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ABSTRACT

Tolerance is one of the important factors that cannot be ignored in modern manufacturing process,
it not only affects the machining accuracy and production quality of parts, but also has a vital signif-
icance in process route, testing, manufacturing costs, assembly of final products, etc. In this paper,
the tolerance mathematical modeling and analysis method based on control points of geometric ele-
ments are proposed, in which the geometric tolerance is indicated according to the position variation
of control points. The first step is to define the inherent direction of geometric elements. The inherent
direction of point is the same with the one of the benchmark points, and the inherent direction of
linear is the linear itself while the inherent direction of plane is the one of the normal directions. The
second step is to establish the tolerances coordinate system according to the inherent direction of geo-
metric elements, then defining and classifying the degrees of freedom of geometric elements, taking
the direction of DOF as the change direction of control points, using the position parameter domain
of geometrical elements as the tolerance zone. The third step is to simulate the dimensional tolerance,
position tolerance and shape tolerance according to the variation of geometric elements parameters.
Finally this method is applied in actual tolerance analysis of parts, and the calculation results show
that the mathematical modeling and analysis methods are in accordance with all relevant tolerance
principles and regulations, which have a vital significance in the studying of whole tolerance field.

Keywords: Tolerance analysis, mathematical modeling, control points of geometrical elements.

1. INTRODUCTION

For mechanical designing, manufacturing and assem-
bling, tolerance analysis is to determine the varia-
tion of geometric parameters parts within prescribed
scope for the goal of compatibility, coordination and
generality[1–3]. Scholars at home and abroad have
acquired great achievements in tolerance mathemat-
ical modeling and representation, tolerance analy-
sis and synthesis, computer-aided tolerance design,
concurrent design, function tolerance research,
etc [4,5,7].

In terms of tolerance modeling and analysis, the
tolerance mathematical modeling on plane of polyhe-
dron has been conducted by Roy, which based on the
analysis of the factors DOF, including the dimensional
tolerance, shape tolerance, orientation tolerance and
location tolerance [20]; Wang established a DOF anal-
ysis modeling based on tolerance domain-deviation
space mapping and studied the tolerance by using
this model in comprehensive research and analysis
for geometric features [23]; Chiabert put forward CAT

modeling based on the theory of the new genera-
tion Geometrical Product Specification and verifica-
tion, and successfully applied the position tolerance
analysis and processing in CATIA software [6].

Wu developed a tolerance mathematical modeling
based on control points of geometric elements vari-
ation, indicating size and geometric tolerance with
the position variation of control points of geometric
elements [1]. Bourdet introduced small displacement
vector of the cluster (SDT) in the field of tolerance [3].
SDT is the vector composed of six component motion
showing tiny displacement of rigid body, which is
used to describe the shape, location, direction and
size deviation of geometric elements. Davidson put
forward a tolerance graph model compatible with
ASME standards. T_Map is a hypothetical point set
space with shape of convex polyhedron, its shape
and size reflect types and possible changes of target
object, so that there exists one-to-one correspondence
between the Tolerance changes of target and various
points in the T_Map [8].
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However, the tolerance mathematical modeling
and analysis method described above somewhat have
disadvantages. For instance, the traditional method of
dimension chain and tolerance zone graphic method
only can calculate the extreme value of tolerance in
one direction, while other directions of tolerance can-
not be analyzed[9–13,15]. The variation surface mod-
eling based on geometric operation is complicated,
and the kinematics modeling has some problems,
such as complex manual modeling method, incon-
sistence with the tolerance standard, etc[14,16,17].
The accuracy of results depends on the modeling
and its process is unable to automate. The param-
eter constraint cannot include all types of tolerance
based on this analysis method. Although the mathe-
matical definition of ASME can solve the uncertainty
of traditional tolerance definition, it still cannot be
directly applied to the computer[18,19,21,22]. The
SDT parameter cannot reflect the interaction between
tolerances, and there is no corresponding relation-
ship between SDT parameters and tolerance. The T-
map modeling process is complex and has difficulty
in the visualization and practical application. The
above various problems of mathematical model have
restricted the integration research and development
of tolerance[23–26].

To solve above problems, this paper puts for-
ward the tolerance mathematical modeling and anal-
ysis method based on control points of geometric
elements. It can analyze various corresponding toler-
ance of geometric elements, which be put in combi-
nation with entity CAD modeling easily. It not only
can indicate the tolerance which is convenient for
analyzing and conversion, but also be applied to
the computer aided tolerance designing. It will have
extensive application in the field of tolerance analysis.

