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Improving medial surfaces for reverse engineering
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ABSTRACT
Common medial axis transform methods create two artifacts: shrinkage of the end of surfaces and
small dent at junctions. They are due to the definition of medial axis transforms and they are bot-
tlenecks in industrial applications. This paper presents twomethods to improve the medial surfaces
computed fromCT images of thin-platemechanical objects. We first introduce amethod for extend-
ing the ends of medial surfaces by finding the intersection points of medial voxels on the isosurface.
We also propose a method to remove dent structures at junction edges by minimizing error func-
tions. These improvements, integrated into a conventional medial surface extraction method using
sub-sampling, resolve several drawbacks in reverse engineering applications.
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1. Introduction

A medial axis [3] is the centerline skeleton of an input
shape and is efficient for analyzing shapes, computer
animation, and so on. In particular, the medial axes of
3D solid objects are represented by surface structures,
which are also called medial surfaces (3D medial axis).
In this paper, we focus on creating medial surfaces from
volumetric images scanned by X-ray CT scanners.

Our motivation comes from reverse engineering
applications. Reverse engineering uses geometric mod-
els of “real mechanical objects”. The geometric mod-
els are used for accelerating the manufacturing process,
such as comparison with CAD models and CAE simula-
tion of real objects [22]. The geometric models are usu-
ally created by isosurface extraction methods (e.g., [9]).
This representation is efficient for solid objects. How-
ever, open surfaces are preferred for thin-plate objects,
such as automobile bodies and plastic injections. In com-
monCAD systems, open surfaces are represented asmid-
surfaces [17, 18]. The medial surfaces of these thin-plate
objects look similar to CAD models and some methods
can create medial surfaces topologically equivalent to the
input models. Thus, computing these medial surfaces is
promising.

However, several issues still remain for computing
medial surfaces from CT images for reverse engineer-
ing applications. First, the ends of medial surfaces are
shrunk, or do not reach the ends of the input objects. This
is because the medial axis by definition does not exist at
the ends. As a result, errors of the dimensions need to be
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corrected. The other issue is that small dents appear at
junctions. This is also due to the definition of a medial
axis. The diameters of inscribing spheres at junctions are
relatively large and the difference makes a small dent at
junctions. These artifacts, which cannot be seen in the
surface models in common CAD systems, also need to
be improved.

This paper presents two methods for improving
medial surfaces in reverse engineering applications.
These methods are based on a medial surface extrac-
tion method by sub-sampling [11]. The first method is
a method for extending the shrunk medial voxels. The
main idea is to add volumetric spheres to the input vol-
ume data so that their medial surfaces become extended
medial surfaces of the input models. To add volumet-
ric spheres, we introduce a method for estimating the
intersection points between the extendedmedial axis and
the isosurface of the object. The second method removes
dent structures at junction edges. Our idea is to find new
positions of junction vertices so that the positions are
projected onto the planes defined by neighboring faces.
This paper introduces a quadratic error-based function
to find the positions.

The main advantage of the proposed methods is to
improve the quality of medial surfaces computed from
volumetric images for reverse engineering applications.
Definition-based medial surfaces always create artifacts
that become bottlenecks in reverse engineering. The
result surfaces created by our methods do not follow the
definition of medial axis. However, the resulting surfaces
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look appropriate and they are efficient for reverse engi-
neering applications.

2. Related work

Creating medial axes is known as medial axis transforms
(MAT). MAT has a long history since Blum’s work in
2D [3]. This section gives a review for constructing the
medial axis from CT images.

One possible approach is the polygon-based approach;
that is, medial surfaces are computed from the isosurface
of CT images. For example, the use of Voronoi diagrams
with surface points as sites can compute medial axes
easily [1, 2, 4, 5]. However, the resulting surfaces are
usually complicated or involve many branch structures.
Simplified medial axis transforms have been introduced
to efficiently remove these branches. For example, Fos-
key et al. [6] used separation angles to remove branches
of medial axes and Sud et al. [21] improved the trans-
forms so that homotopy of the object was preserved. The
scale axis transform algorithm [8, 12] provides a simple
and robust algorithm for simplification of medial axes by
scaling the medial balls of the objects. However, these
methods depend on the definition of medial axis and so
are still sensitive to higher-valence branches or decompo-
sition into a set of lower-valence junctions for isosurfaces.
Similar problems are found for the chordal axis trans-
form [14, 16], which also creates similar structures to
the medial axis based on the connectivity of constrained
Delaunay triangulations.

