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ABSTRACT
In recent years, parametric optimization has become an important part of product development,
allowing the designer to explore an unprecedented number of product configurations. However,
optimization is often thought of as the last step of the design process; the product has already been
defined and the designer aim is toward the optimization of its performance. At this stage, the main
performance trade-offs have been set and cannot be solved by the optimization.

We propose an early application of optimization techniques during the product embodiment
phase; aimed not at finding the optimal configuration of an existing product, but at highlighting
trade-offs and the effect of design variables on theproduct performance. Theoutput of theproposed
procedure is a set of design guidelines that describe the design challenges at an early stage, when
there is still time to address trade-offs, and, possibly, resolve thembefore the final, andmore classical,
product optimization.

The procedure has been tested on two exemplary case studies pertaining to food product
refrigeration: a refrigerated display unit and a cabinet shelf.
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1. Introduction

The importance of automation and optimization in the
design and the production processes of an industrial
product is increasing, especially with regards to resources
consumption and product quality. Optimization strate-
gies can play a fundamental role in the product design,
by allowing the designer to study a greater number of
product configurations and reach an optimal result with
an automated process. Parametric optimization [3], [12]
is currently used mainly as the last step of the product
development. Once the embodiment [11] of the prod-
uct has been defined, the optimization algorithms can
enhance its performance by finding the most favorable
product configuration. Bymodifying detailed parameters
without changing the general embodiment, the optimiza-
tion can provide trade-offs, like energy saving vs. costs,
without ever solving them. In fact, such trade-offs are fre-
quently highlighted by the final product optimization [5],
when it is sadly too late to tackle them in the product
development.

The proposed methodology, called Optimized Devel-
opment, provides an early application of optimiza-
tion techniques during the product embodiment phase;
aimed not at finding the optimal configuration of an
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existing product, but at highlighting trade-offs and the
effect of design variables on product performance. In
[13] the authors used multi objective optimization as an
approach to support the early stages of the design of a two
level flash evaporator. The embodiment phase consists in
determining the value of a set of parameters, to obtain
a first dimensioning of the system. Multi-objective opti-
mization is here treated as a way to determine the proper
dimensioning in accordance with the product constraints
and objectives. The results of the classic approach are
limited to the ability of the designer to express prefer-
ences and expectations throughout the objective func-
tions. In [11] constraints and preferences are defined dur-
ing the embodiment design into an optimization model,
by means of indicators called Design Objective Index
(DOI) and Global Desirability Index (GDI). In [1], the
authors obtain a set of optimal design principles involved
in the performance of micro channels by analyzing the
results of a multi-objective optimization.

Furthermore, optimization results must be analyzed
to gain useful insights to be applied during the follow-
ing stages of product development. In [9] the authors use
clustering analysis to determine modular reconfigurable
manufacturing systems with the help of average linkage
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clustering algorithm in order to define themost adequate
modular system architecture and the modular definition
of the reconfiguration variables that are needed to reach
the required flexibility. In [10] MCDM have been used
to select the most appropriate Pareto solution among a
set of optimized configuration in construction problems
assigning objective weights with the Shannon entropy
technique.

The proposed methodology guides the user during
the first steps of product development. Four phases have
been defined (Fig. 1). A pre-processing phase, where the
designer parameterizes the product and defines prod-
uct performance and constraints, through a set of ana-
lytical or numerical equations [4]. A processing phase,
where the design space of possible product configura-
tions is populated with both optimization and factorial
algorithms. A post processing phase, where clustering
analysis and scalarization algorithms are applied in order
to highlight trends and product families. And finally, a
results evaluation phase, where trends and trade-offs are
defined through a set of product specific guidelines. The
aim of the proposed procedure is to describe the char-
acteristics of a product, which has yet to be thoroughly
defined, through a finite set of optimal and factorial con-
figurations. To achieve such a result, we study the cluster
of designs with statistical, clustering, and multi-criteria
tools. The output of the proposed procedure is a set of
design guidelines that describe the design challenges at
an early stage, when there is still time to address trade-
offs, and, possibly, resolve thembefore the final, andmore
classical, product optimization.

