
COMPUTER-AIDED DESIGN & APPLICATIONS, 2016
VOL. 13, NO. 5, 637–646
http://dx.doi.org/10.1080/16864360.2016.1150710

Aweb repository to describe and execute shape oriented workflows

Marco Attene , Daniela Cabiddu , Stefano Gagliardo, Franca Giannini and Marina Monti

IMATI-CNR Genova, Italy

ABSTRACT
The effective use of advanced tools and geometric models across different applications frequently
requires model processing to satisfy the application requirements. Besides being time consuming
processes, these model adaptations normally employ advanced tools that need specific knowledge
for their proper usage. Therefore, it is frequently difficult understanding which tools and operations
better fit with the specific purposes.

This paper presents the capabilities of the Visualization Virtual Service (VVS) infrastructure for
the creation and retrieval of shape processing workflows either to describe best practice process
pipelines or to allow running sequences of web services.

KEYWORDS
Geometric processing; web
repository; web services;
workflows

1. Introduction

Nowadays the use of various systems for the creation and
analysis of 3D digital models hasmovedmost of the engi-
neering applications into the digital world. CAD systems
are de-facto standard for the creation of new product
shapes. They are supported by specific application tools
for the verification and simulation of all the product
aspects, such as the layout, the behavior and functional-
ity, and the related production operations. According to
the specific type of analysis, different model representa-
tions are used to better fit the efficiency and functionality
of the algorithms performing the analysis and simula-
tions. Therefore, the effective use of geometric models in
engineering applications frequently requires somemodel
processing to satisfy the application requirements. This
processing can involve conversion of the representation
and format as well as modifications in object geometry
and/or topology.

As an example, performing the finite element analy-
sis during a product design not only requires the creation
of a mesh model from the CAD B-Rep but also model
adjustments, and a shape simplification involving both
topological and geometric changes [11]. The few long
and thin triangles produced by a tessellation algorithm
are perfect for a visualization setting because they allow
higher frame rates. Unfortunately, these triangles are def-
initely not appropriate for a FEA application, where the
regularity of the mesh and its density in regions affected
by particular stress are determinant to guarantee faith-
ful simulation results. In this case, a remeshing process

CONTACT Marina Monti Marina.Monti@ge.imati.cnr.it

is necessary to modify the shape of the triangles without
modifying the overall shape of themodel. Before remesh-
ing, however, possible pre-processing might be necessary
to guarantee that the mesh actually encloses a solid [3].
Also, after remeshing and depending on the analysis type,
the surface mesh can be used to produce a conforming
tetrahedral mesh.

Another example is the process required to get cor-
rectly printable shapes. Today fabricating an appropriate
3D model using a low-cost 3D printer is as easy as print-
ing a textual document, but creating a 3D model, which
is actually “appropriate” for printing, is definitely compli-
cated. A 3D model can be produced either from scratch
by using traditional CAD software, or from real-world
objects using 3D digitizers. In both cases, the raw model
is likely to have a number of defects and flaws that make
it unsuitable for printing [4]. Proper pipelines of geomet-
ric algorithms to repair raw digitized models have been
defined in the literature [2] and can be implemented as
automatic processing workflows. Similarly, but using dif-
ferent sequences of basic algorithms, meshes produced
by tessellation of assembled CAD models can be auto-
matically fixed tomake them printable [3]. Inmost cases,
the repairing process can take place in a completely auto-
matic manner, that is, without user intervention. How-
ever, someworkflowsmay need to iterate the execution of
one or more basic algorithms to converge to an eventual
clean result [2]. Thus, to make these pipelines available
as executable workflows, the management of loops and
conditional tasks should be included.

© 2016 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://orcid.org/0000-0002-9012-7245
http://orcid.org/0000-0001-5797-4189
http://orcid.org/0000-0002-3608-6737
http://orcid.org/0000-0002-1627-3551
mailto:Marina.Monti@ge.imati.cnr.it
http://www.cadanda.com


638 M. ATTENE ET AL.

When a mesh model must be visualized it is often
important to convey a clear unbiased picture of the
object. This requirement is in contrast with the char-
acteristics of typical raw models coming from 3D dig-
itization sessions, where a number of surface holes are
commonplace just as surface noise, tiny disconnected
components, gaps, and so on. Mesh visualization is not
as demanding as 3D printing, but all the aforementioned
defects should be removed or reduced to produce a nice
and informative rendering. Geometric pipelines includ-
ing surface smoothing, hole filling, gap closing and pos-
sibly simplification are therefore necessary. Automatic
process workflows can be implemented in this case too,
and a number of variations can be provided depending on
the target visualization device (e.g. a powerful graphics
workstation, a desktop PC, a smartphone). For example,
the level of the simplification can depend on the render-
ing capabilities, whereas the amount of smoothing can
depend on the specific rendering engine used.

