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ABSTRACT

There are more than 11 million elderly Americans living alone. They belong to a latent risk population
that will encounter emergency situations on a frequent basis. Thus, latent risk populations require
constant monitoring. Currently, there are many devices that can assist the elderly, but they are
not real-time, easily accessible, or particularly effective. Here, we present a novel design for healthy
independent living. The system will contain devices for fall detection, surrounding environment mon-
itoring, as well as measuring a person’s blood pressure, pulse, and oxygen saturation in real-time.
With this technology, a person’s state is not only controlled by that individual; rather, everything is
automated so that even if a person falls unconscious, the system will still take the necessary steps to
call for assistance. The technology we propose is aimed towards both healthy individuals as well as
those with disabilities and chronic conditions.
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1. INTRODUCTION

The elderly population (people 65 years or older)
numbered 40.4 million in 2010, an increase of 5.4 mil-
lion or 15.3% since 2000. The number of Americans
aged 45–64 who will reach 65 over the next two
decades increased by 31% during this decade. Over
one in eight Americans is an elderly person. Persons
reaching age 65 have an average life expectancy of an
additional 18.8 years. The population of 65 and over
is projected to increase to 55 million in 2020 (a 36%
increase for that decade). By 2030, there will be about
72.1 million elderly people, over twice the number in
2000 [30].

Falls occur frequently in the elderly population
and significantly impair their quality of life. It is
estimated that more than one in three elderly indi-
viduals living at home fall at least once a year with
the risk of falling increasing with age. Falls also lead
to decreased mobility, fear of falling again, and death
[7],[20],[29]. Treatment of the injuries and complica-
tions associated with falls costs the U.S. over thirty
billion dollars annually. The danger and severity of
falling and the possibility of not having any assis-
tance in case of unconsciousness or extreme injury
are primary reasons why many otherwise healthy

individuals are forced to leave the comfort and pri-
vacy of their own home to live in an assisted-care
environment. Furthermore, a fall can have a psy-
chological impact even if the senior is not physi-
cally injured. After a fall, many seniors become so
afraid of falling again that they limit their activities
which in turn decreases their fitness, mobility and
balance. This leads to decreased social interactions,
reduced satisfaction with life, and a higher likelihood
of depression. This fear then increases the risk of
another fall [23].

Health care and medicine rely on effective detec-
tion and characterization of a person’s physical and
mental states and significant changes to those states.
Current methods to assess these indicators of well-
being are performed at the convenience of the health-
care provider who often assumes that observations
during an office visit represent typical function. Fur-
thermore, these methods may involve contrived or
burdensome tests or depend heavily on recall. Thus,
current methods may miss significant acute events or
important signals of declining function or may poorly
characterize detected events.

Due to 3D capabilities becoming ubiquitous and
computers with basic graphics hardware running 3D
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applications, we designed a computer-aided real-time
automated monitoring system. Our monitoring sys-
tem is intended to overcome these limitations. It has
the potential to capture rare, irregular, or transient
events; symptoms that are difficult for a patient to
report; and changes in condition that evolve slowly
over time. These improvements, in turn, could yield
more accurate and earlier detection of changes that
may interfere with healthy and independent living.
The development of our technologies will signifi-
cantly enable functional independence and improve
the quality of life for people with disabilities, people
aging with mild impairments, as well as individuals
with chronic conditions.

The technology enables monitoring of personal
motion, vital signs, and physiological measures in a
manner that minimizes disruption to an individual’s
daily routine and at all times protects their privacy
and comfort. The system is expected to integrate, pro-
cess, analyze, communicate, and present data so that
the individuals are engaged and empowered in their
own healthcare with reduced burden to healthcare
providers.

2. RELATED WORK

Accelerometers with low-cost and low-power con-
sumption features can make a wearable and reli-
able fall detection system. Multiple sensors with
accelerometers placed at various locations in the
body are used for real-time human movement detec-
tion [11],[13],[14]. Many systems [4],[7],[18],[27],[34]
employ tri-axial accelerometers to detect falls accord-
ing to the acceleration of body motion and pos-
ture angle. To achieve better accuracy, later systems
[1],[17],[33] detect falls using accelerometers with
barometric pressure sensors, image processors, and
gyroscopes.