2. THE MATHEMATICAL MODEL OF CONTROL
POINTS OF GEOMETRIC ELEMENTS

2.1. The Degrees Of Freedom of Control Points of
Geometric Elements

Traditional rigid body elements have six degrees of
freedom, namely translational DOF along the X, Y, Z
axis and rotation DOF along the X, Y, Z axis, but the
geometric elements are different from the rigid body
element. The number of DOF is less than six because
of the uncertainty of geometric elements tolerance.

In the tolerance analyzing, the new DOF needs to
be established to build the relationship between con-
straint and benchmark so that it can distinguish the
sense difference of DOFs. Firstly the inherent direc-
tion of geometric elements should be defined. The
inherent direction of point is the direction of bench-
mark points, the inherent direction of linear is the
linear itself, and the inherent direction of plane is the
one of normal directions. The DOFs of control points
of geometric elements are shown as Fig. 1(a-c):

(a) (b) (c)

Fig. 1: The DOFs of control points of geometric
elements.

Among the DOFs of control points of geometric
elements shown in Fig. 1, the factors include three
translational DOFs T1, T2 and T3. The linear ele-
ments include two translational DOFs T1, T2 and two
rotational DOFs R1, R2. The planes elements include
the translational DOF T along the normal and two
rotational DOFs R1, R2.

2.2. Tolerance Coordinate System for Geometric
Elements

Before establishing the tolerance mathematical mod-
eling, the coordinate system based on the DOF is set
up to represent the position and the change direc-
tion, which is consistent with relative ideal location.
The origin of tolerance coordinate system is in coin-
cidence with the center of geometric elements which
based on nominal position. It means that the origins
of coordinates geometry elements of point, linear and
plane are the point itself, the halfway point of the
straight linear and the center of the plane bound-
ing box. Moreover, the X axis direction of tolerance
coordinate system is the direction that benchmark
constraints goal points to the degrees of freedom, the
Z axis is the geometric elements inherent direction.

The directions of tolerance coordinate axis are the
inherent direction of geometric elements. The bench-
mark constraints goal points which can be used to
fit the changing direction and range of geometric ele-
ments. The change direction is axis direction and the
change range is the tolerance value in the tolerance
coordinate system.

But there exists a special situation when analyz-
ing the shape tolerance. It is not necessary build the
tolerance coordinate because the shape tolerance con-
trols the actual changes of geometric surface relative
to the fitting elements. For example, the changes of
straight linear extraction only exists in the vertical
plane. Therefore, it does not need to establish the
coordinate system when expressing the shape error,
which may be determined by the types of tolerance
and fitting elements.

The geometric elements of control points can be
divided into bearing and shape points, among them
the azimuth control points resolve the position of
fitting elements and the shape control points con-
trols the extraction of object elements. The azimuth
control point is the point itself, the azimuth control
points of linear elements are the two endpoints on
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both ends of the straight linear and the azimuth con-
trol of plane are three random points in this plane.
The change direction of azimuth control point is the
translational DOF direction of geometric elements,
but the coordinates of azimuth control point can only
change in this change direction, the coordinate values
outside change direction remain the same.

The change direction of azimuth control point
is the direction of translational DOF. The change
direction of azimuth control point for linear is the
translational DOF direction and vertical translational
DOF direction. The change direction of azimuth con-
trol point for plane is the normal translational DOF
direction. According to the variation of geometrical
element DOF , all kinds of tolerance can be showed.
The azimuth control point of change Geometric ele-
ments must be consistent with the meaning of toler-
ance, the biggest changes which exist in the quantity
control points is the tolerance value. The azimuth
control point of change Geometric elements must be
consistent with the meaning of tolerance, the biggest
changes which exist in the quantity control points is
the tolerance value.

The space shape of geometric elements can be
summarized as follows:

(1) The space shape of point variation in the rect-
angular coordinate system, cylindrical coordi-
nate system and spherical coordinate system
are cube, cylinder and sphere respectively;

(2) The space shape of linear variation may be
cube and cylinder;

(3) The space shape of plane variation is flat cube.

The relative position between the azimuth control
points can also present position variation of geomet-
ric elements. The surrounding area divided by the
maximum relative position is the tolerance zone. The
shape points are composed of geometric elements
points, in which the shape control point is the point
itself, and the shape control points of linear and plane
are located in the geometric elements and bound-
ary. The direction of shape control point variation are
specific direction or normal direction.