2. Proposedmethodology

The proposed methodology aims at defining a set of
product-specific design rules that will guide the designer
during the early stages of product development. In order
to achieve such a goal, we aim at describing the product
design space through the integration of a set of design
evaluation and analysis tools: parametric optimization,
DoE (Design of Experiment) analysis [6], clustering anal-
ysis [7], andMCDM (Multi Criteria DecisionMaking) or
scalarization algorithms [8].Design rules are then formu-
lated based on the response of the product mathematical
model to each design variable.

The proposed procedure comprises four main steps
(Fig. 1): (a) pre-processing, the parameterization of the
product and its performance criteria; (b) processing, the
appraisal of the design space through both optimiza-
tion and factorial algorithms; (c) post-processing, a set
of analysis tools aimed at refining the results of the
processing phase, and (d) results evaluation, a critical
review of the previous outputs to determine a set of
design guidelines. Each phase is described in the follow-
ing subsections.

2.1. Pre-processing

Pre-processing is an essential step in any product simula-
tion. Its goal is to describe mathematically the product
performance and constraints, through a set of analyti-
cal or numerical equations [4]. It can entail a numer-
ical model such as FEA, CFD, and any other form of

Figure 1. Steps of the optimization methodology
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CAE required to determine the product characteristics.
However, the model should be repeatable and consistent
across the entire design space.

When defining performance criteria and performance
constraints, the designer should list all the parameters
required to model the product, and identify which of
these should be studied through the proposed optimiza-
tion methodology. We will call these chosen parameters:
optimization variables. If the product to be modeled is a
refrigerated cabinet (as in the upcoming case studies), the
number of modelling parameters includes both geomet-
ric, structural, and thermal parameters. None of these is
less important per se; it all depends on what the designer
wishes to study, and on what parameters have a range of
possible values. For instance, the product under analysis
might have stringent geometric requirements that make
it impossible to study variations in its shape. Thus, geo-
metric parameters will be set to predefined values and
won’t be part of the optimization process. On the other
hand, any relevant parameter which can range in value,
can become an optimization variable.

The product performance criteria and constraints are
a function of a set of optimization variables of finite
range. For instance, the compliance of a beam is a func-
tion of its length, which may vary between a lower and
a higher boundary. Whether the compliance is a product
performance criterion to be optimized, or a product per-
formance constraint thatmustmeet a certain value range,
is up to the designer. A product performance criterion is a
product characteristic that should be eithermaximized or
minimized. On the contrary, a performance constraint is
a product characteristic thatmustmeet certain standards;
either a higher boundary, a lower boundary, or both. A
performance constraint is either active, when the spec-
ified boundary is exceeded; in which case the resulting
combination of optimization variables is inacceptable;
or it is inactive, when the specified boundary condition
is met. No difference results from the constraint being
more or less close to the boundary, when the constraint
condition is met.

Defining product performance, constraints, anddesign
variables is a key step of themethodology [16], [15]. Only
key variables should be included in the analysis, as best
results are achieved with a low number of design param-
eters. However, the next step will help the designer in
reducing the number of optimization variables, whenever
possible.

2.2. Processing

The processing phase is the most automated step of the
procedure. Its aim is to produce a consistent number of
factorial and optimal designs, through the use of standard

factorial and optimization algorithms, to populate the
product design space.

In order to study how each design variable affects
product performance, it is essential to have a good num-
ber of product designs. Product designs, whether optimal
or factorial in origin, are strings of optimization vari-
ables that in turn describe a single product version. A
common comparison is with DNA strings. Each design
has the same number of optimization variables, but with
different values. Thus, each design is a slightly different
product of the same family, each with a set of perfor-
mance criteria resulting from its string of optimization
variables. This family of product designs can be created
in two ways: with an optimization of the product, or with
aDoE approach [6]. The optimization of the product pro-
duces a set of optimal designs that is focused on finding
the best product performance (or performance trade-off,
in case of a multi-criteria optimization). Regardless of
the optimization algorithm chosen, the approach leads
to a very narrow scatter of product designs that includes
the product versions that maximize performance crite-
ria. This sub-family of best designs, also known as pareto
designs, will be the core data for the post-processing phase
described in the next step.

