
COMPUTER-AIDED DESIGN & APPLICATIONS, 2016
VOL. 13, NO. 5, 587–599
http://dx.doi.org/10.1080/16864360.2016.1150703

A slice based approach to recognize and extract free-form volumetric features in
a CADmeshmodel

Nepal Adhikary and B. Gurumoorthy

Indian Institute of Science, India

ABSTRACT
This paper describes an algorithm to recognize and extract volumetric features by directly clustering
the triangles constituting a feature in a CAD mesh model. The algorithm involves two steps – iso-
lating features in 2D slices followed by a 3D traversal to cluster all the triangles in the feature. The
main advantage of this approach is that processing of the three dimensional mesh occurs only for
the triangles associatedwith its signature identified on the 2D slice. Results from an implementation
tested on various mesh models are presented.

KEYWORDS
Volumetric feature
recognition; mesh model;
slicing

1. Introduction

Volumetric features in amodel are regions of interest cre-
ated by adding or removing volumes to or from a solid.
Recognizing and extracting volumetric features from a
mesh model is important in applications such as mesh
simplification [6] and direct editing of mesh models at
higher levels of abstraction. Mesh models are typically
obtained from one of two broad methods – scanning a
physical prototype of an object or by tessellating a digital
model (usually constructed in a CAD system). The latter
type of model is referred to as CAD mesh model and is,
the focus of this paper

Mesh simplification is also required in the use of
mesh models in computer graphics and animation. In
these domains, simplification is done by segmenting the
mesh model. Segmentation partitions a mesh model into
meaningful connected regions based on geometric prop-
erties, typically the nature of the underlying surface [4].
As a volumetric feature is often composed of regions
with many different underlying surfaces, the approaches
developed for segmentation in the domain of computer
graphics and animation are not of much use [4]. Seg-
mentation of a CAD mesh model has been a preferred
approach for extracting surface features [17]. Mesh seg-
mentation procedures available in the literature can be
divided into two main categories, surface based and part
based mesh segmentation [4, 2].

Surface based approach depends on geometric proper-
ties like uniformdistance from a fitted surface or uniform

CONTACT B. Gurumoorthy bgm@mecheng.iisc.ernet.in

curvature deviation. Triangles are grouped together into
regions based on the point distance or curvature prop-
erties. A collection of these regions can represent some
meaningful features. This is why surface based approach
can be considered as pre-processing step before detect-
ing features from a mesh model [4]. There are two types
of surface segmentation. The first type works by grouping
triangles that belong to specific surfaces [4]. Criterion for
grouping is distance of a triangle from a particular sur-
face. The second type of segmentation is based on the
nature of continuity of differential properties (typically
curvature) [3].

In the part-based approaches [10], the mesh model is
subdivided into meaningful regions. The mesh is pro-
cessed based on semantics of local regions in the mesh.
To extract meaningful regions in part based scheme, dif-
ferent criteria can be used. Minima rule introduced by
Hoffman and Richards [8] is the most common criterion
used by researchers. According to the minima rule, seg-
mentation should be done along ‘negative minima of the
principal curvatures on surfaces’ as this is based on how
humans perceive boundaries.

As the segmentation of mesh model does not reveal
any information about the existence of volumetric fea-
ture, it is necessary to develop direct feature extraction
algorithm for mesh model without segmentation. One
approach possible is to reverse engineer a smooth bound-
ary representation of the object [5] and then extract volu-
metric features from the boundary model. This approach

© 2016 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://orcid.org/0000-0001-9857-9011
mailto:bgm@mecheng.iisc.ernet.in
http://www.cadanda.com

588 N. ADHIKARY AND B. GURUMOORTHY

however introduces additional (and still evolving) steps
in both the extraction process and also in further manip-
ulation of the features. For instance, if the motivation
for feature extraction is feature suppression then this
approach would require remeshing after the extracted
feature (in the boundary model) has been removed.

Available commercial software, such as RapidForm
and GeoMagic, convert mesh representation obtained
from point cloud into CADmodel by surface fitting (typ-
ically using NURBS). Once the CAD representation of a
discrete model is available, existing feature recognition
algorithms / software’s can be used to recognize the fea-
tures. For any application in this approach, that wants to
modify features in themeshmodel would have tomodify
the CAD model and remesh the CAD model. This cycle
has to be repeated till the requirement is met. It must be
noted that the process of constructing a smooth represen-
tation from a discretemesh based representation is not an
exact process and is usually error prone.

The approach proposed in this paper directly extracts
volumetric features without segmenting themeshmodel.
These features are associated with either volume addi-
tion or volume removal [6, 15] to or from a model. The
algorithm presented here automatically detects features
from ameshmodel by processing triangles in the features
zones after eliminating the non-feature triangles during
a pre-processing step. The main objective of this paper is
to eliminate the dependency of CAD model while pro-
cessing the mesh model. Proposed algorithm does not
depend on associated CAD model and extracts features
directly from mesh model. It does so without processing
all mesh elements. Converting mesh model into its CAD
representation is time consuming and also an unnec-
essary over head operation if users intend to continue
working with mesh model and not with the CADmodel.
This paper is organized as follows: Section 2 reviews
related literature and Section 3 defines related terminolo-
gies. Details of the algorithm are presented in Section 4.
Section 5 provides illustrative examples and results on
typical mesh models. Discussion based on results is pro-
vided in Section 6. Section 7 provides conclusion and
future work.