The variation space of shape geometry elements
control points constitutes the tolerance domain, such
as be in accordance with the requirements of tol-
erance. The shape of linear control point variation

direction has orthogonal direction and circumferen-
tial direction, and the variation space of shape control
points are cube and cylinder respectively. The vari-
ation direction of shape control points for plane
elements is along with the normal surface, so the vari-
ation space of plane is flat cube. The shape control
points changes in the location is relative to the ideal
geometry location, so the shape tolerance field must
depend on the ideal location of geometric elements.

The relationship between the absolute range
and relative changes can represent the relationship
between the position and direction tolerance, so there
is a corresponding relationship between the inter-
action of different tolerance types and variation in
quantity, such as the absolute changes and relative
changes of two straight linear azimuth control points
along a coordinate direction can represent location
tolerance and direction tolerance.

3. TOLERANCE MATHEMATICAL MODELING
BASED ON CONTROL POINTS OF GEOMETRIC
ELEMENTS

The geometric elements have a variety of tolerance
types and its position variation can be marked in
the rectangular tolerance coordinate system, shown
in Fig. 2.

3.1. Tolerance Mathematical Modeling Of Point
Elements

According to the error definition, the only tolerance
type of point elements is position error. When the
point changes from P0 to Pi , the tolerance can be
expressed as:

LSL ≤ σ =
√

(xi − x0)2 + (yi − y0)2 + (zi − z0)2 ≤ LSU

(1)

The LSU and LSL are upper and lower deviation
respectively. The constraint conditions are :⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

LSLX ≤ xi − x0 ≤ LSUX

LSLY ≤ yi − y0 ≤ LSUY

LSLZ ≤ zi − z0 ≤ LSUZ

max(xi − x0)2 + (yi − y0)2 + (zi − z0)2

(2)

Fig. 2: The position variation of control points in rectangular coordinate system parameters.
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The tolerance domain of point has a variety of
forms such as straight line, round, rectangular and
cylindrical. In the right angle tolerance coordinate sys-
tem, three parameters of control points(X, Y, Z) can
be used to simulate business field, which correspond
to length, width and height of cube shape tolerance
domain which is shown in Fig. 3 (a). When the toler-
ance domain of point is spherical, similarly can also
be said with the three parameters (�x, �y, �z), as
shown in Fig. 3 (b): θ stands for the point position
variation on the plane XOY, α is the position change
angle.

Fig. 3: The position variation parameters of control
points in the tolerance coordinate system.

When the control points vary in the spherical
coordinate system, the location parameters can be
said: ⎧⎪⎨

⎪⎩
�x = ρcosα cos θ

�y = ρcosα sin θ

�z = ρ sin α

(3)

When the control points vary in the cylindrical
coordinate system and the cylindrical radius is R, the
position parameters can be showed:{

�x2 + �y2 ≤ R2

LSLZ ≤ �z ≤ LSUZ
(4)

3.2. Tolerance Mathematical Modeling of Linear
Elements

In the right angle tolerance coordinate system, the
linear elements can use two endpoints P1P2 as the
tolerance control points. The range of position param-
eter is tolerance value and the dimensional value is D,
the position parameters can be showed:

DSL ≤ σ =
√

(�x)2 + (�y)2 + (�z)2 ≤ DSU (5)

Where: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�x = (x′
1 + x′

2) − (x1 + x2)

2

�y = (y ′
1 + y ′

2) − (y1 + y2)

2

�z = (z′
1 + z′

2) − (z1 + z2)

2

(6)

Fig. 4: The linear location variation in tolerance posi-
tion system.

When the tolerance field is cylinder and the tol-
erance for domain radius is R, as shown in Fig. 4
(a) :

The position tolerance can be expressed as fol-
lows:

R2
SL ≤ σ = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 ≤ R2

SU
(7)

The direction error expressed by vector angle as
follows:

θSL ≤ α = arccos
|aa′ + bb′ + cc′|√

a2 + b2 + c2
√

a′2 + b′2 + c′2
≤ θSU

(8)

Where the vector S (a, b, c) and S ’(a, b, c) are
the direction vectors before and after the line change
respectively, the θ is the tolerance value.