A second approach to creating a core of product
designs is theDoE approach. TheDoE approach is a set of
algorithms, originally created to plan experiments were
only a finite set ofmeasurements was possible, that define
rules to populate the family of product designs regard-
less of the resulting performance.While the optimization
algorithm is constantly active and dynamic, choosing the
next string of optimization variables based on the per-
formance achieved by the last, a DoE algorithm plans
each variable string before evaluating each design per-
formance. Thus, the designer can choose the desired dis-
tribution of product designs, in order to study not just
a narrow portion of the design space, but its entirety.
However, being limited to a finite number of designs, a
DoE distribution will be far less dense than an optimiza-
tion distribution of equivalent design number, and it will
populate both regions of high performance products and
regions of low performance products.

Clearly the two approaches are very different, and the
DoE approach might seem redundant, if not counter-
productive. However, the reader should keep in mind
that a big enough family of product configurations is
essential in order to draw meaningful results, but the
overall quantity of designs is a function of the number
of chosen optimization variables. A small enough set of
optimization variables can be studied well with a small
number of product designs, but the growth is exponen-
tial with respect to the number of variables. It is then
very important to identify key parameters that should be
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treated as optimization variables, and discard the unim-
portant ones. Yet this step is often not trivial, and relies
heavily on the designer understanding of the product.
Being the proposed methodology aimed at the first steps
of product design, it is better to not rely toomuch onwhat
could turn out to be misconception. A DoE distribution
can help the designer in discarding non relevant variables
through the use of DoE Main Effects, applied to a fac-
torial distribution. Variables main effects are determined
by dividing a 2 level factorial DoE into two subgroups,
one for the chosen variable higher value, and one for the
lower value. By comparing the objective values within
the two groups, it is possible to gauge the influence of
the chosen variable on the performance of the product.
Main Effects quantify the relative influence of each design
variable (Fig. 2). Their main function is to provide the
means to focus on the important variables, and eliminate
ineffective variables, thus reducing the number of opti-
mization variables. Main Effects are determined on the
results of a factorialDoE algorithm.A factorialDoE guar-
antees no correlation between input variables (basically
a perfectly spaced grid), which is essential for reliable
statistical results.

In the example of Fig. 2, the Evaporator Diameter is an
unimportant variable across both performance criteria:
the total cost of the product and its power consump-
tion. This parameter can then be safely removed from the
optimization variables. On the contrary, the Evaporator
Height has little to no effect on one of the performance
criteria, but is a relevant variable for the product power
consumption. This parameter should not be removed
from the optimization variables. Clearly then, all vari-
ables which have a relevant effect on at least one per-
formance criteria should be included in the optimization
variables.

2.3. Post-processing

Post-processing is a further enhancement of the previous
step results, to highlight possible trends that may provide
useful design guidelines. All post-processing analysis is
applied to a selected group of best designs from the opti-
mization results. Best designs are selected through the
Pareto concept: pareto designs are product configurations
which are equally good and cannot therefore be ranked.
A set of Pareto designs arises whenever there aremultiple
conflicting performance criteria. It is therefore impossi-
ble tomaximize all criteria with a single product configu-
ration and the optimization algorithm will find multiple
trade-off designs that can only be ranked by weighing
the set of performance criteria. These designs are called
pareto designs, and they represent the product configu-
rations where none of the performance criteria can be
improved without deteriorating at least one of the other
criteria.

The main tools of the post-processing phase are Clus-
tering analysis (Fig. 3) andMCDM/scalarization ranking.
Clustering analysis [2] is applied to the pareto designs of
the optimization results. Itsmain function is to determine
product families of similar performance. This grants the
designer a first qualitative assessment of the correlation
between design variables and performance criteria.

