
COMPUTER-AIDED DESIGN & APPLICATIONS, 2016
VOL. 13, NO. 3, 389–396
http://dx.doi.org/10.1080/16864360.2015.1114397

IFOG: Inductive Functional Programming for Geometric Processing

Masaji Tanaka1 , Yuki Takamiya1 , Naoki Tsubota1 and Kenzo Iwama2

1Okayama University of Science, Japan; 2EngiCom Corporation, Japan

ABSTRACT
Since decades, especially in CAD and CG, to solve various kinds of problems and/or to develop
automatic systems, not only geometric modeling techniques but also combinatorial searches of
geometric elements such as line segments have been applied extensively. Generally it is trouble-
some and time consuming to program the combinatorial searches for programmers because they
are basically algorithmic and it would be difficult to formalize them. In this paper, a new pro-
gramming technique called IFOG (Inductive Functional prOgramming for Geometric processing) is
proposed. IFOGenables to realize easier programing for programmers, especially for beginners, than
conventional programming techniques for geometric processing. In IFOG, geometric elements are
expressed as their properties, and they are also instances of geometric classes that can be general-
ized from the instances inductively. Since the classes and instances are stored as text files in a PC,
programmers can read and write them whenever they develop programs in IFOG. Therefore, they
do not have to grasp the whole data of the relationships of geometric elements temporarily in their
brains in their programming. The effectiveness of IFOG is indicated by using practical examples in
this paper, and it has been verified by our experimental system.

KEYWORDS
IFOG; inductive
programming; combinatorial
search; geometric processing

1. Introduction

Since decades, especially in CAD and CG, to solve vari-
ous kinds of problems and/or to develop automatic sys-
tems, not only geometric modeling techniques but also
combinatorial searches of geometric elements such as
line segments have been applied extensively. For exam-
ple, to develop automatic systems that can convert 2D
drawings into 3D models, a great many recognitions of
complex geometric elements such as primitives and fea-
tures are required for their programming, and each of
the recognitions would be programed as combinatorial
searches of simple geometric elements such as lines and
faces, e.g. [7,8]. Generally it is troublesome and time con-
suming to program the combinatorial searches for pro-
grammers because of the following reason. First, they are
basically algorithmic. Second, their formalization would
be difficult because there are few mathematical bases in
them although NP-hard or NP-complete problems exist
in computational complexity theory. If a programmer
wants to detect each parallelogram from a 2D drawing
drawn in a 2D CAD system, firstly he/she might search
four straight lines, and then calculate their relationships.
As the result, his/her programs for the detection would

CONTACT Masaji Tanaka tanaka@mech.ous.ac.jp

consist of too many procedures by using conventional
programming techniques.

On the other hand, in object-oriented programming
(OOP), various kinds of classes can be defined, and pro-
grams almost consist of passing messages among objects
as instances of the classes, e.g. [1]. So the class of straight
lines can be made in OOP. However, this class must be
defined by programmers before making a program to
search parallelograms from 2D drawings. Continuously
if the other geometric elements such as Y-junctions of
lines are required to search in the drawings, the class
of straight lines would be modified. This modification
would influence the program comprehensively. There-
fore, in this case, the definition of the class of straight lines
would be difficult for beginners.

In this paper, a new programming technique called
IFOG (Inductive Functional prOgramming for Geomet-
ric processing) is proposed. IFOGenables to realize easier
programing for programmers, especially for beginners,
than conventional programming techniques for geomet-
ric processing. The basic idea of IFOG is as follows.
Suppose that a little child has already known how to
draw a straight line in a paper by using a pen. A teacher

© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://orcid.org/0000-0002-5266-9182
http://orcid.org/0000-0002-8950-8833
http://orcid.org/0000-0003-4826-5262
mailto:tanaka@mech.ous.ac.jp
http://www.cadanda.com

390 M. TANAKA ET AL.

could teach him/her which line is longer than another
line inductively by indicating plural examples of two
straight lines drawn in papers. Generally the length of
a straight line and the comparison of length of two
lines are knowledge for humans and also the proper-
ties of a line. Continuously, when he/she learns about
advanced geometry such as triangles, the relationships
among straight lines and the properties of them would
be increased and understood as knowledge step by step.
This learning process in a human is applied in IFOG.
Suppose a programming beginner makes a program that
can draw simple line drawings by users. Firstly he/she
would make a program that can draw a straight line
in the monitor of a PC. Then he/she would extend
the program to be able to trim lines, draw circles and
arcs, etc. In the process of making the program, many
kinds of data might be stored in many arrays. How-
ever, since these arrays would not be summarized, it
would be difficult to apply the program by the other
programmers. Moreover, when the program becomes
too large, he/she would cost much effort to handle too
many arrays. On the other hand, if he/she uses OOP for
the programming, it would be difficult to make classes
of geometric elements because the definitions of them
might be modified whenever his/her program becomes
complex.