When the line varies in cylindrical coordinate sys-
tem, as shown in Fig. 4 (b), the azimuth control points
coordinates ρ1 and ρ2 vary in the range from 0 to
R, and θ1 and θ2 vary in the range from0 to π , the
tolerance field can be expressed as:

⎧⎨
⎩

(ρ1cosθ1 − ρ2cosθ2)2 ≤ �x2

(ρ1 sin θ1 − ρ2 sin θ2)2 ≤ �y2
(9)

3.3. Tolerance Mathematical Modeling of Plane
Elements

Since the plane elements has three DOFs, the control
parameters of plane elements are three control points
which exist in the nominal plane coordinate. It must
fit the plane tolerance domain according to the varia-
tion scope of control parameters, setting the primitive
equation plane S as:

Ax + By + Cz + D = 0 (10)

Where n (A, B, C) is the plane normal vector, the
distance L from the variation plane to the original one
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can be represented as:

Lmin ≤ σ = |Axi + Byi + Czi |√
A2 + B2 + C2

≤ Lmax(i = 1, 2, 3) (11)

When σ gets the max value, the plane S’ including
Pi (Xi, Yi, Zi) parallels plane S and the equation is:

Ax + By + Cz − (Axi + Byi + Czi) = 0 (12)

The area between the two parallel surfaces is the
plane tolerance zone. The change parameters of con-
trol points can be got by finite element analysis and
the size tolerance value can be simulated in the
business field.

4. CASE ANALYSIS

A simplified diagram for flexible support is shown in
Fig. 5 and the tailstock bottom is constraint bench-
mark for support hole. The normal direction in the
bottom is constraint for DOF direction of stent hole
axis , namely the X axis direction in the tolerance
coordinate system for the centerline of the bracket
hole, and the center linear of the top pinhole is Z axis
direction while the origin of coordinate system is the
middle of the axis.

Fig. 5: Flexible stent simplified diagram.

According to the tolerance Settings, the variation
parameter for two top axial endpoints of the sup-
port have size tolerance and the tolerance value is
0.015 mm. The axial endpoint must be within the
parallelism tolerance zone, at the same time the posi-
tion constraint under the axis on both ends of the
transverse size is 0.05 mm.

According to the tolerance mathematical model-
ing, the control points can be expressed as P1 (x1

′,
y1

′, z1
′) and P2 (x2

′, y2
′, z2

′). The radius within the
axis changes is 30 mm, in which the base hole level
is 7 precision system, the upper deviation is 0.021
mm, the lower deviation is 0. Then the mathematical
modeling can be represented as:

σ =
√

x′2
i + y ′2

i ≤ 30.021 (13)

The lower end is the benchmark for the axis and
the tolerance size is 0.05 mm. The equation for lower
end plane is:

10x′ + 2050 = 0 (14)

The distance L from One of the two endpoints in
the axis to the ground can be represented as:

204.95 ≤ |10x′
i + 2050|√

102
≤ 205.05 (15)

The parallel degree controlled by the variation
parameters for two top axial endpoints is 0.015 mm.
The radius within the control points included in the
axis shape is 0.015 mm. According to this kind of
regulation, the mathematical modeling can be repre-
sented as:

σ =
√

(x′
2 − x′

1)2 + (y ′
2 − y ′

1)2 + (z′
2 − z′

1)2 ≤ 0.015

(16)

The deformation deviation of flexible support can
be stimulated by using the computer finite element,
as shown in Fig. 6:

Fig. 6: The top of the flexible support drawing tolerance changes.
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5. THE EXTENDED APPLICATION OF CONTROL
POINTS OF GEOMETRIC ELEMENTS IN PSO
ALGORITHM

5.1. The Definition and Origin of PSO

Particle swarm optimization algorithm (PSO) is a kind
of evolutionary computation technology, and its solu-
tion (called particles) is related to the speed. Similar
to the genetic algorithm, PSO is a optimization tool
based on the iteration. It has a advantage of easy
implementation and less parameters needed to be
adjusted compared with genetic algorithm.

The PSO algorithm has been widely used in func-
tion optimization, neural network training, fuzzy
system control, and other applications of genetic
algorithm. First of all, a group of random parti-
cles (random solutions) are initialized in PSO to find
the optimal solution through iteration. In each itera-
tion, the particles update themselves by tracking two
extreme value. The first optimal solution is found
by the particles themselves , known as the individ-
ual extremum, the others are found by the entire
population called the global extremum.

5.2. The Application of Algorithm in the
Mathematical Modeling

According to the the speed and position of parti-
cles interaction, The PSO can be used to analyze
the geometric tolerance. First of all, the mathemati-
cal modeling under the condition of minimum zone
should be established, then the objective function is
given to find the optimal solution.