2. Literature review

The problem of extracting volumetric features directly
from a mesh model has not received attention in the
literature. There have been some efforts that extract vol-
umetric feature by first reconstructing a smooth CAD
model from the input mesh and then using available
feature recognition algorithms for smooth models [16].
Literature on extracting features using segmentation of
the mesh model is reviewed briefly.

Patane and Spagnuolo [14] proposed segmentation
based on region growing. Their approach processes the
scan lines to first simplify and then classify the points
on the scan lines based on similarity with a library of
basic shape types. Feature lines across scan lines are then
extracted based on proximity analysis. Segmentation of
CAD mesh model based on clustering is proposed by
Xiao et al. [19]. Some of the problems with the region
growing or clustering based approaches are that typi-
cally the surface is over-segmented and the segmentation
boundaries are not smooth. Both the above clustering
based segmentationmethods are not good for identifying
volumetric features in the mesh model.

Huang and Menq [9] have proposed automatic seg-
mentation of 3D point cloud to extract geometric sur-
face features by grouping the triangles (created from
point cloud) separated by discontinuous mesh bound-
aries. Algorithm detects discontinuous boundaries using
both curvature and tangent discontinuities. Here the
term, ‘feature’ is only limited to boundaries and mesh
patches which do not directly convey any information
about the presence of volumetric features. Weber et al.
[18] proposed another automatic algorithm to detect
sharp edges and vertices from point cloud. Algorithm
computes Gauss map clustering on local neighborhoods
to discard all points which are unlikely to belong to a
sharp feature and then apply iterative selection process
on the remaining points to identify points that belong to
sharp edges or corner vertices based on local sensitivity
parameter. This parameter is the threshold value defined
by the minimum distance among all resulting clusters.
Based on tensor voting technique, a method is proposed
by Kim et al. [11] to extract vertices, edges and faces from
triangle mesh.

Garg et al. [7] proposed a fillet/blend suppression
algorithm only for known types of underlying surface
(Cylindrical, Spherical and Toroidal). Major limitation in
their algorithm is that it considers planar adjacent faces
around a blend. This is not always true for real world
applications. A user assisted algorithm to identify pla-
nar, spherical, cylindrical and conical surfaces from a
mesh model around a given seed point is proposed by
Lai et al [12]. Reverse engineering framework for recon-
struction of 3D solidmodel by extracting primitives from
clean mesh model is proposed by Roseline et al.[5]. Gao
et al. [6] usemodifiedWatershed algorithm formesh seg-
mentation to obtain a CAD model that is then used to
interactively identify features for suppression. The pro-
posed modification involves first placing additional ver-
tices in the mesh to enable the watershed algorithm to
detect hard boundaries. This, however, results in new
regions that have to be then merged so that segmented
regions do not have any new entities. This approach also

COMPUTER-AIDED DESIGN & APPLICATIONS 589

has problems with cases where there are smooth bound-
aries between different regions. Moreover, the case where
a newly added vertex becomes part of the segmented
boundary is not addressed.

From the literature it is clear that there has not
been much work done on extracting volumetric features
directly from a mesh model.

3. Definitions and terminology

Following terminology is used in this paper – Slice and
Wire - A cross section of the mesh model obtained by
its intersection with a plane is referred to as a slice
(Figure 1b). A closed contour of edges on a slice is called
a wire. A slice may have multiple outer wires (but at least
one) and each outer wire may contain multiple inner
wires (could be none). A region (Figure 2) is a part of
the mesh where all the triangles maintain discrete C2

continuity along their common boundaries. A region
corresponds to a face in B-rep model.

(a) (b)

Figure 1. (a) Mesh model and slicing plane, (b) slices.

Figure 2. Mesh model with region and region boundaries.

Sharp vertex – A vertex is classified as sharp ver-
tex, if the turning angle between two edges incident
on it is greater than MIN_THRESHOLD and less than
MAX_THRESHOLD. The turning angle is measured
from first edge (E1) to second edge (E2) along counter
clockwise direction with respect to the normal of the
slicing plane.

Smooth vertex - If the turning angle between two
edges of a vertex is less than MIN_THRESHOLD or
more than MAX_THRESHOLD, the vertex is classified
as smooth vertex.

MIN_THRESHOLD and MAX_THRESHOLD have
been defined based on an acceptable error of tessel-
lation ‘e’ for a circle of radius ‘r’. It can be shown
from the tessellated representation of a circle that
the turning angle between two facets is 2θ , where,
cosθ = (r – e)÷ r for counter clockwise orientation of
edges with respect to normal to the plane of the circle.
The value of MIN_THRESHOLD is represented by 2θ
andMAX_THRESHOLD is represented by (360 – 2θ). In
this paper,MIN_THRESHOLD is set to be 50 degrees and
MAX_THRESHOLD is set as 310 degrees for a tessella-
tion error ‘e’ being 10% of ‘r’.

