnation behavior of the
Sgbest is observed.

2.2. Parameterization

The topologies returned by the ACO method can be
further parameterized and refined using a Genetic
Algorithm. For an efficient parameterization of the
curves that define the boundaries between different
materials in the topology, we chose to use NURBS. The
geometrical characteristics that motivate this choice
are:

• Strong convex hull property: a NURBS curve of
order p (degree p − 1) lies within the union of
convex hulls formed by p successive control
polygon vertices. This provides control about
the shape of the curve.
• Local approximation: changes in a control point

or in a weight value affects the NURBS curve only
locally;
• Smoothness.
• The extreme points are the first and the last

control points.

In order to obtain a parameterization of one or
more topologies on the non-dominated set identified
by the optimization with ACO, we apply the following
procedure:

1. Matrix Preprocessing: Cleaning; Surface smooth-
ing; Matrix Refinement;

2. Vertices classification;
3. Map vertices in the representation matrix to

Cartesian coordinates in the design region.
Select the control points and degree of the
NURBS curves;

4. Determination of weights and knots.

In the preprocessing step, the Cleaning operator
removes isolated elements, i.e., those without neigh-
bors with the same material property. This works as
filtering imperfections over the topology. The sur-
face smoothing operator smoothes the boundaries
eliminating some points along the boundary and facil-
itating the subsequent parameterization. Finally, the
Matrix refinement operator increases the matrix res-
olution. Each element is further divided into k2 ele-
ments. This increases the number of vertices available
for selection in the process of defining the control
points, hence increasing flexibility.

Given that the main goal in the preprocessing
stage is to prepare for the continuous optimization
(shape optimization) of the topology of interest, some
of the choices made here were done in order to avoid
the appearance of new regions and holes. In other
words, the topology is fixed and cannot be changed
by the genetic algorithm. The topological character-
istics of the solution under refinement should not
be changed. New regions could appear as a conse-
quence of the intersection of approximating curves
in the boundary of two regions with different mate-
rials. Therefore, the intersections of curves and the
contact with the global boundary of the design region
should not be modified during the optimization by
the genetic algorithm. This requirement can be satis-
fied by forcing the intersection points to be the initial
or final control points of the curves.

The next step is to define the polygonals that make
up the boundaries. After the preprocessing, all edges
of the discretized region that are between two cells
of different material are identified as belonging to
the boundary. Each vertex of the discretized region
receives a value from 0 to 4 corresponding to the
number of the edges belonging to the boundary that
is linked to it. For example, consider a square that was
discretized in a grid 3×3 as in Fig. 3 (a). In Fig. 3 (b)
the edges identified in red are those that will compose
the polygonal that makes up the internal boundaries
of the topology. The value 0 is assigned to the vertex
P since the two neighboring cells are composed of the
same material, the vertex S receives value 1, the vertex
Q receives value 2 and the vertex R receives value 3.

The next step is to determine the polygonal that
will represent the internal boundaries. In Fig. 3 (c)
they are the yellow, green and purple lines. Note that
this classification implies that the vertices that are in
the intersection of polygonal lines are assigned with
values 3 or 4 and the vertices that are on the external
boundary of the discretized space are assigned with
value 1. After classifying all vertices it is possible to
determine the vertices of each polygonal lines (in the
representation of the design region) in a way that the
first and the last are points with classification 1, 3 or
4, and the other points in the lines have value 2. For
simple closed polygonal lines all vertices have value 2
and the list will start and finish on any of these ver-
tices. The vertices with value 0 are not points in the
internal boundary. After this classification and choice
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(a) (b) (c)

Fig. 3: Example of the classification of the vertices in a discretized layout.

of vertices and polygonal lines, they are mapped from
the representation matrix to Cartesian coordinates in
the design region.

In order not to modify the topological characteris-
tics of the configuration, the first and the last point
in the list are always chosen as control points of
the NURBS parameterization, because they are either
points touching the boundary of the design region,
intersection points or initial and final points on a
closed curve. Due to the strong convex hull property
of the NURBS, if there are several consecutive control
points in a straight line then the elimination of some
of them as control points or the choice of a higher
degree of the NURBS curve parameterization is rec-
ommended in order to have more flexibility and to
allow the search for improved shapes in the boundary.
The implementation of a routine that performs the
automatic choice of the control points with these
characteristics is simple.

Once finished the automated process of choosing
the control points and the several curves that repre-
sent the internal boundaries of the different material
regions, the initial values to the weights are cho-
sen as 1 and the knot values are chosen as equally
spaced on the interval (0, 1) except for the first and
last p + 1 values, where p is the degree of the NURBS
curve. The arbitrary choice of values was taken con-
sidering that they will be modified by the genetic
algorithm when searching for the best values for these
parameters. This process will be illustrated ahead in
section 2.4 with the study of the optimization of the
c-core magnetic actuator.

2.3. Multi-objective Genetic Algorithm

As a final stage of the topology optimization pro-
cess, the NSGA-II [9] is applied. Figure 4 presents
the flowchart of the NSGA-II. The optimization vari-
ables in this step are the coordinates of the control
points, the weights and the knots of all the NURBS
that describe the boundaries. For those control points
on the external boundary of the design region, it
will be permitted to change its coordinates in a way
to stay in the boundary. Concerning the knots, the
first and last p + 1 values are not decision variables,
where p is the degree of the NURBS curve. For each
variable, lower and upper bounds are defined. The

Fig. 4: Flowchart of the NSGA-II.

choice of these values should be made in a way that
the topological characteristics are preserved and it is
intrinsically related to the problem under study.