The application of control points of geometric ele-
ments in tolerance mathematic modeling has been
described before, and it can also be extended into
PSO algorithm to analyze the tolerance. For example,
the discrete measured points elements are be used to
calculate the shape error.

According to the minimum zone method, assess-
ing shape error is a optimization problem in essence
based on the PSO algorithm. The definition of shape
error can be described in the extremum method:

min[max F(U , V ) − min F(U , V )]
min F(U , V )

max F(U , V )

(17)

Where F (U, V) is the objective function of shape
error calculation and U is shape function of ideal
geometry elements, X is the actual position function
of geometric elements as follows:

V = [f (x), f (y), f (z)] (18)

The shape error is the change of single actual mea-
sured elements relative to the ideal ones. According to
the definition for form error, its evaluation can only

be carried out under the minimum condition. The tol-
erance zone shape can be judged according to the spe-
cific design requirements, calculating the tolerance
objective function expression of each project.

Describing the minimum tolerance zone according
to control points of geometrical elements. Its shape
is the same as the ideal elements to determine the
minimum position and direction. The tolerance area
corresponding to the size of the minimum area is the
shape error.

5.3. The Evaluation of Flatness Error

According to the mathematical definition of the toler-
ance, the flatness error refers to the distance between
two parallel planes for all points of measured contour
as shown in Fig. 7.

Fig. 7: The evaluation of flatness error.

Analyzing the Flatness tolerance according to the
minimum zone method, the key is to find two paral-
lel planes including the key point with the minimum
distance. It also can be transformed into a plane, then
measure the distance from each key point Pi (Xi, Yi, Zi)
(i = 1, 2, . . . , n) on the measured contour to the plane.
If the difference between the maximum and minimum
values for all distances is the minimum value, the flat-
ness tolerance value is the distance difference, setting
the plane equation as:

z = ax + by + c (19)

The distance from the point Pi (Xi, Yi, Zi) to the
plane is:

di = |axi + byi + c − zi |√
a2 + b2 + 1

(20)

The objective function of flatness error is:

F(a, b, c) = min[max(di) − min(di)] (21)
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5.4. The Evaluation of Straightness Error

5.4.1. The Evaluation of Plane Straightness Error

According to the mathematical definition of tolerance,
the plane straightness error is the minimum distance
between two parallel straight lines including all the
points, as shown in Fig. 8.

Fig. 8: The evaluation of plane straightness error.

Analyzing the plane straightness error according
to the minimum zone method, the key is how to
find the two parallel lines including measured lines
with the minimum distance. Likewise, it can also
be converted into a straight line, gaining the min-
imum difference between the minimum and maxi-
mum distance from each measurement point to the
straight line. The distance difference value is the
plane straightness error. The equation of line is:

y = ax + b (22)

The distance from the key point Pi (Xi, Yi) (i = 1,
2, . . . , n) to the line is:

di = |yi − axi − b|√
a2 + 1

(23)

The objective function of plane straightness error
is:

F(a, b) = min[max(di) − min(di)] (24)

5.4.2. The Evaluation of Spatial Straightness Error

Spatial straightness is defined as the minimum diam-
eter of the cylinder including the measured contour.
According to the definition of form error, space
straightness tolerance zone is a cylinder, contain-
ing all key points with the minimum diameter. The
diameter of the cylinder is the straightness error
value.

In the rectangular coordinate system shown in Fig.
9, the Z axis direction is the length of the direction of
ideal linear assumption. The control points for coor-
dinate values are Pi (Xi, Yi, Zi) (i = 1, 2, . . . , n), and
the space equation of straight line is:

{
x = a1 + b1z

y = a2 + b2z
(25)

Fig. 9: The evaluation of spatial straightness error.

Where:

a1 =
∑

(xizi)
∑

zi − ∑
z2

i

∑
xi

(
∑

zi)
2 − n

∑
z2

i

a2 =
∑

(yizi)
∑

zi − ∑
z2

i

∑
yi

(
∑

zi)
2 − n

∑
z2

i

b1 =
∑

xi
∑

zi − n
∑

(xizi)

(
∑

zi)
2 − n

∑
z2

i

b2 =
∑

yi
∑

zi − n
∑

(yizi)

(
∑

zi)
2 − n

∑
z2

i

(26)

The distance from key points Pi (Xi, Yi, Zi) to the
line is :

di =
√

[xi − (a1 + b1zi)]2 + [yi − (a2 + b2zi)]2 (27)

The objective function of spatial straightness error
is:

F(a1, a2, b1, b2) = 2 min[max(di)] (28)

5.5. The Evaluation of Roundness Error

According to the mathematical tolerance definition,
in order to meet the minimum zone condition, the
roundness error is the minimum radial distance
between two adjacent concentric circles. It makes the
actual boundary of workpiece measured the section
contained in the annular region between the two
concentric circles, taking the radius difference as
tolerance value R shown in Fig. 10.