To identify clusters of similar designs, our methodol-
ogy uses a partitive cluster algorithm.Cluster analysis can
be considered as one of the most important approaches
to unsupervised learning. The goal of clustering is to
find clusters from unlabeled data, which means that data
belonging to the same cluster are as similar as possible,
whereas data belonging to different clusters are as dis-
similar as possible [14]. Most clustering software allows
the user to define what variables should be accounted for

Figure 2. Influence chart of Input vs. Output
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Figure 3. Cluster analysis of the optimization results

during the clustering analysis. While performance crite-
ria are the key parameters on which to base the clustering
study, the designer might find useful to study different
sets of input variables to gain a better idea of the dis-
tribution of optimal designs. Regardless, the proposed
methodology requires a partitive cluster based on the
performance criteria. The result is a grouping of differ-
ent product configurations that share a common per-
formance profile. For instance, one cluster will include
designs that have a high performance on one criterion,
and a very low performance on other criteria; another
cluster might comprise well-rounded designs that do not
excel in any performance criteria, and so on. In any case,
the clustering algorithmdisregards any similarity in input
variables and partitions designs solely based on their
performance.

The results of the optimization are further refined
with an MCDM/scalarization approach. As aforemen-
tioned, Pareto designs are equally good and cannot be
ranked. This is due to the fact that each performance cri-
teria is equally important for the optimization algorithm.
Thus, a product configuration that excels in one criteria,
while being exceedingly bad in all other aspects, is just as
good as a well-rounded product. Clearly, this is not true
in reality, where extreme configurations are unlikely to
outperform more rounded designs.

In order to identify trends for product development,
the proposed methodology needs a ranking of all Pareto
designs across the range of performance criteria. In order
to achieve this, the designer can use either an MCDM
algorithm, or reduce the number of optimization objec-
tives to one. An MCDM algorithm allows the user to
weight each performance criteria and build a ranking,
based on a single resulting indicator. The weighting sys-
tem is, however, subjective and hard to define. When

applicable, the user should aim at reducing the number
of optimization objectives to one. This can be done
by converting all the objectives to a common indica-
tor, through scalarization. This can usually be applied to
cost, by converting each performance criteria to its corre-
sponding cost. For example, energy consumption can be
converted to its relative energy cost, and market research
can help correlating a cost to any other product per-
formance. This allows a ranking of the optimal designs,
from best to worst, with a single common performance
indicator.

2.4. Results evaluation

Design guidelines are defined by studying the previous
steps results. Trends are extracted by choosing a sub-
set of the highest-ranking designs from the previous
MCDM/scalarization analysis; we recommend studying
the top 100 ranking designs. These top ranking designs
are then plotted with respect to each optimization vari-
able (Fig. 7). By studying the graphical results and regres-
sion lines, the designer can determine the correlation
between each optimization variable and the product per-
formance, find trends, and compare the effect of different
variables against a common indicator.

Trends take the form of a direct relationship between
the product performance indicator (ranking) and each
design variable: e.g., increasing variable (a) results in a
higher performance; variable (b) has an optimal value
around 50% of its range. These might seem trivial results,
but they are not so intuitive when combining multiple
objectives in a single performance indicator. Trends can
also take the form of a comparison between variables:
e.g., variable (b) has the most beneficial effect on product
performance.Thismight seem a similar result to theMain
Effect analysis, but the latter has only a statistical value
and assesses both beneficial and harmful effects.

