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ABSTRACT

Since the deformation of structures in the optic nerve head (ONH) is associated with glaucoma and
other diseases of the optic nerve, measurement of this deformation is of current research interest.
This paper considers the computation of cup depth, a measurement of the depth of the internal
limiting membrane (ILM). The computation of cup depth requires a reference structure against which
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to measure the ILM, and the construction of two reference structures is discussed, one based on
Bruch’s membrane opening (BMO) and the other based on the anterior surface of the peripapillary
sclera (AS). A main focus of the paper is the robust computation of mean cup depth, which requires
a good sampling of a reconstruction of the ILM surface. To evaluate our algorithm, the construction

of synthetic datasets is considered.

1. Introduction

Structural changes in the optic nerve head (ONH) have
been associated with the development of glaucomatous
optic neuropathy - in particular, expansion of the optic
cup due to loss of neuroretinal tissues and remodeling of
the underlying lamina cribrosa — motivating a quantita-
tive analysis of ONH morphology. Cup depth is a useful
measure that reflects the anatomical changes seen in glau-
coma [13] and can be calculated based on the shape
of the internal limiting membrane (ILM). This paper
considers the computation of mean cup depth. Unlike
previous studies that have computed cup depth directly
from images [14], from few samples [12], or that assess
cup depth qualitatively rather than quantitatively [8], we
build a full shape model of the ILM from dense point
clouds. We also use algorithms from shape modeling to
build reference structures and to measure cup depth, as
opposed to using manual measurements.

A main focus of this paper is an algorithm for the
robust computation of mean cup depth, an important and
computationally interesting measurement. After describ-
ing the structure of an ONH dataset, we discuss the three
major components of a computation of mean cup depth:
computation of a reference structure, reconstruction of
the underlying ILM surface, and sampling of cup depth
across this surface. We consider two candidates for ref-
erence structure, one based on Bruch’s membrane and

the other on the sclera. The paper ends with a discus-
sion of the construction of synthetic ONH datasets for
evaluation of our algorithm.

2. ONH Dataset

The ONH is modeled from an ONH dataset, which has
a unique structure: a collection of independent point
clouds, each organized into radial planar sections shar-
ing a rotational axis (Fig. 2 and 6). This is in contrast
to the usual structure of point clouds in shape model-
ing: either unorganized points or point clouds organized
into parallel sections (as in CT/MR imaging, topograph-
ical maps, and 3D printing). A radial slicing is natural for
the optic nerve head, since the locus of interest is near
the center of the volume, where radial slices concentrate
the data. The radial sections are manually segmented
(Fig. 1) from spectral domain optical coherence tomog-
raphy (SDOCT) images by trained observers (Smith and
Wang) [2], yielding a separate point cloud for each cat-
egory of interest in the ONH. For the computation of
Bruch cup depth, the categories of interest are the ILM
(red in Fig. 2 and 3) and Bruch’s membrane (BM) (blue
in Fig. 2 and 3). For the computation of scleral cup depth,
the categories of interest are the ILM and the anterior sur-
face of the peripapillary sclera (AS) (magenta in Fig. 2
and 4).
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(b)

Figure 2. The ONH dataset. (a) The ILM (red), BM (blue), AS (magenta), and LC (green) point clouds of a typical ONH dataset. (b) A different
viewpoint of this dataset, showing its organization into radial sections.

Figure 3. The Bruch reference structure. (a) BM (blue), BMO (black points), the BMO plane (the best-fitting plane of the BMO point cloud),
and the BMO ellipse (the best-fitting ellipse of the BMO point cloud), which lies in the BMO plane. (b) The ILM (red), BMO plane, and BMO
ellipse. The Bruch cup depth of a point of the ILM is its signed distance from this BMO plane, with positive distances on the laminar side

(down in this image).

Figure 4. The scleral reference structure: AS (magenta), its scleral
representatives (black points), and the scleral plane, their best-
fitting plane.

The radial nature of an ONH dataset leads to some
interesting challenges. In sampling for mean cup depth,
care must be taken that sampling is not biased towards the
center near the rotational axis. Due to the noise inherent

in the segmentation, and misalignments of contiguous
radial sections during the acquisition of the OCT scans,
shape degeneracies can exist near the rotational axis,
and an ONH dataset does not represent a manifold sur-
face (the sections do not cross the axis at a common
point). Fortunately, the topology of the ONH is simple
and known, so the challenges are with geometry and not
with topology.