In rectangular coordinate system shown in Figure
10, the coordinate values at each measurement
section on sampling is Pi (Xi, Yi) (i = 1, 2, . . . , n).
The center coordinate is (a, b) and the distance from
measurement point to circle center is:

Ri =
√

(xi − a)2 + (yi − b)2 (29)

The objective function of roundness error is:

F(a, b) = min[max(Ri) − min(Ri)] (30)
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Fig. 10: The evaluation of roundness error.

5.6. The Evaluation of Cylindricity Error

Cylindricity error is the tolerance area between the
two coaxial cylinders, taking the radius difference as
the tolerance σ . It can limit the change value range
from actual cylinder to the ideal cylinder.

In the space rectangular coordinate system shown
in Fig. 11, the z axis direction is the length direction of
cylindrical surface. The coordinate values of sample
points on the transverse cross section of measure-
ment are Pi (Xi, Yi, Zi) (i = 1, 2, . . . , n). Comparison
between actual and ideal cylinder surface is required
in analyzing on the cylindricity error. Assuming that
the axis of the cylinder is ideal for L, the direction of
L is determined by two parameters l and m. The value
of L is determined by two parameters a and b, then
the axis of ideal cylinder can be represented as:

x − a
l

= y − b
m

= z (31)

Fig. 11: The evaluation of cylindricity error.

The distance di from the key points on the Cylin-
der to the axis is:

di =
√

[xi − (lzi + a)]2 + [yi − (mzi + b)]2 (32)

According to the minimum zone method analysis ,
the key to find cylindricity error tolerance is to seek-
ing two ideal coaxial cylinder of being in practical
cylinder practical and having the minimum radius.

The objective function of cylindricity tolerance can
be defined as:

F(a, b, l, m) = min[max(di) − min(di)] (33)

5.7. The Evaluation of Sphericity Error

According to the minimum tolerance area , the key
to analyze sphericity error is to find two concentric
spheres with the minimum radius difference includ-
ing the actual measured contour. There are many
measured contour concentric spheres, but only a cou-
ple of them is the smallest. As shown in Fig. 12, the
analysis of sphericity error is to seek two concentric
spheres with the minimum radius.

Fig. 12: The evaluation of sphericity error.

Set the center of sphere coordinates is(a, b, c)and
the spherical measurement point is Pi (Xi, Yi, Zi) (i =
1, 2, . . . , n), Ri as the distance from for measurement
points to center as follows:

Ri =
√

(xi − a)2 + (yi − b)2 + (zi − c)2 (34)

The sphericity tolerance can be defined as:

F = Rmax − Rmin (35)

Where:

Rmax = max
√

(xi − a)2 + (yi − b)2 + (zi − c)2

Rmin = min
√

(xi − a)2 + (yi − b)2 + (zi − c)2

(36)

The objective function of sphericity tolerance can
be defined as:

F(a, b, c) = min[Rmax − Rmin] (37)
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6. CONCLUSIONS

In this paper, the tolerance mathematical modeling
based on geometric elements control is presented.
The coordinate parameter domain of control point
is tolerance zone, the absolute position and relative
position relations of control points in the tolerance
coordinate system can be used to express size toler-
ance, orientation tolerance and location tolerance.

The parameters relationship of mathematical
modeling tolerance based on control points is direct
and concise, which can be easily deposit in data struc-
ture of solid models in the CAD data , applicable
for various tolerance analysis methods. The nominal
distance between control points is the nominal size
of geometric elements and the relationship between
the tolerance and accuracy can be easily established
according to the variation of control points and the
ratio of nominal distance.

At the same time, the geometrical elements of con-
trol points can be combined with the PSO algorithm
to establish the tolerance mathematical modeling. For
example, the form error can be calculated accord-
ing to the measured element discrete points. It also
calculates the coordinate parameters by using com-
puter aided tolerance design, calculating the variation
and the corresponding tolerance type. Compared to
the traditional tolerance analysis, this method has
advantageous for the data storage structure, simple
calculation, accurate precision.
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