Seed Point (SP): Seed points are those points on a slice
where there is a sudden change in shape in mesh model.
In Figure 3, red and green circles represent seed points.
Some of these seed points are associated with 3D features
and are called potential-feature-seed-points, while the
remaining seed points are known as ordinary seed points.
An ordinary seed point belongs to a region boundary that
is not a part of feature boundary. A seed point by con-
struction is either associated with an edge shared by two
triangles or a vertex shared by more than two triangles.

Figure 3. Typical slice section after removing co-linear vertices.

Seed-Edge (SE) - An edge in the mesh model that
is responsible for potential-feature-seed-points (by inter-
section with the slicing plane) is called a seed-edge. In
Figure 4b, edge V1V2 is a seed edge.

Seed-Vertex (SV) - A mesh vertex, associated with
a seed edge and lying on the positive side of the slic-
ing plane is called seed-vertex. It is associated with the
potential-feature-seed-point. In figure 4b, vertex V2 is a
seed vertex.

Seed-Faces (SF) - Triangles in the meshmodel that are
incident on the seed-edge are referred to as seed-faces.
The seed-face is associated with potential-feature-seed-
point. In Figure 4b, the faces shaded yellow are seed-faces.
Figure 5 shows a typical slice. It consists of seven (7)
wires, of which three are inner-loops and four are outer-
loops.

4. Algorithm to recognize features

This algorithm recognizes volumetric features in a mesh
model by directly clustering the triangles constituting a

590 N. ADHIKARY AND B. GURUMOORTHY

(a)

(b)

Figure 4. (a) Slice section with partial mesh, (b) enlarged view of circled region in (a).

Figure 5. - Slice segments (SS – straight segments, OCS – open
curve segments, CCS–closed curve segments. a, B– closed feature
made of single CCS. b, c, A, C – multi-segment closed feature).

feature in the mesh model. The algorithm involves two
broad steps. In the first, presences of features are identi-
fied in 2D slice. The mesh model is sliced to obtain 2D
slices and the contour forming the slice is processed to
identify feature zones based on seed points and seed tri-
angles. Seed points are points on a slice where there is a
significant and characteristic change in the contour. The
feature is recognized and extracted by a traversal from
the seed point in one slice to the immediate neighboring
slice. The traversal step clusters triangles belonging to the
feature.

The main steps in the algorithm are:

(i) Pre-processing to calculate bounding box and slicing
plane.

(ii) Two-dimensional slicing to generate 3D-seed-
information for feature boundaries in mesh model.

(iii) Three-dimensional traversing along the feature
boundaries in mesh model using 3D-seed-
information.

(iv) Extracting the features separated by feature bound-
aries in mesh model.

These are explained in detail in the following sub-
sections.

4.1. Pre-processing

The mesh in the .stl format is read in and adjacency
relation between the triangles is determined and stored.
A min-max box aligned with the global coordinate ref-
erence frame is determined for the vertices in the mesh.
The slicing direction is chosen to be the co-ordinate axis
along which the min-max box has the smallest dimen-
sion. This is done to minimize the number of slices that
need to be processed in the algorithm. The slicing plane
is normal to the slicing direction.

4.2. Two dimensional slicing ofmeshmodel

The slicing operation starts from one end of the bound-
ing box and the slicing plane is offset along its normal
by a pre-defined distance and slicing repeated till the
entiremodel is covered. The pre-defined distance is set to
be smaller than the minimum feature dimension (MFD)
expected in the model. For each slice the following pro-
cessing is done.

4.2.1. Classify vertices and create slice segments in
each slice

In this step, co-linear vertices on the slice are first
removed. The remaining vertices are then classified as
smooth, sharp, convex or concave. The classification is
based on the turning angle between the edges incident on
the vertex. Algorithm creates a list of slice vertices using
this classification information.

Based on the available vertex classification informa-
tion stored in the list of slice vertices, slice segments are

COMPUTER-AIDED DESIGN & APPLICATIONS 591

identified. A closed curve slice segment (ccs) gets created
if all the slice vertices of the list are classified smooth and
the first and last vertices in the list are identical. If two
consecutive slice vertices of the list are classified as sharp-
sharp or sharp-smooth, a straight slice segment (ss) gets
created by using those two consecutive slice vertices. An
open curve slice segment (ocs) gets created by a set of
smooth slice vertices such that the start and end vertices
are different. Figure 5 illustrates the different type of slice
segments.

4.2.2. Identify two-dimensional (2D) feature
segments

This step identifies 2D-features by grouping slice-
segments. A group of slice segments in a wire of a slice
makes a 2D feature.

A closed feature in 2D ismade of single segment closed
curve or multi-segment closed curve. A multi-segment
closed feature will have a combination of open curve
(OCS) and straight segments (SS). In Figure 6, red cir-
cle is a closed feature made of single CCS. In Figure 5,
wires ‘b’, ‘c’, ‘A’ and ‘C’ aremulti-segment closed features.
A closed feature inherits the classification of a closed wire
as either inner-loop or outer-loop based on the convex-
ity information of slice vertices of that closed wire. The
closed feature (red circle) in Figure 6 is the inner-loop,
where as the closed features ‘A’, ‘B’ and ‘C’ in Figure 5
are the outer-loops.

Figure 6. 2D features.