3. Reference Structure
3.1. The Bruch Reference Structure

Cup depth is a measure of the depth of the ILM rela-
tive to the rest of the ONH. To measure this depth, a
reference structure is necessary. The opening of Bruch’s



membrane (BMO), the inner boundary of BM at the
anterior end of the neural canal, is nearly planar and
nearly elliptical, making it a good candidate for the basis
of a reference structure (Fig. 3(a)). Consequently, a refer-
ence plane based on BM has been used in both clinical
and histological studies to measure depth in the ONH
(Fig. 3(b)). The Bruch reference structure (Fig. 3) con-
sists of the best-fitting plane of the BMO (BMO plane),
the best-fitting ellipse of the BMO (BMO ellipse), and the
right elliptical cylinder defined by the best-fitting ellipse
of the BMO (BMO cylinder). Note that the BMO ellipse
lies in the BMO plane.

The Bruch cup depth of a point of the ILM is its signed
distance from the BMO plane (Fig. 3(b)). Distance from
the BMO plane is positive if and only if a point lies on the
laminar side. The laminar side of the BMO plane is the
halfspace that contains the lamina cribrosa (LC), a struc-
ture that always lies strictly on one side of the BMO plane
(Fig. 2(a)). If the LC is not available in an ONH dataset,
the laminar side may be defined instead by observing that
each ILM section starts on the non-laminar side.

Measurement of cup depth should be constrained to
the region over the ONH. The Bruch reference structure
offers a natural mechanism to formalize this constraint:
only ILM samples that lie within the BMO cylinder are
considered during the computation of Bruch cup depth.

The computation of cup depth is simplified by work-
ing in a special coordinate frame. A Bruch frame is a
coordinate frame whose origin is the center of the BMO
ellipse, x-axis is the major axis of the BMO ellipse, z-axis
is orthogonal to the BMO plane, and positive z-axis lies
in the laminar half-space of the BMO plane. In a Bruch
frame, the Bruch cup depth of an ILM point reduces to
its z-coordinate. In a Bruch frame, filtering of the ILM
against the BMO cylinder is also simplified, as the BMO
cylinder acquires the normal form

2 2

a2’ Z—
where o and B are the semi-axis lengths of the BMO
ellipse. To move to a Bruch frame, first translate the cen-
ter of the BMO ellipse to the origin, then rotate the BMO
ellipse’s major axis to the x-axis and the BMO plane’s
normal to the z-axis using the orthogonal matrix

=1 (3.1)

E
ExN
N

(3.2)

where E is a unit vector in the direction of the BMO
ellipse’s major axis and N is the laminar-facing unit nor-
mal of the BMO plane.

The Bruch reference structure is computed using prin-
cipal component analysis [3], as follows. Let
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B={by, ..., by} be the point cloud of the BMO, with
mean b and covariance matrix

I
M—ni;(bz b)(b; — b) (3.3)

The eigenvector epin of M associated with the small-
est eigenvalue defines the normal of the best-fitting plane
of B (since it defines the direction of minimal variance
of the point cloud). b is a point on the best-fitting plane.
That is, the BMO plane is defined by epi, and b. The
eigenvector of M associated with the largest (resp., mid-
dle) eigenvalue defines the direction of the major (resp.,
minor) axis of the best-fitting ellipse. Eigenvectors may
be computed robustly in C++ using the Eigen numeri-
callibrary [5]. The BMO ellipse will be fully defined once
its axis lengths and center are known. Note that the sam-
ple mean b is not the center of the BMO ellipse, since the
point cloud is not uniformly sampled. However, since the
BMO point cloud B lies close to its best-fitting ellipse, the
axis lengths may be found by projecting B onto each prin-
cipal axis and using the range of these points to define the
axis length. The mean b is adjusted to the ellipse center
by projecting it onto each principal axis, along with the
extreme points on that axis, to determine how much b
must be adjusted to lie midway on each axis.