In IFOG, each class can be generalized from its
instances inductively. Each instance consists of proper-
ties. Also, each class can make its instances. In IFOG,
when a programming beginner programs a program that
can draw simple line drawing by users, firstly he/she
can make the class of points and the class of straight
lines. Suppose the contents of the class of points are
point number and x-y coordinates. Continuously when
his/her program can operate trimming of lines, the prop-
erty expressing whether a point is an intersection can
be added to the class of points in IFOG. Each class is
stored as a text file, and its instances are also stored as
a text file in a PC in IFOG. Since he/she can read and
write them whenever he/she requires some data, he/she
does not have to grasp the whole data of the relation-
ships of geometric elements temporarily in his/her brain
in IFOG. Moreover, it would be easy to apply the pro-
gram to the other programs by the other programmers
because their first task is mainly reading the text files.
We have verified the effectiveness of IFOG by our exper-
imental system that is implemented by Visual C++. The
rest of this paper is organized as follows. In Section 2,
related works of this paper are described. In Section 3,
main algorithm of IFOG is explained. In Section 4, an
example program of IFOG is indicated. In Section 5, we
discuss the ability of IFOG. In Section 7, we make our
conclusions.

2. RelatedWorks

The original idea of IFOG was inspired from one of
the authors’ machine learning methods, e.g. [2,4]. In the
methods, the processes of solving mathematical prob-
lems in children were generalized inductively. Also, we
developed methods for automatically restoring omitted
2D mechanical drawings by applying the methods, e.g.
[5,6]. In these two methods, each geometric element
was defined as various kinds of properties. For exam-
ple, the properties of a straight line can be its position,
length, slope, etc., and the properties of the relationship
of two straight line segments can be intersection, paral-
lelism, etc. When plural examples of the restorations in
2D drawings are generalized, several properties of lines
can be changed into variables. After this generalization, if
a new question that is an omitted 2D drawing is input to
the methods, its solution would be automatically output.
Therefore, when various kinds of problems are applied
to the methods, the amount of properties that must be
already set would be exploded rapidly. It was a serious
issue in our past methods. IFOG solves this issue by con-
trolling the increase of the properties step by step when
programs become complex by programmers.

The other related works are as follows. The difference
between IFOG and OOP is already described in Section
1. Since instances are expressed in text format in XML
(Extensible Markup Language), e.g. [3], it might be sim-
ilar to IFOG. However, each instance has to be described
initially by users in XML. In IFOG, a class can be general-
ized from its instances and also makes its instances while
programs are executed. On the other hand, there are
many researches that relate with the expression ways of
various kinds of geometric modeling, e.g. [9]. Although
they are useful in present CAD systems, basically proper-
ties in IFOG are different from them because the prop-
erties express characters of geometric elements as in
humans.

3. Main Algorithm of IFOG

At the present step, we handle only 2D straight lines as
geometric elements. Straight lines are called lines in this
paper. They are drawn in a 2D CAD system and each
drawing is filed as a DXF(Drawing Exchange Format)
file.When a programming beginner programs a program
in IFOG, the algorithm of his/her programming can be
modeled and summarized as follows.

(1) Programming of a function that makes a text file
expressing initial class list.

(2) Programming of a function that makes initial classes
and their instances.

COMPUTER-AIDED DESIGN & APPLICATIONS 391

Figure 1. Example 1.

(3) Programming of function(s) that operate the
instances.

(4) Programming of a function that can update or define
classes.

(5) Programming of a function that canupdate instances
if their classes are updated.

(6) Programming of a function that can update the class
list.

In IFOG, a program consists of functions and each
geometric element is expressed as properties. Some of the
functions and properties can be knowledge for humans.
So, he/she can handle the knowledge easily for devel-
oping advanced applications in IFOG. This algorithm is
practically explained in detail as follows. Fig. 1 illustrates
Example 1 that is a 2D line drawing. In this figure, four
lines (L1, L2, L3, L4) are drawn and their end points (P1,
P2, . . . P8) are emphasized. The information of these
points and lines such as x-y coordinates can be extracted
easily from the DXF file of Example 1.