Another example in which shape model adaptation
is necessary is the use of CAD models in VR environ-
ments. VR is the combination of real-time presenta-
tion and immersive interaction for the modification and
evaluation of models and processes within a computer-
generated environment. VR techniques and tools have
seen a big improvement in the last years, and their use
has been recognized advantageous to replace expensive
and work intensive physical prototypes by their digital
representation. Even if VR offers advantages and new
usage possibilities, it is mainly adopted in large com-
panies, such as automotive and aerospace industry. A
larger adoption of VR tools in wider engineering appli-
cations, and in particular in smaller companies, is still
quite limited due to various reasons that include the high
equipment costs. Additionally, the other main issue lim-
iting VR usage is related to the time and skill required
to properly adapt CAD models to be effectively used in
VR applications. Some CAD vendors are providing inte-
grated solutions for data acquisition and integration, but
they are strictly coupled with their systems and do not
fully automate the process. Design reviews and simula-
tion in VR environments demands for high visualization
capabilities obtained by processing polygondata, whereas
CAD models are based on continuous surfaces. More-
over, engineering models are not created to be visualized
in real time but to provide the effective detailed prod-
uct shape to be manufactured or to serve as a schematic
representation of the characteristics to be analyzed [20].
Therefore, CAD models need to be converted in a VR
compatible format, i.e. a polygonal representation. Var-
ious problems can be detected in this conversion [21]. As
in the previous examples, there is an inadequate treat-
ment of the geometry with loss of precision leaving to

inconsistent models with wrong surface orientation or
cracks. In addition, the obtained models are too com-
plex with unnecessary details, e.g. hidden areas, but at the
same time, they miss realism. In fact, texture informa-
tion is rarely associated to the CADmodel, but it is quite
important for truthful VR visualization. Finally but still
very important, semantic information associated to each
object, including its structure, is lost and frequently needs
to be recreated. To overcome these problems, several
adjustments have to be performed byVR specialists using
ad hoc tools. Thus, the required knowledge in choos-
ing the most appropriate tool functionality in the correct
sequence may further discourage engineers in adopting
VR in their product development.

The briefly described processes are generally per-
formed according to steady sequences resulting from
technological constraints and experience. Thus, under-
standing which tools and operations better fit with the
specific purposes is frequently difficult for non-experts.
The web provides plenty of documentation and tutorials
on the use of themost disparate tools, but they are weakly
organized and generally related to the specific software.

To overcome these limitations, in this paper, we
present the capabilities of the Visualization Virtual Ser-
vice (VVS) infrastructure for the creation and retrieval of
shape processing workflows. Within the VVS, two types
of workflows are considered: static workflows, which
describe best practice process pipelines, and executable
workflows, which allow running sequences of web ser-
vices. An ontology has been defined for their formal
description and instances may be created for the speci-
fication of best practices for the preparation of CAD data
for Virtual Reality environments.

In section 2 of this paper, we present the workflow
ontology that formalizes the knowledge needed for the
creation and retrieval of shape processing workflows
within the Visualization Virtual Service (VSS) infras-
tructure. Section 3 explains how the executable work-
flow module can support geometry processing research
activities. In section 4 the repository in which users
may upload, search and browse workflows is illustrated.
Finally, section 5 concludes the paper by summarizing
the achievements.

2. The workflow ontology

TheVisualization Virtual Service (VVS) (http://visionair.
ge.imati.cnr.it/) developedwithin theVISIONAIRproject
extends the Digital Shape Workbench (DSW) from the
AIM@SHAPE Network of Excellence [1]. It consists
of ontologies and web-based repositories of Shapes,
Tools and Workflows, together with an advanced Search
Framework. The VISIONAIR project aims at federating

http://visionair.ge.imati.cnr.it/
http://visionair.ge.imati.cnr.it/


COMPUTER-AIDED DESIGN & APPLICATIONS 639

and providing an unique access to advanced visualiza-
tion resources available at research centers and univer-
sities from Israel and other countries in Europe [16].
Researchers can access the facilities, including Virtual
Reality, Augmented Reality, Holography, High Quality
Image Processing, etc., to test their research results or
to carryout visualization trials. Within the VISIONAIR
project, the VVS is aimed at supporting the experts in
the preparation of experiments [5] by including the pos-
sibility of finding and storing both shape data and shape
processing tools necessary to run tests and to create vir-
tual environments. To better support the preparation of
data, during the project a particular interest emerged to
have available organized information on the processes for
the preparation ofVR environments and some shape pro-
cessing capabilities to treat the data. To fulfil this require-
ment we extended the VVS framework to include capa-
bilities for creating, storing and running two different
types of workflows:

• Static workflows to describe best practice processes,
• Executable workflows to allow the execution of

sequences of web services.