3.2. The Scleral Reference Structure

As there is some concern and evidence [7] that BMO
position may not be stable with increasing age, an alter-
native reference structure for cup depth may be defined
using AS (Section 2). Basing a reference structure on AS,
though less classical, may be more stable than basing it on
BM [7]. An interior toroidal region of the sclera is used
to define the best-fitting plane since the inner boundary
of AS cannot be found reliably in all images. The scleral
representative of an AS half-section (Fig. 4) is the mean
of the samples that lie between 1700 and 1800 microns
from the BMO cylinder’s axis (using Euclidean distance).
The band between 1700 and 1800 microns is used since
it is most visible. Its mean is used as a smoothing oper-
ation. A scleral representative is not created on an AS
half-section that does not intersect the entire 1700-1800-
micron band. Before computation of the scleral repre-
sentatives, it may be beneficial to resample the scleral
half-sections (see Section 4 below). The scleral plane is
the best-fitting plane of the scleral representatives of the
AS half-sections (Fig. 4). Since the scleral representatives
are close to planar, the computation of best-fitting plane
is robust. Like the BMO plane, the best-fitting plane of
the scleral representatives is computed using principal
component analysis.
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The scleral reference structure consists of the scleral
plane and BMO cylinder. Only ILM samples that lie
within the BMO cylinder are considered during the com-
putation of scleral cup depth. The BMO cylinder is still
used as the filtering cylinder, rather than a cylinder based
on the best-fitting ellipse of the scleral representatives,
since the BMO cylinder better reflects the neural canal.

The scleral cup depth of a point of the ILM is its signed
distance from the scleral plane, positive if and only if the
point lies on the laminar side. The sign of the distance is
well defined, since the LC lies completely on one side of
the scleral plane. If the LC is unavailable, the ILM can be
used to define the sign, since the ILM always begins on
the non-laminar side of the scleral plane.

The computation of scleral cup depth is simplified in a
scleral frame: a coordinate frame whose z-axis is orthog-
onal to the scleral plane and positive z-axis lies in the
laminar half-space of the scleral plane. In a scleral frame,
the scleral cup depth of a point is its z-coordinate.

4. Meshing the ILM

Having shown how to compute cup depth at a point of
the ILM, we now consider the computation of mean cup
depth across the ILM. This requires a good sampling of
cup depths. Since a sampling of the ILM surface requires
a reconstruction of the ILM surface from the ILM sec-
tions (Fig. 5), we consider this first, then turn to the
construction of a sampling in the next section.

A triangle mesh (Fig. 5) is built from the ILM sections
using the contour reconstruction algorithm of Fuchs,
Kedem and Uselton [4]. This algorithm uses minimal
surface area as the guiding constraint, and reduces the
minimization of area to the construction of a shortest
path in a toroidal graph built from neighbouring sections.

Figure 5. The ILM mesh: a minimal surface area reconstruction
from a resampling of the ILM half-sections.

The ILM mesh may be constructed more efficiently
and more robustly by using ILM half-sections rather than
sections. Therefore, before meshing, each ILM section is

Figure 6. The axis of rotation (black) of an ONH dataset, shown
along with the ILM (red).

split into two half-sections at the axis of rotation (AR) of
the ONH dataset, the common axis of its radial sections
(Fig. 6). A mesh is built between every pair of consecu-
tive half-sections. Building the mesh between two half-
sections, rather than two sections, has the advantage of
enforcing the constraint that points on the AR should
correspond. It is also more efficient, since the time com-
plexity of the FKU algorithm is O(2 #? log 1) to mesh a
pair of sections of size n, but

o) <4<g)zlog (g)) = O(n* log n)

to mesh two pairs of half-sections of size 5.

The AR is computed by intersecting two ILM section
planes, derived from the ILM section point clouds, taking
care to use a robust pair of section planes (large angle,
nonlinear triplet to define the plane). Then the point at
which to split an ILM section may be found by walk-
ing along the section, looking for an AR crossing. In
a coordinate frame whose z-axis is the AR, the AR is
crossed as the coordinate (x or y) with the largest range
changes sign, which is simpler than intersecting the AR
with the section. After splitting an ILM section, the ori-
entation of the second half-section is flipped so that all
half-sections end at the axis, which is important for mesh
construction.