VCCV feature – If a 2D feature consists of slice seg-
ments with a chain of concave vertices bounded by con-
vex vertices, the feature will be classified as VCCVs type.
Here, ‘V’ denotes a convex vertex and ‘C’ denotes a con-
cave vertex. In Figure 6, convex and concave vertices are
shown with “V” and “C”. Typically, this is a 2D feature
created by material removal.

CVVC feature – If a 2D feature consists of slice seg-
ments with chain of convex vertices separated by concave
vertices, the featurewill be classified asCVVCs type. Both
‘V’ and ‘C’ have the same meaning as above. This is a 2D
feature created by material addition.

Blend feature – An open curve segment (OCS) is
called a blend feature. In Figure 5, open curve segments
are marked OCS.

A 2D feature of type VCCVs and CVVCs directly clas-
sifies the type of the 3D feature as depressions and pro-
trusion respectively. A closed 2D feature may be related
to a 3D feature of type through hole or protrusion or
depression. The type of 3D feature, related to a closed
2D feature, gets classified based on the convexity of the
feature boundary.

4.3. Three dimensional traversal

The 2D features identified in the slices form the start-
ing point for the 3D traversal algorithm. The 3D traversal
algorithm traces the boundary of the 3D feature associ-
ated with the 2D feature between slice[i] and slice [i+ 1].
The complete feature is obtained by traversing across
all slices. As the offset between two consecutive slicing
planes is less than the minimum feature dimension, it is
guaranteed that all the 3D features in the mesh model
will be captured in one or more slicing planes. At each
slice, the procedure traverses the boundary edges of every
feature other than closed 2D-feature between the current
slice and the next. This is done if the check for compatibil-
ity of slices or 2D features in the slices is established. Any
feature that does not have a compatible 2D feature in the
next slice will be treated as potential terminating feature
and the procedure treats this case to find the bound-
ary edges for the portion of the remaining feature from
this slice. In the same manner any incompatibility of 2D
features between the present slice and the previous one
is also investigated to trace the boundary edges for the
portion of the feature that terminates before the present
slice. Closed features are handled separately. Finally, these
boundary edges are used to extract the triangles associ-
ated to this 3D feature. The main steps in the procedure
are:

(i) Determination of compatible slices and compatible
2D features

(ii) Traversing of a 2D feature from slice[i] to slice
[i+ 1].

(iii) Traversal of a terminating 2D feature from slice[i] in
either direction.

(iv) Traversal of closed features.

Each step is described briefly below.

592 N. ADHIKARY AND B. GURUMOORTHY

(a) (b)

Figure 7. (a) Compatible slices, (b) incompatible slices.

(a) (b) (c)

Figure 8. (a) Object (b) slices with seed points for compatible features (c) and terminating features.

4.3.1. Determination of compatible slices and
features

If the numbers of 2D features in the two slices are the
same and if the type of corresponding features in the two
slices is the same, the two slices are said to be compati-
ble. Since the distance between two successive slices is less
than minimum feature dimension, the adjacent features
with same type on slice[i] and slice[i+ 1] must be associ-
ated with the same 3D features. Two successive slices are
classified as incompatible when they have different types
of 2D features. In Figure 7a, all 2D features of slice[i] are
of same type as those in adjacent slice[i+ 1].

In a pair of incompatible slices, a 2D feature on slice[i]
is said to be compatible to a corresponding 2D feature
on slice[i+ 1], if they are of same type. The closed 2D
feature in red in Figures 7a and 7b are compatible features
in compatible and incompatible slices respectively.

A 2D feature on a slice that corresponds to a given
2D feature on a neighbouring slice is determined as fol-
lows. A bounding rectangle that is alignedwith the slice is
constructed for the given 2D feature. The bounding rect-
angle is then projected on the plane of the next slice. If
the projection intersects with the bounding rectangle of
a feature on the next slice then the two features are said
to be corresponding.

4.3.2. Traversal from slice[i] to slice[i+ 1]
This step identifies boundary edges of a 3D feature cor-
responding to a compatible pair of 2D features in the two
slices. From each feature, the procedure extracts the cor-
responding seed points (start and end respectively). It
traverses from both the start and end seed points Pi1 &
Pi2 of a 2D feature on the slice[i] (Figure 8b), to terminate
at the corresponding start and end seed points P(i+ 1)1
and P(i+ 1)2 respectively on slice[i+ 1]. The traversal
starts with the seed vertex of the edge incident on the seed
point. It then identifies edges incident on the seed vertex
of this edge and selects the edge that has its dihedral angle
between MIN_THRESHOLD and MAX_THRESHOLD.
Traversal then continues with the other end vertex of the
selected edge till the edge containing a seed point on the
next slice is reached. The list of boundary edges identified
during the traversal forms the boundary edges of the 3D
feature associated with the 2D feature.

4.3.3. Traversal of terminating feature from slice[i]
A terminating 2D feature on slice[i] does not have
corresponding compatible 2D feature on slice[i+ 1]
(Figure 8c). This step traces the remaining boundary
edges of the 3D feature associated with the 2D fea-
ture. The traversal starts with the seed vertex associated

COMPUTER-AIDED DESIGN & APPLICATIONS 593

(a) (b)

Figure 9. (a) Extraction of triangles of a 3D feature, (b) enlarge view of slot shown in (a).

with Pi1. From the mesh edges incident on this ver-
tex, the next boundary edge of the feature would be one
whose di-hedral angle is between MIN_THRESHOLD
and MAX_THRESHOLD. If there are more than one
edge satisfying this condition the procedure will pick an
edge that is closely aligned with the vector defined by the
vertices associated with the start and end seed points.
The traversal terminates when the last boundary edge
encountered contains the vertex associated with the end
seed point.