The Workflow Ontology (WO) is the knowledge base
that allows describing formally both documental and

executable workflows. The ontology is built on top of
the Common Info Ontology (CIO) and of the Common
Tool Ontology (CTO), which organize the information
about the users and the tool repository of the VVS, i.e. a
catalogue of software tools for the creation, analysis and
modification of shapes. Fig. 1 gives an overview of the
ontology structure. Process languages and ontology are a
subject studied by many authors in the last decades, such
as in [14][16][20]; Gangemi et al. in [12] provide a good
overview of them.We opted for the ontological approach
to be compatible with the rest of the VVS. We decided
not to use already existing process ontologies because
of their complexity greater than the one needed for the
VISIONAIR purposes. Available ontologies related to VR
applications [19][10] are mainly devoted to support the
behavioral modelling of the objects or to formalize the
code for generating a Virtual World without considering
any data adaptation aspect.

The main class of the WO is the Workflow class,
where workflows are indeed instantiated. In particular,
two subclasses have been created, WorkflowStatic and
WorkflowExecutable, for the instantiation of documental
(that are static) and executable workflows, respectively.

Static workflows are meant as sequences of at least two
activities that are elements of the Activity class. Simple
activities, i.e. corresponding to a single functionality, can

Figure 1. The Workflow Ontology Structure.



640 M. ATTENE ET AL.

be grouped in macro-activities when they contribute to
a unique logical action, which is normally performed by
using the same software system. They are elements of the
SimpleActivity and MacroActivity classes, respectively,
both subclasses of the Activity class.

The propertyWorkflowDomain of theWorkflow class
specifies the purpose of the workflow and its context of
use. Each activity may be described in more details by
specifying some additional information: hints and con-
straints on the correct performing of the activity can be
provided as instances of the Tip and Restriction classes,
respectively, and linked to the activity through the hasTip
or hasRestriction property. Additional data to carry out
the specific activity and preserved information during
its execution are modelled as elements of the Addi-
tionalInput and PreservedData classes, respectively, and
are linked to the activity through the hasAdditionalIn-
put and hasPreservedData object properties. In partic-
ular, tips and restrictions can be linked not only to the
activity, but also to specific additional data, preserved
information or tool related to it, using the tipOfInput,
tipOfData and tipOfTool properties (analogous ones for
restrictions).

Additionally the URL of documentation files may be
linked to an activity or to one of its tips or restrictions
for providingmore detailed information, such as text files
with a deeper explanation of the activity or also images.

Information about the tools listed in the VVS that
can perform an activity are indirectly obtained through
the functionality an activity is linked to. Fig. 2 depicts
the exploited connections between the Common Tool
Ontology, used for the Tool repository of the VVS, and
the Workflow ontology. As the tools defined in the Tool
Repository are mainly meant to be shape-oriented tools,
the creation of new tools more devoted to specific appli-
cation domain (such as tools managing sounds for VR) is
allowed as instances of the Tool class of the WO.

The formalization of executable workflows includes,
in addition to the common properties, the link to the
.xml files that describe the workflow and are used by the
engine, described in the next section, for the execution of
the workflow itself.

3. Executable workflows

The Executable Workflow Module is designed to enable
the actual processing of geometric models. Since a typ-
ical process (see Fig. 3) consists of considering an input
model and performing a sequence of operations on it, our
framework allows running state-of-the-art algorithms by
using only a standard Web browser, without struggling
with software installations, compatibility issues, or hard-
ware requirements. Algorithms can be exploited indi-
vidually or combined in complex geometry processing

Figure 2. A zoomed view of the workflow ontology on the Activity and related classes with the linking properties.



COMPUTER-AIDED DESIGN & APPLICATIONS 641

(a) (b) (c) (d) (e)

Figure 3. Local mesh repairing [4]: a typical example of geometry processing workflow. The input model (a) has 160 spurious discon-
nected components that are removed (b). Then one iteration of laplacian smoothing is applied (c) to enhance the surface and the 404
holes are patched (d). Finally, degenerate triangles are removed (e).

workflows. Furthermore, researchers in other fields than
geometry processing who need to exploit geometry algo-
rithms to run their experiments can easily take advantage
of our system since no expertise in programming and
geometry modelling is required.