To guarantee a good ILM mesh, the ILM half-sections
should first be resampled. An ILM section may be over-
sampled in some areas and undersampled in others
(Fig. 7(a)), prompting the construction of an interpolat-
ing curve, which can then be resampled at a uniform rate.
Since the oversampled regions of the ILM section com-
plicate the interpolation, the solution is to downsample
(Fig. 7(b)), then interpolate, then upsample (Fig. 7(c)).
Each ILM section is downsampled using a variant of
Douglas-Peucker decimation [1]: while walking around
the section, samples are removed whenever they pre-
serve the invariant that every original sample is within
a prescribed tolerance of the polygon defined by the

(4.1)
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Figure 7. Resampling an ILM half-section. (a) The original ILM half-section. (b) Its downsampling. (c) Its uniform upsampling from an

interpolating cubic B-spline.

RS

Figure 8. The centroid sampling. A sampling of the ILM mesh at triangle centroids, weighted by area, simulates a uniform sampling of
the ILM surface. (a) A natural ONH dataset, using a sparse sampling for clarity. (b) Looking down at a synthetic paraboloid dataset (see

Section 6), using a sparse sampling for clarity.

downsampling. A good choice of tolerance is .0001 of the
radius of the ONH dataset’s bounding box. The samples
of the downsampled section are reliable for the con-
struction of an interpolating cubic B-spline curve [10],
which is then uniformly sampled for the desired robust
sampling.

The last preparation for meshing is clipping. Since the
domain of interest for cup depth is the BMO cylinder
(Section 3.1), the ILM is clipped to the BMO cylinder,
by clipping each ILM half-section to the BMO cylinder.
Clipping is done after resampling. Clipping an ILM half-
section to the BMO cylinder is similar to splitting an ILM
section: walk along the half-section from the axis of rota-
tion until the BMO cylinder is crossed, and clip at the
intersection of this crossing segment with the cylinder
(by solving a quadratic equation).

To recap, the ILM sections are first split into half-
sections, then each ILM half-section is uniformly resam-
pled, then each ILM half-section is clipped to the BMO
cylinder. The ILM half-sections are now ready for the
construction of a robust ILM mesh using the FKU con-
tour reconstruction algorithm.

5. Approximating a uniform sampling of the ilm
surface

A uniform sampling of the ILM surface (uniform in the
space of the 2-manifold) is desirable for the computation
of mean cup depth, yet a perfectly uniform sampling of
the ILM is impossible. Two approaches were considered
for building an approximately uniform sampling of the
ILM surface. The first idea was to transfer a uniform sam-
pling of parameter space to the mesh using a distortion-
minimizing parameterization, as explored in texture
mapping [6]. If a mesh is parameterized with minimal
metric distortion, a uniform sampling of its parameter
space will generate an approximately uniform sampling
of the surface. Distortion-minimizing mesh parameter-
ization has been studied extensively in the context of
mapping an image to a mesh in texture mapping. Unfor-
tunately, implementation of this technique revealed that,
because of the complexity of the ILM geometry, too much
metric distortion is introduced by the parameterization,
leading to inferior results.

An alternate approach using weighting has proven
successful. Mean cup depth is computed by sampling
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(a)

Figure 9. Synthetic ONH datasets were built to evaluate the accuracy of the algorithm. The ILM is generated from various mathematical
functions that mirror the shape of the ILM, including the (a) Gaussian, (b) sinc, (c) even Gabor (o = .6), (d) even Gabor (o = .8) (e) odd

Gabor, and (f) cosine.

cup depth at the triangle centroids of the ILM mesh and
weighting by area. The observation is that the weighting
of a non-uniform sampling can approximate a uniform
sampling. The centroids of the ILM mesh triangles serve
as the non-uniform sampling (Fig. 8), and the areas of the
ILM mesh triangle as the weights. If the triangles of the
clipped ILM mesh are {T;}, the area of triangle T; is A;,
the surface area of the entire clipped ILM mesh is A, and
the cup depth of the centroid of Tj is ¢;, then:

A.
mean cup depth = Z ch,- (5.1)
i

The density of the centroid sampling can be controlled
by the density of the mesh, which in turn can be con-
trolled through the density of the resampling of each ILM
section.

6. Synthetic datasets

An attractive way to evaluate the accuracy of our com-
putation of mean cup depth is by running the algorithm
on synthetic datasets for which the correct value can be
computed analytically using integration. We consider the
case of Bruch cup depth: scleral cup depth is completely
analogous.