In Step (1), a function that makes ClassList.txt is pro-
gramed as in Fig. 2. In this file, two classes and their last
numbers of instances are described. In Step (2), a func-
tion that makes Class_Point.txt, Class_Line.txt, Point.txt
and Line.txt is programed as in Fig. 2. The point num-
ber and x-y coordinates of each point are properties in
Class_Point.txt. In this file, the variable type and the
name of each property is indicated such as “No.: int t1”.
Especially double numbers are rounded offmoderately in
the figures of this paper because it is meaningless. Also,
the line number and two numbers of end points of each
line are properties in Class_line.txt. Two instance files

Figure 3. Intersections in Example 1.

Figure 4. Updating files in Example 1.

(Point.txt and Line.txt) are made from the two classes
respectively as in Fig. 2. In these files, middle parts are
omitted.

If a programming beginner wants to detect all inter-
sections in Example 1, he/she can program a function
that obtains all intersections of four lines in Step (3).
Fig. 3 illustrates them (P9, P10, P11, P12). By the func-
tion, since these intersections are points, they are stored
in Point.txt as in the top left side of Fig. 4. In this file,
a property “Kind” is added to P9 and P12. These addi-
tions can be programed in the function of Step (3). In
Step (4), a function that can add someproperty to existing
classes or define new classes is programed. So, “Kind” is
added to Point class as in the bottom left side of Fig. 4. The
variable type of “Kind” can be generalized from the real
values of “Kind” in four instances (P9, P10, P11, P12).
In this case, since all real values are “intersection”, the

Figure 2. Initial files of Example 1.

392 M. TANAKA ET AL.

variable type of “Kind” becomes “string” and its name is
“s1”. Also, “intersection” is indicated as a real value under
“Kind: string s1”. In Step (5), a function that can add new
properties to all of existing instances in accordance with
updated classes is programed. So, “Kind” is added to all
instances of Point class as in the center of Fig. 4. In Step
(6), a function that can update ClassList.txt is programed
as in the right side of Fig. 4. Here, let the name of this pro-
gram be Recognition_of_intersections.cpp. The program
can be expressed as follows.

// Recogniton_of_intersections.cpp
main()
{ MakeClassList();//

Programed in Step (1)
MakeInitialClassInstance();//
Programed in Step (2)
Recognize_Intersection();//
Programed in Step (3)
UpdateClass();//
Programed in Step (4)
UpdateInstance();//
Programed in Step (5)
UpdateClassList();//
Programed in Step (6)

}

The program could express the knowledge of find-
ing intersections of lines in humans. When the program
is executed to the other 2D drawings, they can obtain
the information about intersections of lines automati-
cally. Therefore, theywould becomemore intelligent than
initial states of them.

4. Example of IFOG

In IFOG, CAD data could become more intelligent by
executing various kinds of programs. Therefore, high
level applications could be developed in IFOG by using
intelligent CAD data by programmers, especially pro-
gramming beginners. In this section, an example of the
applications is explained that can divide a 2D line draw-
ing into regions each of which is a closed loop of lines. In
general, to program the division would be very difficult
for programming beginners because a lot of arrays and
very complex loops are required in their programming.
In IFOG, smarter programming for the division than
conventional programmingswould be realized as follows.
Fig. 5 illustrates Example 2. In this figure, all numbers
of points (P1, P2, . . . P7) and lines (L1, L2, . . . , L7) are
indicated. The main division processes of Example 2 into
regions are as follows.

Figure 5. Example 2.

Figure 6. Intersections in Example 2.

(1) Search all intersections.
(2) Divide lines in their intersections.
(3) Calculate each angle between two lines.
(4) Search each of regions.

In Step (1) of this section, when the program made
in Section 3 is executed, three intersections (P3, P4, P8)
are recognized as in Fig. 6. In IFOG, the other points are
not called intersections because they do not divide any
lines. At this point, the states of ClassList.txt, Point.txt
and Line.txt are illustrated in Fig. 7. In Step (2), four lines
are divided into eight lines by the three intersections. For
example, when P3 divides L5, the data of L5 is deleted
and then two new lines (L8, L9) are added in Line.txt.
Fig. 8 illustrates the drawing of this division. 9 illustrates
updating text files in Fig. 8. In Point.txt of this figure,
firstly three instances that are intersections are indicated
and the property of “Divide lines” is added to each of
them. For example, L2 and L7 are both divided by P8.
So, “Divide lines: 2 7” is added as a new property to P8.
Second, it is found that P3 is not an intersection after
the division in updated Point.txt. Third, Class_Point.txt
is updated and also Line.txt is updated. In this figure,
for example, the variables of “Divide lines” are expressed
such as “int t2 . . . ”. This expressionmeans that there are
several integer variables such as t2, t21, t22, etc. In Fig. 10,
all divisions are executed. In this figure,P4 divides L6 into
L10 and L11. Also, P8 divides L2 and L7 into L12, L13,

COMPUTER-AIDED DESIGN & APPLICATIONS 393

Figure 7. The text files in Fig. 6.