The framework architecture is organized in three lay-
ers, as shown in Fig. 4(a). On one side, a Web-based
user interface allows choosing the desired algorithm
among the available ones or defining complex geometry

processing pipelines by combining a set of available oper-
ations. On the other side, a set of Web services is avail-
able. Web services may be considered as black boxes,
each of them able to run a specific geometry process-
ing algorithm on an input model using possible input
parameters and returning the generated output address.
The Workflow Engine is the interface between the two
sides and is responsible of the pipeline runtime execu-
tion. It receives the specification of a geometry processing

(a) (b)

(c) (d)

Figure 4. Mesh Transfer Protocol Example. (a) The three-layered architecture composed by a graphical user interface, a workflow engine
and three servers, each of them exposing aWeb service to support a specific operation and tomodules able to download (D)meshes and
update (U) the previously downloaded mesh by applying the corrections. The engine broadcasts the address of the input mesh towards
all the involved servers that proceed with the download. (b) The first service runs the task and returns the address of the produced
modifications to the engine that shares it with the following involved servers. Both download the file and apply the modifications. (c)
The second service is invoked, runs its task andmakes the list of applied editing operations available, so that the third involved server can
update its local copy of the input. (d) The engine triggers the third service and waits for the corresponding output that will be forwarded
to the user.



642 M. ATTENE ET AL.

workflow, which can be either a new one or the identi-
fier of one of the previously defined pipelines, and the
address of an input mesh. When all the data is available,
the Engine sequentially invokes the variousWeb services,
manages the flow of data among them and returns the
address of the eventual result to the user interface.

In more detail, the runtime workflow execution works
as follows. The Workflow Engine stores the list of Web
services that are available and able to perform specific
tasks. For each workflow task, the Engine selects and
invokes the appropriate Web service. When triggered for
execution, each Web service receives the address of the
input mesh and possible input parameters. When the
task terminates, the address of the generated output is
returned to the Engine so that it can be forwarded to the
next involved Web service. When the last Web service
terminates its task, its output is returned to the Work-
flow Engine that forwards it to the user by publishing the
corresponding link.

The Workflow Engine also supports the execution
of workflows that include conditional tasks and loops
by delegating the evaluation of the condition to spe-
cific Web services able to evaluate mesh qualities [6].
These conditional services receive from the Workflow
Engine the address of the input mesh, evaluate a specific
mesh quality and return a Boolean value to indicate if
the condition is satisfied. The Engine is responsible to
select the workflow operations that should be executed
after the condition evaluation, according to the obtained
result.

3.1. Themesh transfer protocol

We have observed that the transfer of large meshes from
a server to another according to the aforementioned pro-
tocol constitutes a bottleneck in the workflow execution.
In order to improve the transfer speed and efficiently
support the processing of large datasets, we took advan-
tage of the prediction/correction metaphor used in mesh
compression to design an optimized mesh transfer pro-
tocol [7]. Our solution is based on the observation that
numerous mesh processing algorithms simply transform
an input mesh into an output by computing and applying
local or global modifications. In many cases modifica-
tions can be only local or maymodify both geometry and
connectivity by minimally changing the overall shape. In
all these cases, it is reasonable to assume that the mod-
ifications applied on the input can be more compactly
encoded in form of list of applied editing operations
than the explicit output mesh. The calling service may
assume that the output will be identical to the input
and may obtain the result by reapplying the encoded
modifications.

Based on the aforementioned observation, the opti-
mizedmesh transfer protocol works as follows (an exam-
ple is shown in Fig. 4). The user selects or defines an
executable workflow and uploads an input mesh. The
engine analyzes the workflow, locates the servers hosting
web services able to perform each operation and broad-
casts to them the address of the input mesh (Fig. 4(a)).
Each server is triggered to download the input model
and save it locally. At the first step of the experiment,
the workflow engine invokes the suitable web service that
runs the algorithm, produces the result, and locally stores
the output mesh and the modification file (both com-
pressed) (Fig. 4(b)). Their addresses are returned to the
workflow engine that forwards them to all the subsequent
servers involved in the workflow. Each server downloads
the encoded modifications and applies them to the mesh
it already has inmemory in order to update the local copy
of themodel. Then, the workflow engine triggers the next
service (Fig. 4(c)) for which an up-to-date copy of the
mesh is readily available on its local server. At the end of
the workflow execution, the engine receives the address
of the output produced by the last invoked web service
and returns it to the user interface (Fig. 4(d)), so that the
user can proceed with the download.