Further trends can be determined on multiple per-
formance criteria by studying the Pareto designs of the
optimization and the clustering results. By analyzing the
clusters composition, the designer can obtain valuable
information on how each optimization variable was opti-
mized. Resultsmight show that a single, or a set of clusters
share common values across a range of optimization vari-
ables. For instance, the designer might learn that well
rounded products all stem from a precise combination of
variables, or, on the contrary, hemight learn that a certain
variable has no correlation with the clustering results.
Trends identified through the study of clusters composi-
tion take the form of a direct relationship between all per-
formance criteria and each design variable: e.g. increas-
ing variable (a) increases performance (x), but decreases
performance (y).
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Trends are then combined to create guidelines for fur-
ther product development. Guidelines describe the char-
acteristics of the optimal product and highlight impor-
tant trade-offs that the designer will have to optimize
or resolve. This is by no means the final step of prod-
uct development, but rather the starting point. With the
guidelines is possible to identify direction of design in
terms certain layout of insulation, for example identifica-
tion of wall thickness range with a condenser that covers
all the refrigerator surface, or the location of insulation
panels with respect to the location of the heat exchang-
ers. These guidelines will guide the designer during the
development process, by highlighting the hotspots of the
design effort, and removing any previous misconception
that might have led the designer astray.

3. Case studies

The proposed methodology was tested during a research
program on commercial food refrigeration cabinets: a
closed refrigerated display unit and a cabinet shelf. The
research project aims at studying a limited set of prod-
uct configurations in order to define the most promising
areas of further development. Additionally, the project
aims at: studying the influence of a limited set of product
specific parameters on the overall performance, defin-
ing regions of overlapping technology, and detailing a
set of design rules based on the results of a product
optimization.

Both studies entailed the development of a dedicated
mathematical model, to simulate the thermal exchange
and determine power consumption and operational cost.
This article, however, will not go in detail of themodeling
phase, preferring to focus on the methodology. Further-
more, only the closed refrigerated display unit will be
described in detail, while results and conclusions will be
outlined for both.

3.1. Performance criteria and constraints (Step 1.1)

The cabinet performance has been assessed through four
objectives: the energy consumption of the cabinet, the
material cost of the cabinet, the Total DisplayArea (TDA)
of the cabinet, and the Total Display Volume (TDV) of
the cabinet. Performance constraints concern food prod-
ucts temperatures, whichmaynot rise over a certain value
across the entire cabinet. Four critical areas inside the
cabinet were mapped and studied, to ensure the preser-
vation of the stored products integrity.

Performance criteria were determined as follows:

• The energy consumption of the cabinet has been eval-
uated as the Heat Extraction Rate (H.E.R.) of the

evaporator over a 24 hours cycle. The H.E.R. accounts
for every positive thermal flow within the cabinet:
conductive heat from the walls and the glass, radiat-
ing heat through the glass, heat from the vents, the
internal lights, and the resistors inside the doorframe.

• The material cost is representative of the overall cab-
inet cost, and is determined as the sum of each com-
ponent materials and manufacturing costs.

• The TDA was determined from a fixed outer cabinet
dimension and aspect ratio. TDA is defined as the sum
of vertical and horizontal projected areas of visible
products.

• The TDV is defined as the cabinet internal capacity to
hold refrigerated food.

3.2. Mathematical model and product
parameterization (Step 1.2)

Wewill not go into the details of the mathematical model
and focus on the choice of parameters and optimiza-
tion variables. In order to study the cabinet performance
over a variety of configurations, a small set of optimiza-
tion variables was chosen, among the many parameters
required to model the product. As aforementioned, there
is no definite way to choose optimization variables. For
the present study, the selected parameters represent the
main areas of development focus, and have been cho-
sen with the intent of gaining insights on their influ-
ence on the overall performance. A list of all the opti-
mization variables and performance criteria can be seen
in Tab. 1.

The optimization variables are:

• Insulating element thickness. The cabinet back, top and
bottom walls are lined with insulating material. The
insulation thickness is constant along each wall, but
each insulated wall is independent of the rest, thus
allowing for different distributions of insulation thick-
ness.

• Insulating element material. The insulating mate-
rial can be either polyurethane foam or Vacuum
Insulated Panels (VIP), the latter being the most

Table 1. Optimization variables and performance criteria.

Optimization variables Performance criteria

Insulation thickness on lower wall Heat Extraction Rate
Insulation thickness on upper wall Material cost
Insulation thickness on back wall Total Display Area (TDA)
Air flow Total Display Volume (TDV)
VIP ratio on lower wall
VIP ratio on upper wall
VIP ratio on back wall
Glass Transmittance
Evaporator position
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advanced and costly technology. In order to work
with continuous variables, the material type has been
parameterized as a percentage of VIP on the overall
thickness.