Information Technology for Assisted Living at
Home (ITALH) is a project using new technology to
help older citizens live more comfortably [9],[10]. The
ITALH includes two items: the IVY project concerns
detecting falls at home or in office environments, and
the SensorNet project concerns developing an inte-
grated, safe and wireless sensor to monitor the user.
However, these systems have several restrictions[36]:
The methods are device-centric, not user-centric. The
devices are expensive and complicated. The informa-
tion received by the doctor is insufficient to make an
accurate diagnosis in a timely fashion. In most of the
systems, the final decisions are based on the data col-
lected from the sensors and the user cannot express
their ideas on their own initiative and must passively
accept the decision. In addition, some of the previous
systems use acoustic or vibration sensors and image
processing software which are high cost and not uni-
versally accessible. Thus, ordinary users cannot con-
trol them on their own. Also, a few systems send a text
message as a simple alarm; however, the text message

is not enough to describe a patient’s symptoms, so
caregivers cannot get an accurate assessment of the
situation.

Home Healthcare Sentinel System (HONEY) [36] is
a home-based fall detection system. It uses a tri-axial
accelerometer to trigger the detection and deploy a
speech recognition system and images to reduce the
false positives. The trigger depends on the signal vec-
tor magnitude (SVM). In this system, if the tri-axial
accelerometer doesn’t detect the fall, the alert will not
be sent out. An example would be a person falling
slowly which the system would not detect.

For the real-time reconstruction of 3D scenes from
videos, Narayanan et al. [19] computed depth maps
using multi-baseline stereo images and merged them
to produce viewpoint-based visible surface models.
Holes due to occlusion are filled in from nearby
depth maps. Koch et al. [16] presented a volumetric
approach for fusion as part of an uncalibrated 3D
modeling system. Sato et al. [28] proposed a volu-
metric method based on voting. Each depth estimate
votes not only for the most likely surface but also
for the presence of free space between the camera
and the surface. Werner and Zisserman [32] pro-
posed an approach to reconstruct buildings. It uses
sparse points and line correspondences to discover
the ground and facade planes. Vaish et al. presented
a method which adopts techniques from classical
stereo reconstruction, matching corresponding pixels
in all images of the light field using essentially robust
patch-based block matching [31]. Cornelis et al. [6]
presented a system for near real-time city modeling
that employs a simple model for the geometry of the
world.

3. OUR APPROACHES

Due to the limitations of the above approaches, we
designed a system that monitors the potential risks to
healthy elderly citizens and notifies emergency crews
in real-time. By wearing Watching-Over-Me (WOM), a
person will be monitored not only in his or her home
but also in places where the person spends plenty
of time (such as stores, parks, etc.). The system will
contain the devices for fall detection, surrounding
environmental monitoring, as well as measuring a per-
son’s blood pressure, pulse, and oxygen saturation
in real-time. Furthermore, the systems will integrate
information from multiple sensors, appropriate clin-
ical information, and ambient data such as tempera-
ture and/or global position. Fig. 1 is the framework
of the processing system. First, the system acquires
real-time data from the surrounding environment and
the health data from the person wearing WOM. This
information is stored as standard scenes and each
time the person appears in the same scene the system
compares the surrounding environmental informa-
tion with the information in stored standard scenes.
The system continually learns from environmental
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Fig. 1: The framework of the system.

data and then constructs the 3D scene. The 3D scene
is accumulated as the person passes through more
and more places.

The devices periodically compare the real time
data with the learned data. When an abnormal event
occurs, it will make a decision and inform the
pre-determined parties (ambulance, caregiver, fam-
ily members, etc.). The system will base determining
abnormal scenes on its experience to detect progres-
sive declines in physical and cognitive abilities. To
achieve this, the system compares recent input data
of the scene with the data of the routine scene. For
example, suppose a person falls down or is stagger-
ing, the system integrates the data with health data to
make the decision if the person is in critical condition.
If the system detects this kind of situation, it auto-
matically calls 911 or families and friends and also
triggers an alert system in the WOM. If there are peo-
ple around, they will also be alerted. If the situation is
considered “normal”, the system reports the person
as healthy. The person’s activities, surrounding envi-
ronment, and a list of health data can be viewed on
the internet with office computers or mobile devices.
The person wearing the WOM can control who can see
his or her activities.

3.1. Fall Detection

A tri-axial accelerometer is integrated into the fall
sensor, and the fall sensor sends early warning infor-
mation if the trigger conditions are met with handling
the three axes’ sample values. Many smartphones
have a tri-axial accelerometer. We can use these smart-
phones, such as the HTC G3 Hero smartphone, which
has a tri-axial accelerometer, as fall sensors. In addi-
tion, the Bluetooth module and a high performance
processor on the G3 satisfy a fall sensor’s require-
ments very well.