In this scenario, the entire input mesh is broadcasted
only once at the beginning of the process, and the final
result is transmitted only once at the end. In between,
only the modifications are broadcasted to the subsequent
servers. Thus, when the corrections are actually smaller
than the partial results, this procedure produces signifi-
cant benefits. In any case, each web service produces both
the modifications and the actual result so, when the latter
is smaller than the former, the subsequent web services
can directly download the output instead of the list of
applied modifications.

In our settings, each web service is required to run
a geometry processing algorithm, to keep track of the
editing operations and to save them along with the final
result. To do this, the algorithm itself must be enriched
with proper code to stream such operations into the
modification file. In our current implementation we sup-
port atomic operations to encode the insertion, removal
and modification of single simplexes of any order (i.e.
vertices, edges and triangles). When an algorithm ter-
minates, the produced sequence of operations is fur-
ther compressed through arithmetic coding to minimize
redundancy [22]. Note that the application of the edit-
ing operations by the subsequent web services requires
less computational efforts and time than the rerun of
the algorithm because its analysis part and the operation
precondition checks are not needed anymore.

In addition to allowing the production of adapted
models, our executable workflows may provide benefit



COMPUTER-AIDED DESIGN & APPLICATIONS 643

to 3D model repositories and for geometric processing
experimentation replication, as described in the follow-
ing sections.

3.2. Executable workflows and 3Dmodel
repositories

3D model repositories are already key instruments for
researchers in the area of geometry processing and prod-
uct design, but endowing them with executable work-
flow capabilities is expected to further boost their effi-
cacy. While Stanford’s repository [24] was focused on
models coming from 3D digitization, other collections
exist that deal with synthetic CAD models [25] or that
focus on specific algorithms, such as the Princeton Shape
Benchmark [23], which is aimed to evaluate shape query
and retrieval algorithms. VISIONAIR’s VisualizationVir-
tual Services try to encapsulate most of the functional-
ities provided by previous repositories, and allows reg-
istered users to upload resources (e. g. 3D test models,

prototype tools, algorithm results). The VVS requires a
huge amount of space to explicitly store 3Dmodels and is
strongly redundant since outputs of geometric processes,
which are often very similar to each other, are individu-
ally uploaded with no attention to avoid possible dupli-
cated data. The possibility to reproduce these processes
on the fly through executable workflows strongly reduces
the storage space required by the repository, where only
the original data and the results of the most complex
processes (which would take too long to be reproduced
online) are stored explicitly.

3.3. Geometric experiment replication

Besides enabling a more flexible storage organization,
our executable workflows also allow reproducing geo-
metric experiments much more easily and fairly than
current solutions. A typical geometry processing exper-
iment consists of performing a sequence of operations
on an input polygon mesh and analyzing the results. An

Figure 5. Browsing of workflows (both static and executable) in the Workflow Repository.



644 M. ATTENE ET AL.

example is shown in Fig. 3. Mesh editing tools such as
MeshLab [9] and OpenFlipper [18] allow interactively
editing a mesh and save the sequential list of executed
operations, so that it can be re-executed locally from the
tool user interface. Unfortunately, to reproduce such an
experiment, a researcher needs a similarly performing
machine, and needs to install the same software tool (e.g.
MeshLab) and possible plugins. To get rid of any specific
software, hardware, and operating system, Campen and
colleagues published an online service called WebBSP
[8] which is able to remotely run a few specific geomet-
ric operations. The user is required to upload an input
mesh from a standard web browser and select a single
geometric algorithm from a set of available operations.
The algorithm actually runs on the server and a link to
download its output is returned. In this case, however,
the available operations are not customizable by users and
only one of them can be run at each call. Conversely, our
executable workflows are fully dynamic (i.e. new web-
services can bemade available by users), can stack several

operations, can include conditional tasks and loops, and
can exploit the computing power of several nodes in a
distributed network.

4. Workflow repository

The WO is the knowledge base of the Workflow Repos-
itory, a web platform where users can upload, remove,
search and browse workflows; some of these capabilities,
in particular uploading and removing, are allowed only
for registered users, while any potential user can search
or browse workflows.