• Internal airflow. The studied cabinet is of a forced
ventilation type. Airflow is therefore a critical param-
eter, which has been the focus of many scientific arti-
cles, and experimental and analytical studies. Airflow
directly determines the evaporator power consump-
tion, its dimension, and the internal temperature of
the cabinet and refrigerated products.

• Glass transmittance. The cabinet glass is the only see-
through wall and the most conductive side of the
cabinet. Its transmittance can be lowered at great tech-
nological and economical expense. Two main tech-
nologies are available; an economic, but high trans-
mittance glass, and a costly, low emissivity glass. Since
a discreet variable of only two levels would be less
than ideal for a parametric optimization, the range of
glass transmittancewas parameterized as a continuous
variable.

• Evaporator position. The evaporator can be positioned
along the three inner walls of the cabinet. Its position
has a great effect on the distribution of temperature
inside the cabinet, as well as the overall energy con-
sumption. Depending on its position, the circulating
air coolest and warmest point shift along the inner
edge of the cabinet, creating a different thermal system
each time.

3.3. Factorial analysis (Step 2.1)

A factorial DoE analysis allows studying the design
space boundaries with a limited number of simulations.
Through a statistical DoE, which guarantees a zero cor-
relation between input variables, it was also possible to
study the relative influence of each parameter on the
performance of the product, by determining each vari-
able Main effects. Main effects analysis (Fig. 4) shows
the prominent effect of airflow on energy consumption
(27%), material cost (9%), TDA (41%), and TDV (48%)
(the last three are a product of the evaporator dimension-
ing). VIP ratio and insulation thickness are also impor-
tant factors, accounting together formuch of thematerial
cost, energy consumption, TDA, and TDV. The glass
transmittance has a great impact on the overall cost, but
its influence on energy consumption, TDA, and TDV is
limited. It seems that glass insulation is a costly tech-
nology with little benefit on the cabinet performance.
Finally, the evaporator position has a very limited effect
on energy consumption and overall cost ( < 1%), but
plays a big role in determining the cabinet TDA andTDV.

All the chosen variables have a quantifiable effect on
at least one performance criteria, and all variables form
a trade-off between at least two performance criteria (i.e.
there is no variable that can be maximized or minimized
without any negative effect on product performance).
Therefore, the number of optimization variables cannot
be reduced without losing an important aspect of the
analysis.

Figure 4. Optimization variables main effects
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3.4. Optimization (Step 2.2)

A set of genetic algorithms was employed to generate the
core of optimal product configurationswith respect to the
objectives defined in step 1.1. From this set of designs, the
pareto configurations were extracted (Fig. 5). The hyper-
bole trend of the graph reveals the intrinsic dependency
of energy and cost. Energy efficiency is mainly achieved
through technologically superior materials and compo-
nents, leading to a higher material cost of the cabinet.
The pareto scatter chart of Fig. 5 does not show a clear
pareto frontier on account of there being four objectives,
which make it impossible to represent a pareto fron-
tier in two dimensions. Plots for TDA and TDV are not
showed.

Figure 5. Pareto designs scatter chart, with applied clustering
results

3.5. Cluster analysis (Step 3.1)

A partitive clustering algorithm was employed for a clus-
ter analysis of the Pareto designs. The aimof such analysis
is to find regions of overlapping technology, were differ-
ent configurationsmay achieve similar performance in all
or some of the performance criteria, and to define prod-
uct families based on performance criteria rather than
configuration. The partitive clustering algorithm found
8 clusters, shown in Fig. 5.