There may be a situation where a terminating 2D fea-
ture is incompatible with respect to the 2D features on its
previous slice. For those cases, algorithm traverse on both
sides (positive & negative) of the slicing plane to extract
the boundary edges of the 3D feature.

4.3.4. Traversal for closed features
The 3D feature corresponding to closed 2D features have
boundary edges only at the end faces and not between
slices. Therefore, in the case of such features only the first
and the last slice containing the corresponding closed 2D
feature need to be processed. For closed feature, traversal
is from the last slice in the positive direction of slic-
ing plane to the boundary edge. Similarly, traversal is
done from the first slice containing the 2D-closed fea-
ture in negative direction of the slicing plane. At the two
boundaries, the boundary edges at the two ends of the 3D
closed feature are obtained as described for the traversal
between two seed points. Closed feature may have one or
many slice segments. For single segment closed feature,
seed points will be at same location.

It may be observed that for closed 2D-features associ-
ated to protrusion, one of the terminal slices will be the
closed feature itself and in this case, it will be sufficient
to traverse the boundary edges from the other terminal
slice. There may be arbitrary oriented cases where none

or few of the 2D-features associated to a 3D feature are
compatible. Above traversal algorithms are able to extract
all feature-boundary edges of the volumetric feature by
using the 3D-seed-information of those 2D-features.

4.4. Extraction of 3D features

The feature boundary edges identified in the traversal
steps above, separate a 3D mesh feature from its base
mesh model. Extraction of the feature is the process of
isolating the triangles of a 3D feature. Algorithm starts
with a triangle ST that belongs to the feature, shown in
Figure 9b, and grows the triangles from it in such a way
that all triangles in the set are bounded by the feature
boundary edges.

5. Implementation and results

The proposed algorithms have been implemented using
VC++ in VISUAL Studio 2008 environment in a com-
puter with following configuration: Intel core i3 proces-
sors, 3GB RAM, 64 bit windows 7 operating system. APIs
of 3D ACIS kernel modeler [1] has been used. Schema
DL and GL viewer of acis have been used for visualiza-
tion. The effectiveness and efficiency of the algorithm
have been verified by testing on different mesh models
obtained from .stl files containing facets of CAD mesh
models. An illustrative example and results of testing
on different mesh models are presented in the following
sections.

5.1. Illustrative example

Figures 10 to figure 14 briefly illustrate the feature extrac-
tion procedure described in this paper. Algorithm starts
with an inputmeshmodel alongwith a slicing plane. Both

594 N. ADHIKARY AND B. GURUMOORTHY

are shown in figure 10. Slices are generated bymoving the
slicing plane along the offset direction. Figure 11a shows
all the 2D slices created by slicing with the slicing plane
along the offset direction shown in figure 10. The offset
between two successive slicing planes is set to be 3.5 units
in this case. 2D features are extracted from these slices.
All 2D features identified in each of these slices are shown
in figure 11b.

Figure 10. Mesh model, slicing plane and offset direction.

(a) (b)

Figure 11. (a) Slices, (b) 2D features.

In Figure 12, extracted 2D features are shown along
with the mesh model. Compatible slices and compatible
2D features are clearly visible in this figure. 3D features
are extracted by traversing along the 3D feature bound-
aries of the mesh model by using the seed data available
with each 2D feature. Traversal between slices is illus-
trated in Figure 13. Identified 3D features are shown in
the Figure 14a. Finally, extracted features are shown in
the mesh model in Figure 14b.

5.2. Results

Table 1 summarizes the model details as well as time
performance of the algorithm for the examples shown

Figure 12. Mesh model and 2D features.

in Figures 15a, 16a and 17a respectively. The features
identified in each case are shown in Figures 15b, 16b and
17b respectively. Table 2 shows the model details for the
mesh model in Figure 17a with varying mesh density.
Here MFD is known for each mesh model. Numbers of
slices are related to the MFD as well as the minimum
dimension of the mesh model. For a typical CAD mesh
model, numbers of slices are independent of the num-
ber of triangles of that CAD mesh model. Number of
slices is fixed for a given MFD. Two dimensional pro-
cessing is proportional to the number of slices and speed
of slicing depends on the number of triangles. As the
number of slices is fixed for a given MFD, 2D processing
timing depends only on the number of input triangles.
Again slicing indentifies the feature sensitive zones in a
mesh model to be processed in three dimensions. Since
the numbers of slices are fixed, increasing the number
of triangles does not increase the timing of overall fea-
ture extraction (2D and 3D processing) linearly. As can
be seen from the table 2, overall timing grows very slowly
with respect to the growth in the number of triangles.

While the slicing plane and offset direction are iso-
oriented with respect the global reference frame, the ori-
entation of the plane does not influence the result in any
way. The orientation of the slicing plane with respect
to the object can be arbitrary. An example is shown in
figure 18 that shows a few slices and the 2D features for
a case where the relative orientation of the slicing plane
and the object is arbitrary.