The first step is to build a synthetic ONH dataset
that is amenable to integration. For Bruch cup depth,
it is sufficient to build the ILM and BM. Vari-
ous synthetic ILM surfaces were built by sampling

mathematical functions that mirror the shape of the
7x2+}'2
e 202

ILM: the Gaussian z = G(x, y, 0) = 5——
Gabor z = cos (a)o\/m> G(x, y, o), odd Gabor

5 2+ 2
Z — sin (G)O\/m) G(x, y, 0),sincz = Slnf/_\/zx—i_zy >’
xXoTy

and cosine z = cos (wo,/x2 + yz). Each was sampled in
the 12 radial sections of an ONH dataset (Fig. 9).

The height and size of the BMO defines the domain
of integration. The precise shape of the synthetic BM is
arbitrary aside from the BMO that it defines. The BM
is built so that the BMO plane and ellipse define a clean
domain of integration for the ILM surface: a BMO plane
orthogonal to the axis of rotation and a circular BMO
ellipse centered on the analytic surface. The ILM must
cover the BMO cylinder and be visible from the BMO
plane (i.e., a ray fired orthogonal to the BMO plane will
hit the surface at most once), since we want to relate
our computation to a volume bounded by the ILM and
the BMO plane. By varying the ILM surface and the size
and height of the BMO ellipse, many different synthetic
datasets may be built.

, €ven
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Table 1. Results on synthetic datasets using integration vs. our algorithm (with (5.1) replaced by (6.1)).

Function o Wo r z MATLAB integration Our algorithm % relative error
Gaussian 7 1 —1 1.2036 1.20359 .00083%
Gaussian 5 2 —1 1.0796 1.08042 .076%

even Gabor 6 10 2 -5 4977 497726 .0052%
even Gabor 8 8 2 -5 4979 498001 .020%

odd Gabor .6 10 2 -5 4999 49988 .0040%
Sinc 20 -2 2 2.00303 15%
cosine 3 3 -2 2.0444 2.04409 .015%

We now make a small modification to our computa-
tion of mean cup depth, replacing Eqn. (5.1) with

()

1

(6.1)

where A is the area of the projection of the triangle T;
onto the BMO plane (rather than the area of T;) and
A’ =", Al. This new version of mean depth reduces to
the ratio of a volume to an area: the volume of the ILM
under the BMO plane divided by the area of the BMO
ellipse. Therefore, this new computation can be com-
pared against a numerical integration using MATLAB,
since the ILM is a known mathematical surface. The vol-
ume integral is f02n for ;{ ©.n rdzdrdf, where f (0, 1) is
the ILM surface expressed in polar coordinates.

Tab. 1 compares the result from MATLAB integration
with the result computed by our algorithm on a set of
synthetic datasets. Along with varying the type of math-
ematical surface, the parameters of the ILM surface may
be adjusted (the standard deviation o of the underlying
Gaussian or the frequency wy of the underlying cosine or
sine) and the domain of integration may be adjusted (by
changing the radius of the BMO cylinder and the height
of the BMO plane, parameters r and z in Tab. 1). The per-
cent relative error is also reported: the percent relative
error of a computed solution x” from the true solution x

is %/l_x‘. Note that our results are accurate to at least 3
decimal places with very low relative error.

Along with this evaluation against synthetic datasets,
the components of the C++ code were rigorously
tested. An alternative way to build synthetic datasets

was also tested, by firing rays at an algebraic surface
f(x,y,2) =0.

7. Conclusions

The focus of this paper has been on the computational
aspects of ONH morphometry. Our computation of cup
depth has been used to analyze correlations between cup
depth, race, and age [11]. This experience with the com-
putation of mean cup depth has revealed the importance
of cleaning the data, building a robust surface model
for key anatomy, computing a robust reference structure,

and using special reference frames during computation.
The centrality of sampling is striking: a robust sam-
pling of the ILM sections leads to a robust ILM mesh,
which leads to a robust sampling of cup depths for mean
depth.

The potential applications of shape modeling to the
morphometry of anatomy are rich. The algorithms for
mean cup depth in the optic nerve head developed in this
paper are but one case study. In present and future work,
we are considering a wider assortment of statistics for
ONH morphometry, including volume, thickness, and
curvature, and the alignment of a pair of ONH datasets
for rigorous quantitative comparison.
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