2.4. Design of a C-core Magnetic Actuator

The proposed approach was applied to the study of
the optimization of a C-core magnetic actuator [2],[5,
6]. The c-core magnetic actuator is composed of three
main parts: the armature and the yoke solid blocks of
ferromagnetic material; and the design domain, which
is discretized into a 20× 10 square grid. Each cell
within the design domain can assume three states,
corresponding to three different materials: air, iron,
or a magnetic material (for this specific example,
NdFeB magnets were used). The discretization of the
c-core actuator design domain is shown in Fig. 5.

Fig. 5: C-core magnetic actuator (all values are in
cm).
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(a) (b)

Fig. 6: Layout of the design region: (a) obtained by
the MOACO; (b) after the matrix preprocessing.

The multi-objective optimization problem can be
stated as:

min
s∈�

(Tx(s), VolPM (s)) (2.5)

where Tx is the x-directional attractive force on the
armature expressed in terms of the torque, VolPM is
the volume of permanent magnet material (PM) in the
design region and � is the set of all layouts on the
discretized region. The goal of the design is to find
an optimal material distribution that maximizes the
output torque, or equivalently minimizes the negative
of the torque, while minimizing the volume of PM. The

cost of the permanent magnet material is related to
the volume of PM, and it accounts for the majority
part of the cost of the PM machine due to the high
price of the rare earth material.

At the first stage of the proposed approach, to
solve the problem defined in Eqn. 2.5, the output
torque is calculated by FEMM [16] using nonlinear
finite element analysis and the algorithm was set up
as follows:

• number of ants na = 20;
• pheromone evaporation rate ρ = 0.85;
• Q = 100 α = 1 and τmin = 0.05
• maximum number of cycles ncmax = 1000

The mask mechanism was applied to nt = 10
topologies from the first front at every ncaf = 25
cycles. In this case, t1 = 20 masks are randomly
applied to each topology, such that at most 10% of
the total number of cells is changed in each topology.

Figure 6 (a) shows the layout found by the pro-
posed MOACO that maximizes the attractive force.
The maximum found for the force was 950.83 Nm
(with percentage of volume of PM equals to 50.5%).

Once the nondominated topologies (estimate of
the Pareto front) are obtained, the designer can
further analyze specific designs along the set. By
choosing one particular point on the estimate of the
Pareto front, the parameterization of the boundaries
is done as described in section 2.2. Fig. 6(b) shows
the topology that maximize the attractive force after

(a) (b)

Fig. 7: (a) Polygonal lines boundaries; (b) NURBS curves after parameterization; Control points in green.
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the matrix preprocessing. The control points and the
polygonal lines obtained from the topology presented
in Fig. 6(b) are shown in Fig. 7. After determining
the initial knots vector and the weights, this topol-
ogy, which represents one with maximum torque, is
further refined with shape optimization using the
NSGA-II.

The NSGA-II was configured with binary tourna-
ment to select the parent chromosomes and the
genetic operators are the polynomial mutation and
the SBX crossover [1]. We adopted the following
parameters for the NSGA-II:

• Population size pop=20;
• Number of generations gen=50;
• Crossover rate 0.8;
• Pool size equal to half the population size;
• Distribution indices for crossover and mutation

operators: both equal 20;
• Lower bound of weights equal to 0 and upper

bound equal to 2;
• Range of the coordinates of the control points

was equal to half size of the side of the square
cell (after matrix refinement);
• For a given knots value its range was half of the

distance to its neighbors values;

The suggested choices for the upper and lower
bounds for weights, knots and coordinates of the
control points were able to maintain the topological
properties of the layout. Figure 8 shows the esti-
mated Pareto front (magenta and red points) by
MOACO and the improved front for the sample
(blue points) selected for parameterization and shape
optimization. These results illustrate that the method

Fig. 8: Estimated Pareto Front (magenta and red
points) by MOACO; Samples (red points) selected for
parameterization and shape optimization; Estimated
Pareto Front (blue points) obtained by NSGA-II from
the sample points.

is capable to improve designs obtained by MOACO in
the topology optimization step

3. CONCLUSION

This work presented a multi-objective approach that
integrates topology and shape optimization. This
approach is capable to handle problems involving
the distribution of several materials in a design
domain. The representation used is simple and the
results are given in parametric models based on
NURBS curves. With a suitable choice of parame-
ters the NSGA-II was capable to improve the results
obtained by the MOACO algorithm which shows the
adequacy and usefulness of the proposed approach
to multi-objective electromagnetic topology optimiza-
tion. With the proposed approach there is the advan-
tage of finding and providing several solutions of
the problem in a single run. In this way, the deci-
sion maker can explore a number of alternative
designs offered by a multi-objective topology opti-
mization approach. The decision maker can get some
insight by analyzing the changes in the shape of
the boundary and using the NURBS parameteriza-
tion to make his/her own changes. Future work
include self-adaptive parameters and extension of
this approach to 3D problems.
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