It is known and verified that a sensor based on
a tri-axial accelerometer can distinguish body move-
ments more precisely when it is fixed on a patient’s
waist [5]. The tri-axial accelerometer will output three
acceleration values of x-, y- and z-axis at every sam-
pling point. When the body is stationary, the total
acceleration of the body is the gravity of Earth, ver-
tical down. When the body is moving, the accelera-
tion changes along with the movement intensity[36].
Fall sensors are based on the assumption that a fall

is usually associated with a magnitude impact. An
estimation of the degree of body movement inten-
sity can be obtained from the signal vector magnitude
(SVM). Define SVM by the equation:

SVM =
√

xi
2 + yi

2 + zi
2 (3.1)

where xi is the i-th sample value of the x-axis sig-
nal (similarly for yi and zi ). Therefore, comparing
the SVM to a preset SVM threshold allows detection
of the associated fall. Similarly, when the body falls,
the space relationship between body and ground also
changes significantly. In order to determine the space
posture of the body, Tilt Angle (TA) is defined as
the angle between positive z-axis and SVM by the
equation:

TA = arccos(z/SVM) (3.2)

where z is the sample value of the z-axis signal. TA
refers to the relative tilt of the body in space.

Karantonis [14] provides the range of TA cor-
responding to the different body postures: if the
patient’s TA is from 0 to 20°, the patient is classified
as standing, values from 20 to 60° indicate a sitting
posture, and if TA is between 60 and 120°, the patient
is regarded to be in a lying posture. In most cases, a
fall starts from a standing posture, and directly ends
with lying on the floor. However, no fall would be pre-
dicted if the user falls in such a way that he or she
was not parallel with the ground. This is important in
various cases during a fall. A user might try to grasp a
wall, chair, or other objects and end up slumping next
to the object, rather than lying on the floor. There-
fore, a sitting posture following a magnitude SVM is
regarded as a fall.

3.2. 3D Scene Reconstruction

WOM (Fig. 1) portable signaling devices with two sets
of complementary sensors are on the elder person’s
side at all times. One set of biochemical sensors
detect biochemical markers in the elder person, such
as blood glucose, blood pressure, pulse, oxygen satu-
ration, sweat pH and salt balance. Biochemical abnor-
malities occur when the individual’s biochemical and
physiological parameters exceed the threshold and
reach a dangerous level. Another set of sensors are
image sensors – tiny cameras that are becoming
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increasingly smaller. Due to modern day standards,
they can be mounted on the person’s clothes or in a
hat and capture real-time images of the surroundings.

There has been a considerable amount of work
involving 3D reconstruction from aerial images
[12],[37]. The system collects video streams and auto-
matic, real-time 3D reconstruction from videos of
scenes. The core algorithms operate on the frames of
a single video-camera as it moves in space. The recon-
structions are based on frames captured at different
time instances by the same camera under the assump-
tion that the scenes remain static [22]. The depth
estimates are used around object boundaries by oper-
ating on individual light rays [15]. When the ray space
is sampled densely enough, each scene point appears
as a line segment in such an epipolar-plane image
(EPI) with the slope of the line segment depending
on the scene point’s depth. We can accurately esti-
mate the slope of line segments or, equivalently, the
depth of scene points. The slope m of a line segment
associated with a scene point at distance z is given by

m = 1
d

= z
f b

(3.3)

where d is the image space disparity defined for
a pair of images captured at adjacent positions or,
equivalently, the displacement between two adjacent
horizontal lines in an EPI, f is the camera focal length
in pixels and b is the metric distance between each
adjacent pair of imaging positions.

To compute depth estimates, a depth z, or equiv-
alently a disparity d, are assigned to each EPI-pixel
(u, ŝ). For a hypothetical disparity d the set R of
radiances or colors of these EPI-pixels is sampled as

R(u, d) = {E(u + (ŝ − s)d, s)|s = 1, . . . , n}, (3.4)

where n corresponds to the number of views in the
light field. From the density of radiance values in
R(u, d) a depth score S(u, d) is computed in linearized
RGB color space. The initial depth score [8] as

S(u, d) = 1
|R(u, d)|

∑

r∈R(u,d)

K(r − r̄), (3.5)

where r̄ = E(u, ŝ) is the radiance value at the currently
processed EPI-pixel, and the kernel

K(x) = 1 − ‖x/h‖2 if ‖x/h‖ ≤ 1 and 0 otherwise.
For each EPI-pixel(u, ŝ), the pixel’s depth estimate

is

D(u, ŝ) = arg max
d

S(u, d). (3.6)

3.3. Processing Data

The system continually learns from environmen-
tal data by supervised learning [26] to determine
the abnormal scene. For example, the reconstructed
building is not in a vertical position. It indicates the
person wearing WOM is deviated from a straight posi-
tion. The person may incline the body, fall or lean on
an object. The task of supervised learning is:

Given a training set of N example input–output
pairs (x1, y1), (x2, y2), . . . , (xN , yN ), where each yi was
generated by an unknown function y = f (x), discover
a function h that approximates the true function f .