L14, L15. Fig. 11 illustrates updated text flies by the divi-
sion. In Line.txt of this figure, L2, L6, L7 are deleted and
L10, L11, L12, L13, L14, L15 are added. Also, ClassList.txt
is updated in this figure.

In Step (3), each angle between two lines is calculated.
In Fig. 12, three angles (θ1, θ2, θ3) about L3 are illus-
trated and three connected lines (L9, L4, L15) of L3 are
emphasized to search a region. Their real values are indi-
cated in updated Line.txt in Fig. 13. In this file, three
properties are added that are “Length”, “Connected lines”
and “Angle”. For example, “Connected lines at P 5” is a
property of L3. This ‘5′ can be referred from “End points:
5 6”. So, ‘9′ (= L9) becomes the value of the property.

Figure 8. Division of L5 at P3 into two lines.

Figure 10. All divided lines by intersections.

Figure 11. Updated text files in Fig. 10.

Figure 9. Updating text files in Fig. 8.

394 M. TANAKA ET AL.

Figure 12. A region searched from L3.

Although there are two angles between two lines (L3, L9),
the counterclockwise angle is always selected in this step.
So, the angle from L3 to L9 is calculated as θ1, and the
value of it is 258.69°. This value is the value of the prop-
erty “Angle”, and it is described under “Connected lines
at P 5: 9”. Also, since there are two angles (θ2, θ3) at
P6 in L3, their values are described respectively under
“Connected lines at P 6: 4 15”. As the result, Line.txt is
generalized as Class_Line.txt as in this figure.

In Step (4), each of regions is searched. In each region,
there are no lines in its inside. To search a region, for
example, when L3 is picked up firstly, the next line to
make a region is searched at P5 or P6. If the line is
searched at P6, L4 and L15 become its candidates. Since
θ3 is smaller than θ2, L15 becomes the next line. In the
same way, L12, L9 are selected continuously and then
the region named R1 can be recognized as in Fig. 14. If
the next line from L3 is searched at P5, L9 is selected
and then L8, L1, L10, L11, L4 are selected continuously.
As the result, a closed loop of lines is recognized as in
Fig. 15. However, since there are four lines in the inside
of the loop, it is found that this loop is not a region.
Fig. 16 illustrates all regions (R1, R2, R3, R4) recognized
from Example 2. Fig. 17 illustrates the text files about
the regions. In this figure, firstly Class_Region.txt can be
defined in Step (4) of Section 2. Here, “Elements” is a
property whose values are line numbers. Also, “Kind” is a
property whose values can be tetragon, triangle, polygon,
rectangle, parallelogram, square, etc. These values can be
obtained easily by using the lengths and angles of lines

Figure 14. Searched region R1.

Figure 15. Searched closed line loop that is not a region.

Figure 16. All regions.

described in Line.txt as in Fig. 13. Then four instances of
the class can be made as in Region.txt, and ClassList.txt
is updated.

5. Discussion

IFOG would be effective for programming combinato-
rial searches of geometric elements such as regions in

Figure 13. Updated text files in Fig. 12.

COMPUTER-AIDED DESIGN & APPLICATIONS 395

Figure 17. Text files about regions in Fig. 16.

Example 2. The recognition of the regions is fundamental
for handling 2D drawings. Although only straight lines
are handled in this paper, it would not be difficult to
apply arcs and circles to IFOG. Initially, in DXF files,
the data of each arc consists of center point(x, y), radius
and two angles expressing its start point and end point.
Also, the data of each circle consists of center point(x, y)
and radius. Fig. 18 illustrates Example 3 that consists of
straight lines, arcs and circles. When a region is recog-
nized from P1 of L1, L2 and L3 become the candidates
of the next line. If the direction of tangential line of L2 is
different from the direction of L3, two angles of them to
L1 can be compared. On the other hand, if the two angles
are the same, a virtual straight line P1P2 can be compared
withL3. As the result, a region can be recognized fromL1,
L2, L5 and L4 in Example 3.