Here, all the 2D-features are incompatible with each
other. Hence, each of them is treated as potential termi-
nating feature and traversed in both the slicing direction
(positive as well as negative) to extract feature-boundary

COMPUTER-AIDED DESIGN & APPLICATIONS 595

Seed point (SP)
Pi1

Slice Si1

Seed
Vertex
Vi1

Seed Edge Ei1

Slice
S(i+1)1

SP P(i+1)1

(a) (b)

Figure 13. (a) Volumetric feature with two intermediate slices and two terminating slices, (b) traversal for a volumetric feature from
slice[i] to slice[i+ 1].

(a) (b)

Figure 14. (a) identified 3D features in wire frame view, (b) extracted features in the mesh model.

Table 1. Experimental results for example mesh models shown in Figures 15a, 16a and 17a.

Examples
Number of
Triangles

Number of
Features

Minimum Feature Dimensions
(MFD)

STL Data Size
(in KB)

Number of
Slices

Overall Timing
(in ms)

Example 1 978 1 3 236 9 608
Figure 15a
Example 2 2712 7 5 708 14 2059
Figure 16a
Example 3 7846 17 3 2078 12 3136
Figure 17a

(a) (b)

Figure 15. (a) Example 1 - input mesh model, (b) mesh model and extracted feature.

596 N. ADHIKARY AND B. GURUMOORTHY

(a) (b)

Figure 16. (a) Example 2 – input mesh model, (b) mesh model and extracted features.

(a) (b)

Figure 17. (a) Example 3 - input mesh model, (b) mesh model and extracted features.

Table 2. Experimental results for example 3 mesh model shown in Figure 17a with varying mesh density.

Cases
Number of
Triangles

Number of
Features

Minimum Feature Dimensions
(MFD)

STL Data Size
(in KB)

Number of
Slices

Overall Timing
(in ms)

Case 1 79786 17 3 21143 12 9813
Case 2 26578 17 3 7042 12 5413
Case 3 7846 17 3 2078 12 3136
Case 4 2950 17 3 781 12 2589

edges as described earlier. After traversal, algorithm ver-
ifies that the boundary edges extracted for 2D-features
on Slice-1 and Slice-3 are same as the boundary edges
extracted for the 2D-feature on Slice-2. The algorithm
therefore associates these incompatible 2D-features with
the same 3D-feature and extracts the triangles bounded
by those feature boundary edges. Figure 18f shows the
output of the arbitrary oriented mesh model shown in
figure 18a.

Another example of arbitrary oriented mesh model is
shown in figure 19a. Extracted features along with the
mesh model are shown in figure 19b.

6. Discussion

The proposed approach is able to identify all the bound-
ary edges of a volumetric feature from a CAD mesh
model and isolates all the triangles of that feature. The
most interesting aspect of this approach is that the
algorithm does not depend on the underlying surface
definition of each region and also does not process
the entire mesh; instead it simply narrows down the
extraction process to only in the feature regions. This
is because of the elimination of most of the regions in
two-dimensional processing. Completeness of the feature

COMPUTER-AIDED DESIGN & APPLICATIONS 597

(a) (b) (c) (d)

(e) (f)

Figure 18. (a) Arbitrary oriented input mesh model to extract feature, (b) model and slices with all incompatible 2D-features, (c) model
and slice-1 with 2D-feature, (d) model and slice-2 with 2D-feature, (e) model and slice-3 with 2D-feature, (f) mesh model and extracted
feature (mesh edges are suppressed in the model from frame ‘b’ to frame ‘e’ for better visualization).

(a) (b)

Figure 19. (a) Arbitrary oriented input mesh model with three features, (b) mesh model and extracted features.

extraction algorithm depends on the choice of MFD,
which is taken as an input at present.

Since mesh models are imported data from various
sources, noise and geometric errors may be present [1].
The algorithm has been tested with noisy input data
(obtained by randomly altering the vertices in a mesh
obtained from a CAD model). Noise is defined as per-
centage deviation of each mesh vertex with respect to
the minimum feature dimension. It was found through
experiments on a sample part that the procedure has no
difficulty in extracting the features correctly for noise of
upto 6.5%.

The characteristic size of the problem is the number
of triangles in the mesh model (say M). The steps decid-
ing the complexity of the algorithm are those involving
slicing and their processing. The worst case complexity
of the slicing step is O(ns * M) where ns is the number

of slices. This can be reduced by culling the number of
triangles to be considered using a bounding box defined
by the slicing plane. The complexity of the steps involv-
ing classification of the slice vertices and slice segments is
controlled by the number of triangles intersected by the
slicing plane. If this number is MS then complexity is lin-
ear with respect to MS and MS ≪M. The 3D traversal
phase does not involve any combinatorial step as triangles
are traversed between slices based on adjacency infor-
mation that is determined once and stored in the mesh
representation. The whole procedure therefore, is linear
with respect to the number of triangles or faces and com-
pareswell with someof the reported complexity [4] o(fˆ2)
for Katz and Tal [10] and O(flog f) for Liu and Ma [13]
where f is the number of mesh faces.

Minimum feature dimension (MFD) is the smallest
dimension associated with a feature in a mesh model.