Clusters are labeled (Fig. 6) based on their mean per-
formance across the range of performance criteria. Their
composition can then be studied for each optimization
variable. Continuous variables should be divided in high
and low ranges, or any number of sub-divisions. For
instance, the glass transmittance was split in high values
(from the highest value to the mean value) and low val-
ues (from the lowest value to the mean value). Thus, it
is possible to determine the composition of each cluster.
For instance, results for the glass transmittance (Fig. 6)

show that low values of transmittance are mainly asso-
ciated with high materials costs (clusters 1 and 7), while
high values of transmittance are mainly associated with
high energy consumption (clusters 0, 5, and 6). Finally,
clusters 2,3, and 4 show a more homogeneous distribu-
tion of low and high values of transmittance. This means
that a similar performance can be achieved with differ-
ent product configurations: some that work better with a
high transmittance glass, and some that tailor the remain-
ing optimization variables in order to accommodate a low
transmittance. Clearly, we can increase the definition by
defining a higher number of sub-divisions for each vari-
able; for instance: low, medium low, medium, medium
high, and high.

3.6. MCDM/Single objective (Step 3.2)

In order to identify trends for product development, the
proposed methodology needs a ranking of all Pareto
designs across the range of performance criteria. In
order to achieve this, the four performance criteria were
reduced to a single objective: operational cost. The oper-
ational cost was defined as the cost of running the cabinet
for a period of three years (material cost and energy con-
sumption), minus the economic benefit of a higher TDA
and TDV. It was then possible to rank the Pareto designs
and select the top 100.

As aforementioned, determining the conversion fac-
tors that allow the reduction to a single objective is in
itself a daunting task, but it will not be treated in the
present article.

3.7. Results evaluation (Step 4)

The best 100 designs in operational cost have been stud-
ied in detail to define a set of design rules, based on the
results of the product optimization. The following graphs
(Fig. 7) display the 100 top designs ranked by operational
cost (y axis) with respect to the main model variables (x
axis).

By studying the best results, it was possible to define
a set of twelve design guidelines and rules that enable
the minimization of the operational cost over a three-
year running period. These design guidelines target each
optimization variable, as well as the overall product. For
example, two values of optimal airflow can be found in
Fig. 7 (left): a very low airflow of about 0.05 kg/s, and a
mid-range value of 0.11 kg/s. Regression lines don’t show
a clear benefit for either value, which indicates that it
should be possible to build two different product config-
urations of similar performance. Choosing either airflow
value, in fact, will result in a different set of values for the
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Figure 6. Clusters composition analysis

Figure 7. Scatter graphs of optimization variables vs the ranking of the best 100 designs.

remaining optimization variables. The resulting guide-
line is: Two distinct airflow values were found to be opti-
mal. Each configuration should be studied in detail before
choosing the nominal airflow rate.

In a similar way, a set of guidelines was defined for the
second case study, the refrigerated cabinet shelf, provid-
ing trends and design rules in terms of the layout of the
insulatingmaterial, and the use of special insulation pan-
els. The analysis also highlighted the relation between the
height of the evaporator and the shape of the condenser,
allowed identifying a correct universal thickness for the
special insulating panels, and provided important clues
for the shape of the condenser.

These guidelines can help the designer during the
embodiment phase of product design, by focusing the
development effort on critical areas, and highlighting
possible trade-offs and unexplored configurations.

4. Conclusions

The proposed methodology, called Optimized Develop-
ment, aims at using optimization techniques as one of
the first tools of product development, applicable during
the embodiment phase. By describing the design space
through a finite set of optimal and factorial configu-
rations, and by using statistical, clustering, and multi-
criteria tools, the proposed procedure can describe the
characteristics of a product, which has yet to be thor-
oughly defined. The output is a set of design guidelines
that describe the design challenges at an early stage,
when there is still time to address trade-offs, and, pos-
sibly, resolve them before the final, and more classical,
product optimization. The methodology should not be
viewed as an alternative to the standard step of prod-
uct optimization, but rather as a complementary phase,
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with a broader scope, aimed at studying the relationship
between product performance and design variables.

The approach has been tested on two kinds of refrig-
erators for commercial exposition. Results show the fea-
sibility and benefit of applying Optimized Development
from the early stages of product development. On the
other hand, themain limit of themethodology is the need
of parameterizing the product, which binds the analysis
to the choice of parameters.
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