To facilitate the upload of new workflows, a dedicated
user-friendly interface has been developed to support the
creation of the instances of the needed ontology classes or
of the web service sequence for the executable workflow.
It is a step-by-step uploading procedure that guides the
user through the creation of a workflowwithout the need
to know how the metadata he/she is inserting are stored
in the underlying ontology.

Figure 6. Visualization of a static workflow in the Workflow Repository.



COMPUTER-AIDED DESIGN & APPLICATIONS 645

In the case of static workflows, the user is asked at
first to provide the information directly related to the
workflow, such as its name, description and list of activ-
ities. The user may either create a new activity by simply
providing a name, or reuse an existing one by exploit-
ing the given dropdown list. To get more information
on an activity and to understand if it is suitable to the
user needs, a “View” button is provided to access its
metadata. No limit to the number of activities and sub-
activities composing a workflow is given. When the user
creates a new activity, he/she is prompted to specify the
required information such as the activity description,
correspondent functionality, additional inputs, preserved
data, possible tips and restrictions, possibly associating
the specific tool for which they apply, as well uploading
documental files.

In the case of executable workflows, in addition to the
general information (name, description, creator and cre-
ation date), the user has to specify the list of web services
the workflow is made up, as well as the required param-
eters of the added web service (if needed). If and while
conditional blocks can be defined. Once the workflow
has been uploaded, the user can execute the workflow by
clicking on the provided “Run Workflow” button.

The browsing interface allows the user seeing all the
workflows stored in the repository. The browsing is based
on the metadata stored in the ontology. For static work-
flows, it allows visualizing all the existing complete work-
flows, those workflow sub-parts that are made up of at
least two activities or even one activity with more than
one sub-activity. User defined workflows and their sub-
workflows are shown in different colors. It is possible to
filter the workflows in such a way that only the complete
ones are shown (Fig. 5). Further filtering options for the
workflow visualization are types (static, executable), the
domain/purpose, input/output tools and formats.

In the example of Fig. 5, the system lists the first
four results of a user query for all the complete work-
flows available in the repository; no specific domain or
input/output type are given. Among the displayed results
there are two static and two executable workflows; the
listed executable workflows allow user running web ser-
vices for mesh smoothing and mesh repairing. The static
workflows describe the required sequence of activities
respectively to appropriately transfer models from CAD
Inventor to COVISE virtual environment and to cre-
ate reusable feature-based objects in VR environment
starting from 3D CADmodels.

By clicking on a workflow, the user can access to a
more detailed view on it: a flow representation of the
workflow is given together with the main information
about it. By clicking on the box representing one of its
activities, the user may also get all the information on

the activity itself, from the tools stored in the VVS Tool
repository performing it, to its inputs/outputs and the
tips and restrictions (Fig. 6).

5. Summary and conclusions

In this paper, the need of shape processing operations for
a proper and effective use of geometric models in diverse
applications has been outlined. Some examples have been
presented in which the shape processing is generally
performed according to steady sequences of operations
resulting from technological constraints and experience.
Inmost of the cases understanding which tools and oper-
ations better fit with the specific purposes is difficult for
non-experts. Analyzing the various application scenar-
ios, it is possible to identify some repeated and common
model treatments, which can be somehow automated. To
support engineers and researchers in performing these
processing pipelines we developed a web-based reposi-
tory of geometric processing workflows and a tool that
allows the execution of workflows of web services for
shape adaptation. In fact, we considered both static and
executable workflows. The former are similar to tutorials
to describe the sequences of activities and functionalities
to be used to achieve specific objectives, while indicat-
ing tips for their execution by means of specific tools.
The latter offer the advantage of directly running pro-
cesses without the need of installing the related programs
or delivering core data. Currently the repository contains
some executable and several tutorial workflows resulting
from the experience of the VISIONAIR partners in the
preparation of CAD models for VR applications, but the
adopted schema and the developed creation and search
facilities can accommodate any kind of pipeline and con-
text treating shapes. Registered user is allowed to create
new workflows and make them available for the commu-
nity. The integration with the Tool repository of the VVS
infrastructure allows an automatic retrieval of the tools
stored in the Tool repository that can be applied in the
pipeline, thus providing an idea of the usable software
tools to non-expert users.

Acknowledgments

This work has been partially supported by the European
Commission under grant agreement 262044 VISIONAIR
(http://www.infra-visionair.eu/) and by the PO CRO Fondo
Sociale Europeo Regione Liguria 2007–2013 Asse IV “Capi-
tale Umano” Ob. Specifico I/6 through the project “Tecniche
di visualizzazione avanzata di immagini e dati 3D in ambito
biomedicale” . The authors want to thank the VISIONAIR
partners participating to JRA 9 and, in particular, to Ste-
fano Mottura, Christian Weidig, Lionel Roucoules and Walter
Terkaj.