598 N. ADHIKARY AND B. GURUMOORTHY

(a) (b)

Figure 20. (a) Interacting feature, (b) branching features.

Its value is assumed to be known. Slicing planes will
be placed at an interval of less than minimum feature
dimension. This is to ensure that each feature is inter-
sected by at least one slicing plane. Numbers of slices
are inversely proportional to the MFD. Two dimen-
sional processing generates more slices frommeshmodel
with smaller features than the model with large fea-
tures. Moreover, more slices speed up the process of
three dimensional traversal as two adjacent slices may be
topologically connected by a mesh edge. This topologi-
cal information eliminates the computation of dihedral
angles to reach to the next slice while 3D traversing
along feature boundaries. Therefore, more the number
of slices, means more is the time for two dimensional
processing, but less time for three dimensional travers-
ing. The proposed algorithm does not depend on any
underlying geometric information or on the density of
triangles. Input mesh model may have either coarse or
dense triangles. Actually coarse triangles help to speed up
three-dimensional traversal since the adjacent slices may
be topologically connected through bigger mesh edges.
This helps to directly jump on to the next slice during
three-dimensional traversing without doing any compu-
tation. Inversely, dense triangle takes relativelymore time
during three-dimensional traversal, as it also requires
vector computation apart from the available topologi-
cal information through mesh edges and vertices. Two
dimensional slicing mostly depends on vector analysis,
whereas three dimensional processing mainly depends
on topological connectivity available in the mesh model
and very least on vector analysis. Any algorithm based on
topological information and vector computation is effi-
cient and robust. Hence, the proposed algorithm is fast
and robust. This is also verified by experimental output
for example mesh models shown in tables 1 and 2.

Sometime 3D feature does not leave any signature on
the slice. A through slot or a through hole can yield
such cases. While heuristic procedures can be devised to

handle these cases, the most straightforward way to han-
dle these would be to repeat the slicing process with an
orthogonal slicing plane.

The algorithm at present cannot identify intersecting
features as shown in Figure 20a. Multi-direction slicing
can be explored to extract intersecting features. Proposed
algorithm will be able to detect branching feature for
simple branching objects for limited number of slicing
directions, for example slicing direction along the axis
of sweep for multi branch sweep object. An example of
such a case is shown in Figure 20b. For this example, a
2D feature in a slice will havemultiple compatible 2D fea-
tures in the next slice. Algorithm will fail in 3D-traversal
for branching features when slicing is in some arbitrary
directions.

7. Conclusion

An algorithm to recognize volumetric features by directly
clustering the triangles constituting a feature in a mesh
model has been presented in this paper. The novelty of
this approach is that it partially solves the problem in
2D and uses the results to reduce the effort in solving
the 3D problem. The algorithm involves two steps – iso-
lating features in 2D slices followed by a 3D traversal
to cluster all the triangles in the feature. Algorithm also
identifies the potential feature type from the 2D slices.
Based on experimental results and time complexity anal-
ysis, it is concluded that this feature extraction algorithm
is efficient and fast in identifying volumetric features
from mesh model over the existing algorithms. Current
work is focused on handling interacting features and in
parameterizing the extracted features.

ORCID

B. Gurumoorthy http://orcid.org/0000-0001-9857-9011

http://orcid.org/0000-0001-9857-9011

COMPUTER-AIDED DESIGN & APPLICATIONS 599

References

[1] ACIS 3D Kernel, http://www.spatial.com; http://doc.
spatial.com/index2.php

[2] Agathos, A.; Pratikakis, I.; Perantonis, S.; Sapidis, N.;
Azariadis, P.: 3D Mesh Segmentation Methodologies for
CAD applications, Computer-Aided Design & Applica-
tions, 4(6), 2007, 827–841. http://dx.doi.org/10.1080/1686
4360.2007.10738515

[3] Angelo, L. D.; Stefano, P. D.: C1 continuities detection in
triangular meshes, Computer-Aided Design, 42(9), 2010,
828–839. http://dx.doi.org/10.1016/j.cad.2010.05.005

[4] Attene, M.; Katz, S.; Mortata, M.; Patane, G.; Spagn-
uolo, M.; Tal, A.: Mesh segmentation – A comparative
study, Proceedings of the IEEE International Confer-
ence on Shape Modeling and Applications, 2006, 14–25.
http://dx.doi.org/10.1109/smi.2006.24

[5] Bénière, R.; Subsol, G.; Gesquière, G.; Le Breton, F.; Puech,
W.: A comprehensive process of reverse engineering from
3Dmeshes to CADmodels, Computer-Aided Design, 45,
2013, 1382–1393. http://dx.doi.org/10.1016/j.cad.2013.
06.004

[6] Gao, S.; Zhao, W.; Lin, H.; Yang, F.; Chen, X.: Fea-
ture suppression based CAD mesh model simplifica-
tion, Computer-Aided Design, 42(12), 2010, 1178–1188.
http://dx.doi.org/10.1016/j.cad.2010.05.010

[7] Garg, A.; Krishnan, S. S.; Gurumoorthy, B.: Recognition
and suppression of fillets/rounds in a tessellated solid
model, International CAD conference and exhibition,
CAD’04, May 2004. Thailand.

[8] Hoffman, D.; Richards, W.: Parts of recognition, In S.
Pinker, editor, Visual Cognition 1985; 18, 65–96.