Figure 18. Example 3.

When more complex curved lines and 3D geomet-
ric elements are handled in IFOG system, the text files
expressing their classes and instances would become
large rapidly. It is an important issue for IFOG. However,
basically reading and writing of the files are automat-
ically executed by computers. Therefore, although it is
important to make robuster format of the files, we esti-
mate that the increase of the amount of information of
the files does not become a serious problem. Therefore,
high intelligent applications could be developed easily in
3DCAD systems by IFOG. In addition, since IFOG could
always use minimum properties to develop programs,

huge databases are not necessary to develop customized
machine learning systems in geometric processing or in
the other domains by applying IFOG techniques.

6. Conclusion

In this paper, IFOG (Inductive Functional prOgramming
for Geometric processing) is proposed. In IFOG, geo-
metric elements are expressed as their properties, and
each property can be made from a programed func-
tion. The properties and functions could be knowledge
for humans. Also, in IFOG, geometric elements are
expressed as instances of their classes. Each class could
be generalized from its instances, and each class and its
instances are stored as text files in a PC. Therefore, pro-
grammers can always read and write the text files in their
programing. So more flexible and smarter programming
would be possible when they develop high intelligent
applications in IFOG. The effectiveness of IFOG is indi-
cated by using practical two examples in this paper, and
it has been verified by our experimental system. Finally
the issue and extensibility of IFOG is discussed in detail.

ORCID

Masaji Tanaka http://orcid.org/0000-0002-5266-9182
Yuki Takamiya http://orcid.org/0000-0002-8950-8833
Naoki Tsubota http://orcid.org/0000-0003-4826-5262

References

[1] Budd, T.: A Little Smalltalk, Addison-Wesley Publishing,
1987.

[2] Fujiwara, M.; Iwama, K.: A program that acquires how
to execute sentences, WSEAS Transactions on Computers,
8(8), 2009, 1348–1357.

[3] Goldfarb, C. F.; Prescod, P.: XML Handbook (5th Edition),
Prentice Hall PTR; 5 edition (December 8, 2003), 2003.

[4] Iwama, K.: A robotic program that acquires concepts
and begins introspection, NueroQuantology, 4(4), 2006,
321–328.

http://orcid.org/0000-0002-5266-9182
http://orcid.org/0000-0002-8950-8833
http://orcid.org/0000-0003-4826-5262

396 M. TANAKA ET AL.

[5] Tanaka, M.; Kaneeda, T.; Yamahira, T.; Iwama, K.: A
Method to Restore Partial Omissions in 2D Draw-
ings, Computer-Aided Design & Applications, 3(1–4),
2006, 341–347. http://dx.doi.org/10.1080/16864360.2006.
10738472

[6] Tanaka, M.; Kaneeda, T.; Sasae, D.; Fukagawa, J.; Yokoi,
R.: The Learning System to Restore Operations of Isolated
Line Segments in 2D Drawings, Computer-Aided Design
& Applications, 5(1–4), 2008, 354–362. http://dx.doi.org/
10.3722/cadaps.2008.354-362

[7] Tanaka, M.; Kaneeda, T.: Feature Extraction from Sketches
of Objects, Computer-AidedDesign &Applications, 12(3),
2014, 300–309. http://dx.doi.org/10.1080/16864360.2014.
981459

[8] Tanaka, M.; Iwama, K.; Hosada, A.; Watanabe, T.: Decom-
position of a 2DAssemblyDrawing into 3DPart Drawings,
Computer-AidedDesign, 30(1), 1998, 37–46. http://dx.doi.
org/10.1016/S0010-4485(97)00051-1

[9] Wilson, P. R.; Wozny, M. J.; Pratt, M. J.: Geometric model-
ing for Product Realization, North Holland, 1993.

http://dx.doi.org/10.1080/16864360.2006.10738472
http://dx.doi.org/10.1080/16864360.2006.10738472
http://dx.doi.org/10.3722/cadaps.2008.354-362
http://dx.doi.org/10.3722/cadaps.2008.354-362
http://dx.doi.org/10.1080/16864360.2014.981459
http://dx.doi.org/10.1080/16864360.2014.981459
http://dx.doi.org/10.1016/S0010-4485(97)00051-1
http://dx.doi.org/10.1016/S0010-4485(97)00051-1

	1. Introduction
	2. Related Works
	3. Main Algorithm of IFOG
	4. Example of IFOG
	5. Discussion
	6. Conclusion
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