646 M. ATTENE ET AL.

Additional thanks to Marios Pitikakis for the technical sup-
port and to Prof. Bianca Falcidieno and all the participants to
the AIM@SHAPE NoE for making possible the initial version
of the DSW.

ORCID

Marco Attene http://orcid.org/0000-0002-9012-7245
Daniela Cabiddu http://orcid.org/0000-0001-5797-4189
Franca Giannini http://orcid.org/0000-0002-3608-6737
Marina Monti http://orcid.org/0000-0002-1627-3551

References

[1] AIM@SHAPE Advanced and Innovative Models And
Tools for the development of Semantic-based systems for
Handling, Acquiring, and Processing knowledge Embed-
ded inmultidimensional digital objects, Contract FP6 IST
NoE 506766

[2] Attene M.: A lightweight approach to repairing digi-
tized polygon meshes, The Visual Computer, 26(11),
2010, 1393–1406. http://dx.doi.org/10.1007/s00371-010-
0416-3

[3] Attene M.: Direct repair of self-intersecting meshes,
Graphical Models, 76, 2014, 658–668. http://dx.doi.org/
10.1016/j.gmod.2014.09.002

[4] Attene M.; Campen M.; Kobbelt L.: Polygon mesh repair-
ing: an application perspective, ACM Computing Sur-
veys, 45(2), Art. 15, 2013. http://dx.doi.org/10.1145/
2431211.2431214

[5] Attene, M.; Giannini, F.; Pitikakis, M.; Spagnuolo M.:
The VISIONAIR Infrastructure Capabilities to Support
Research. In: Computer-Aided Design and Applications,
10(5), 2013, 851–862. http://dx.doi.org/10.3722/cadaps.
2013.851-862

[6] Attene, M.: Surface mesh qualities. In GRAPP/IVAPP,
pages 79–85, 2013.

[7] Cabiddu D.; Attene M.: Distributed Triangle Mesh Pro-
cessing In Procs. of 22nd International Conference in
Central Europe onComputer Graphics, Visualization and
Computer Vision 2014 (WSCG), Plzen (CZ), 2–5 June
2014

[8] Campen, M.: WebBSP 0.3 beta. http://www.graphics.
rwthaachen.de/webbsp, 2010.

[9] Cignoni, P.; Corsini,M.; Ranzuglia, G.:Meshlab: an open-
source 3d mesh processing system. ERCIM News, 73,
2008, 45–46.

[10] De Troyer, O.; Bille,W.; Romero, R.: Stuer, P.: OnGenerat-
ing VirtualWorlds fromDomain Ontologies. In Proceed-
ings of the 9th International Conference on Multimedia
Modeling, Taipei, Taiwan, 2003, 279–294.

[11] Foucault, G.; Cuillière, J.-C.; François, V.; Léon, J.-C.;
Maranzana, R.: Adaptation of CAD model topology for
finite element analysis, Computer-Aided Design, 40(2),
2008, 176–196. http://dx.doi.org/10.1016/j.cad.2007.
10.009

[12] Gangemi, A.; Borgo, S.; Catenacci, C.; Lehmann, J.:
Task Taxonomies for Knowledge Content D07. Metokis
Project. 2005

[13] Graf, H.; Brunetti, G.; Stork, A.: A methodology support-
ing the preparation of 3D-CAD data for design review
in VR, International Design Conference – Design 2002,
Dubrovnik, May 14–17, 2002

[14] Haller, A.; Oren, E.; Marmolowski, M.; Gaaloul, W.: A
Process Ontology for Business Intelligence. DERI Tech-
nical report 2008-04-012008

[15] Hamri, O.; Léon, J.C.; Giannini, F.; Falcidieno, B.: Using
CAD models and their semantics to prepare F.E. sim-
ulations. DETC ‘05 - CIE ‘05 - Design Engineering
Technical Conferences & Computers and Information
in Engineering Conference (Long Beach (CA), USA,
24–28 September 2005). Proceedings, 1–10. ASME, 2005.
http://dx.doi.org/10.1115/DETC2005-84867

[16] Kopecki, A; Wossner, U; Mavrikios,; Rentzos, L.; Weidig,
C.; Roucoules, L.; Ntofon, O.D.; Reed, M.; Dumont, G.
D; Bundgens, D.; Mileck, A.; Baranyi, P.; Noel, F.; Mas-
clet, C.; Attene, M.; Giannini, F.; Spagnuolo, M.: VISION-
AIR VISION Advanced Infrastructure for Research, SBC
Journal on 3D Interactive Systems, 2(2), 2011, 40–43.
http://seer.ufrgs.br/jis/article/view/22520

[17] Lando, P.; Lapujade, A.; Kassel, G.; Furst, F.: Towards a
general ontology of computer programs. In: Proceedings
of the 2nd International Conference on Software and data
Technologies (ICSOFT 2007).