[9] Huang, J.; Menq, C. H.: Automatic data segmentation
for geometric feature extraction from unorganized 3-D
coordinate points, IEEE Transactions on Robotics and
Automation, 17(3), 2001, 268–279. http://dx.doi.org/10.
1109/70.938384

[10] Katz, S.; Leifman, G.; Tal, A.: Mesh segmentation using
feature point and core extraction, The Visual Computer,

21(8), 2005, 649–658. http://dx.doi.org/10.1007/s00371-
005-0344-9

[11] Kim, H. S.; Choi, H. K.; Lee, K. H.: Feature detec-
tion of triangular meshes based on tensor voting
theory, Computer-Aided Design, 41(1), 2009, 47–58.
http://dx.doi.org/10.1016/j.cad.2008.12.003

[12] Lai, H.-C.; Chang, Y.-H.; Lai, J.-Y.: Development of
feature segmentation algorithms for quadratic surfaces,
Advances in Engineering Software, 40, 2009, 1011–1022.
http://dx.doi.org/10.1016/j.advengsoft.2009.03.017

[13] Liu, S.; Ma, W.: Seed-growing segmentation of 3-D sur-
faces from CT-contour data, Computer-Aided Design,
31(8), 1999, 517–536. http://dx.doi.org/10.1016/S0010-44
85(99)00050-0

[14] Patane, G.; Spagnuolo, M.: Multi-resolution and slice-
oriented feature extraction and segmentation of digi-
tized data, Proceedings of the seventh ACM sympo-
sium on Solid modeling and applications, 2002, 305–312.
http://dx.doi.org/10.1145/566282.566326

[15] Razdan, A.; Bae, M.: A hybrid approach to feature seg-
mentation of triangle meshes, Computer-Aided Design,
35(9), 2003, 783–789. http://dx.doi.org/10.1016/S0010-44
85(02)00101-X

[16] Sunil, V. B.; Pande, S. S.: Automatic recognition of features
from freeform surface CAD models, Computer-Aided
Design, 40, 2008, 502–517. http://dx.doi.org/10.1016/j.
cad.2008.01.006

[17] Wang, J.; Yu, Z.: Surface feature based mesh seg-
mentation, Computers & Graphics, 35, 2011, 661–667.
http://dx.doi.org/10.1016/j.cag.2011.03.016

[18] Weber, C.; Hahmann, S.; Hagen, H.: Sharp feature
detection in point clouds, IEEE International Con-
ference on Shape Modeling and Applications, 2010.
http://dx.doi.org/10.1109/smi.2010.32

[19] Xiao, D.; Lin, H.; Xian, C.; Gao, S.: CADmesh model seg-
mentation by clustering, Computers & Graphics, 35(3),
2011, 685–691. http://dx.doi.org/10.1016/j.cag.2011.
03.020

http://www.spatial.com
http://doc.spatial.com/index2.php
http://doc.spatial.com/index2.php
http://dx.doi.org/10.1080/16864360.2007.10738515
http://dx.doi.org/10.1080/16864360.2007.10738515
http://dx.doi.org/10.1016/j.cad.2010.05.005
http://dx.doi.org/10.1109/smi.2006.24
http://dx.doi.org/10.1016/j.cad.2013.06.004
http://dx.doi.org/10.1016/j.cad.2013.06.004
http://dx.doi.org/10.1016/j.cad.2010.05.010
http://dx.doi.org/10.1109/70.938384
http://dx.doi.org/10.1109/70.938384
http://dx.doi.org/10.1007/s00371-005-0344-9
http://dx.doi.org/10.1007/s00371-005-0344-9
http://dx.doi.org/10.1016/j.cad.2008.12.003
http://dx.doi.org/10.1016/j.advengsoft.2009.03.017
http://dx.doi.org/10.1016/S0010-4485(99)00050-0
http://dx.doi.org/10.1016/S0010-4485(99)00050-0
http://dx.doi.org/10.1145/566282.566326
http://dx.doi.org/10.1016/S0010-4485(02)00101-X
http://dx.doi.org/10.1016/S0010-4485(02)00101-X
http://dx.doi.org/10.1016/j.cad.2008.01.006
http://dx.doi.org/10.1016/j.cad.2008.01.006
http://dx.doi.org/10.1016/j.cag.2011.03.016
http://dx.doi.org/10.1109/smi.2010.32
http://dx.doi.org/10.1016/j.cag.2011.03.020
http://dx.doi.org/10.1016/j.cag.2011.03.020

	1. Introduction
	2. Literature review
	3. Definitions and terminology
	4. Algorithm to recognize features
	4.1. Pre-processing
	4.2. Two dimensional slicing of mesh model
	4.2.1. Classify vertices and create slice segments in each slice
	4.2.2. Identify two-dimensional (2D) feature segments

	4.3. Three dimensional traversal
	4.3.1. Determination of compatible slices and features
	4.3.2. Traversal from slice[i] to slice[i+1]
	4.3.3. Traversal of terminating feature from slice[i]
	4.3.4. Traversal for closed features

	4.4. Extraction of 3D features

	5. Implementation and results
	5.1. Illustrative example
	5.2. Results

	6. Discussion
	7. Conclusion
	ORCID
	References