Here x and y can be any value. The function h
is a hypothesis. Learning is a search through the
space of possible hypotheses for the one that will per-
form well, even on new examples beyond the training
set. Supervised learning can be done by choosing the
hypothesis h * that is most probable given the data:

h∗ = arg max
h∈H

P(h|data). (3.7)

P(Y |x) is a conditional probability distribution.
The system processes the data from surrounding

environments, and the health data from the per-
son wearing WOM. Fig. 2 is a neural network which
analyzes data to make the decision for the output.

3.4. Scene Rendering

The system transforms the data into a real-time 3D
scene and 3D character. The data is continuously
fed and the character and surrounding environment
are updated all the time. The system automatically
searches for a good point of view, allowing a good
understanding of a scene for a human user[21]. The
position will be the optimal light source position.
Heuristic search is used to choose viewpoints only in
potentially interesting regions, obtained by subdivi-
sion of spherical triangles.

Fig. 2: A neural network for making decisions.
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The points of view are supposed to be on the sur-
face of a virtual sphere. The scene is in the center of
the sphere. The surface of the sphere of points of view
is divided into 8 spherical triangles (Fig. 3). The best
spherical triangle is determined by positioning the
camera at each intersection point of the three main
axes with the sphere and computing its importance
as a point of view. The three intersection points with
the best evaluation are selected. These three points on
the sphere determine a spherical triangle, selected as
the best one. Fig. 4 shows an initial spherical triangle
ABC, a new spherical triangle ADE is computed and
so on. The vertices of spherical triangles represent
points of view.

Fig. 3: Sphere divided in 8 spherical triangles.

Fig. 4: Heuristic search of the best point of view by
subdivision of a spherical triangle.

The importance of a point of view will be com-
puted using the following formula:

I (V ) =

n∑
i=1

[
Pi(V )

Pi(V )+1

]

n
+

n∑
i=1

Pi(V )

r
(3.8)

where, I (V ) is the importance of the view point V ,
Pi(V ) is the projected visible area of the polygon num-
ber i obtained from the point of view V , r is the total
projected area, and n is the total number of polygons
of the scene. In this formula, [a] denotes the smallest
integer, greater than or equal to a, for any a.

A dynamic scheduling algorithm in the client side
is used to optimize the loading and real-time ren-
dering performance for the 3D scenes. The method
can dynamically load and unload the partitioned data
blocks from the server side [35]. Blocks are used
for rendering according to the viewpoint parameters.
With the change of the viewpoint, the rendering can
be real-time scheduled in coordination with the inter-
nal and external memories. If the blocks in memory
deviate from the viewpoint more than a predefined
threshold, they are unloaded.

Assume that the rotation angle of the current view-
point in the XZ plane is α, which will be quantized into
one of the eight normalization angles. Suppose that
the unload threshold of the scene blocks is:

TX (/TZ) = Xnub(/Znub) + 2sgn(cos(π + α) (3.9)

where TX and TZ are respectively the scene blocks’
index numbers along the X and Z axis. (Xnub , Znub) is
the current viewpoint position.

To generate a 3D character model and render
action of model in the scene is based on the idea of
declarative modeling [2],[3],[24],[25]. Declarative mod-
eling is a recent and emergent paradigm in the world
of computer-aided design systems. As opposed to
the imperative geometric modeling, it requires nei-
ther a complete knowledge of the final result at start
time nor specified numeric details. Furthermore, con-
sistency of the description can be automatically and
continuously maintained by the system [25].

The character structure of our system is shown
in Fig. 5. The character is generated by the system
through the following stages:

1. The designer - the person wearing WOM pro-
vides a description, for example, I am walking.

2. The current description is translated into a
description language – to allow interaction
between the modeler and the designer.

Fig. 5: The character structure.
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3. From the description language the system pro-
duces a model.

4. CONCLUSION

We have presented a novel design for healthy inde-
pendent living. It is reliable, safe, and simple. It is easy
to use and has intuitive user interfaces with consider-
ation for a user’s disability or impairment. The design
provides feedback in meaningful forms, whether audi-
tory, visual, or tactile. Most importantly, our system
for healthy independent living engages, empowers,
and motivates the individuals with respect to his or
her own abilities.

The advantage of our system is that we are able
to detect the person’s dynamic state. Our method is
based on surrounding environmental information, fall
detection, and health data as auxiliary information.
As long as the person is wearing WOM, it is all auto-
mated. Even if the person suddenly falls unconscious,
the device will still take the appropriate actions. Thus,
this technology has multiple benefits and can be tar-
geted for both disabled and healthy individuals alike.
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