[18] Möbius, J.; Kobbelt, L.: Openflipper: An open source
geometry processing and rendering framework. In Proc.
of the 7th International Conference on Curves and Sur-
faces, 488–500, Berlin, Heidelberg, 2012, http://dx.doi.
org/10.1007/978-3-642-27413-8_31

[19] Pellens, B.; De Troyer, O.; Bille, W.; Kleinermann, F.:
Conceptual Modeling of Behavior in a Virtual Environ-
ment, Special issue of International Journal of Product
and Development, 4, 2007, 626–645.

[20] Pouchard, L. C.; Cutting-Decelle, A. F.; Michel, J. J.;
Gruninger, M.: ISO 18629 PSL : A standardised lan-
guage for specifying and exchanging process information,
World Congress, 16(1), 2005, 1524–1524. http://dx.doi.
org/10.3182/20050703-6-CZ-1902.01525

[21] Raposo, A.; Corseuil, E. T. L.; Wagner, G. N.; dos Santos,
I. H. F.; Gattass, M.: Towards the use of cad models in
VR applications. In Proceedings of the 2006 ACM inter-
national conference on Virtual reality continuum and its
applications (VRCIA ‘06). ACM, New York, NY, USA,
67–74. http://dx.doi.org/10.1145/1128923.1128935

[22] Said, A. Introduction to arithmetic coding - theory and
practice. In Lossless Compression Handbook, 101–152.
Academic Press, 2002.

[23] Shilane, P.; Min, P.; Kazhdan, M.; Funkhouser, T.: The
Princeton shape benchmark. In Proc. of SMI’04, 2004
167–178, Washington, DC, USA. http://dx.doi.org/10.
1109/SMI.2004.1314504

[24] The Stanford 3D Scanning Repository. http://graphics.
stanford.edu/data/3dscanrep, 1996.

[25] 3D CAD browser. http://www.3dcadbrowser.com/, 2001.

http://orcid.org/0000-0002-9012-7245
http://orcid.org/0000-0001-5797-4189
http://orcid.org/0000-0002-3608-6737
http://orcid.org/0000-0002-1627-3551
http://dx.doi.org/10.1007/s00371-010-0416-3
http://dx.doi.org/10.1007/s00371-010-0416-3
http://dx.doi.org/10.1016/j.gmod.2014.09.002
http://dx.doi.org/10.1016/j.gmod.2014.09.002
http://dx.doi.org/10.1145/2431211.2431214
http://dx.doi.org/10.1145/2431211.2431214
http://dx.doi.org/10.3722/cadaps.2013.851-862
http://dx.doi.org/10.3722/cadaps.2013.851-862
http://www.graphics.rwthaachen.de/webbsp
http://www.graphics.rwthaachen.de/webbsp
http://dx.doi.org/10.1016/j.cad.2007.10.009
http://dx.doi.org/10.1016/j.cad.2007.10.009
http://dx.doi.org/10.1115/DETC2005-84867
http://seer.ufrgs.br/jis/article/view/22520
http://dx.doi.org/10.1007/978-3-642-27413-8_31
http://dx.doi.org/10.1007/978-3-642-27413-8_31
http://dx.doi.org/10.3182/20050703-6-CZ-1902.01525
http://dx.doi.org/10.3182/20050703-6-CZ-1902.01525
http://dx.doi.org/10.1145/1128923.1128935
http://dx.doi.org/10.1109/SMI.2004.1314504
http://dx.doi.org/10.1109/SMI.2004.1314504
http://graphics.stanford.edu/data/3dscanrep
http://graphics.stanford.edu/data/3dscanrep
http://www.3dcadbrowser.com/

	1. Introduction
	2. The workflow ontology
	3. Executable workflows
	3.1. The mesh transfer protocol
	3.2. Executable workflows and 3D model repositories
	3.3. Geometric experiment replication

	4. Workflow repository
	5. Summary and conclusions
	Acknowledgments
	ORCID
	References