The alternative approach is to polygonize medial vox-
els, which are the voxel representation of medial axes.
This approach usually binarizes input CT images and
creates medial voxels by topological thinning. Topolog-
ical thinning removes simple voxels that do not con-
tribute to the topological changes, while the topology is
preserved. However, the pruning strategy is a problem
in this approach. For example, sequential thinning [19]
iteratively removes simple voxels and parallel thinning
[23] removes surface voxels. A main problem of these
approach is to define the priority of pruning. Prohaska
and Hege [15] obtained reasonable results by using the
geodesic distance between two surface points that are
the closest points of the voxels. Polygonization of medial
voxels can be considered as surface reconstruction from
a point set. However, many methods suppose the result
to be two-manifold, whereas medial surfaces are non-
manifold at junctions. Since medial voxels are aligned
with a uniform voxel grid, it is possible to create triangles
by connecting neighboring voxels, and the existence of
ambiguous cases often creates small cavities at the junc-
tions. Prohaska and Hege also introduced lookup tables
for special cases, but the problems were not completely

resolved. Michikawa and Suzuki [11] introduced a sub-
sampling method for polygonization of medial voxels.
As a result of sub-sampling, the method simplifies the
topological structure at junctions and can handle higher-
valence junctionswithout unnecessary cavities. However,
this method is also based on conventional medial axis
transforms and so geometric artifacts still appear.

Mid-surfaces are often required for CAD models and
some conversion methods from solid models have been
studied. For example, Rezayat [18] introduced a method
to find mid-surface patches for surface pairs across from
each other and to create mid-surfaces by stitching these
patches based on their adjacency graphs. The results are
reasonable for our objective. However, it is difficult to
apply this approach to scannedmodels, because it is diffi-
cult to find patch pairs andmany patches have to be com-
puted. In addition, thismethod requires human interven-
tion for the selection of surface pairs. Ramanathan [17]
introduced a method for computing mid-surfaces from
a set of mid-curves defined on the faces. This method is
also not suitable for scanned objects.

3. Brief overview of medial surface extraction
by sub-sampling

Our method is based on the medial surface computation
method byMichikawa and Suzuki [11]. In this section we
give a brief overview of their method.

Their method is the polygonization of medial voxels
by sub-sampling. Thismethod, based on themethod pro-
posed by Prohaska and Hege [15], first computes medial
voxels of the binary images fromCT images of the object.
Eachmedial voxel contains the distance value to the clos-
est point on the isosurface. Next, we apply sub-sampling
to find representative points of the medial voxels. When
a point is selected, neighboring points within spherical
support of the point with radius r are removed. Note that
r is determined by the distance value at the point. We
repeat this procedure until all medial voxels are sampled
or removed. To preserve the topological structure, the
points are sampled in the order of junction, boundary and
surface voxels. These topological types are estimated by
counting the number of connected components, as intro-
duced by Malandain [10]. By following this order, junc-
tion points are preferentially selected. (A similar strategy
for surface remeshing was introduced in [20].) Polygonal
meshes are created by connecting sampled points based
on Voronoi diagrams on medial voxels. (A similar strat-
egywas introduced in [13] formeshingmanifold surfaces
from unorganized points.) The user’s parameters are the
isovalue t of the CT images and the thickness ε of the
object.
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4. Methods

An overview of our methods is shown in Fig. 1. Given
a CT image (Fig. 1(a)), a binary image is computed by
isovalue t (Fig. 1(b)). Next, medial voxels are computed
from the binary imagewith thickness ε of the object (blue
lines in Fig. 1(c)) by [15]. Since the medial voxels (blue
lines in (c)) are shrunk so that they do not intersect the
object’s surface (black contour in (c)), we apply an exten-
sion method to the medial voxels (red lines in Fig. 1(d))
to their intersection points. A medial surface polygon is
computed by the extended medial voxels (Fig. 1(e)) by
[11]. Since the junction point is dented, we remove this
to create smooth polygons (Fig. 1(f)). Our contributions
presented in this paper are the extension of medial vox-
els (Fig. 1(d)) and dent removal (Fig. 1(f)). We describe
these in the following subsections.

4.1. Extension ofmedial voxels

Simplified medial surfaces are usually shrunk and so
we extend them so that the medial surface and the
isosurfaces intersect (Fig. 2). Our idea is to estimate these

intersection points by using the initial medial voxels.
Once the intersection points are found, we can add vol-
umetric spheres of diameter ε at the intersection points.
The result of the medial voxels is extended to the isosur-
face of the object.

The main issue of this step is to find the intersection
points. To compute these points, we introduce a method
based on region growing. Given the input binary image
and its medial voxels (Fig. 2(a)), we classify the boundary
voxels by their nearest medial voxels. We label the vox-
els if the nearest medial voxels are surface voxels (black
lines in Fig. 2(b)). Estimation of the voxel topology is
computed by counting the connected components [10].
The other boundary voxels are the nearest medial voxels
(blue circles in Fig. 2(b)) and those not labeled yet (gray
lines in Fig. 2(b)). Next, the labeled boundary voxels are
segmented by the connected components and new labels
are assigned to the voxels (red, yellow, and green lines
in Fig. 2(c)). This segmentation shows to which sides
the boundary voxels belong. Unlabeled voxels are labeled
by region growing on the boundary voxels (bold col-
ored lines in Fig. 2(d)). Here, the labeled voxels are used

(a)

(d) (e) (f)

(b) (c)

Figure 1. Overview of the proposed method illustrated in 2D.

(a)

(d) (e) (f)

(b) (c)

Figure 2. An overview of extension of medial surface (2D example).
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as initial seeds. When the region growing is completed,
we can find the intersection points where the difference
labels meet (Fig. 2(d)), and these become the end points
of the medial voxels. We now add volumetric spheres at
these end points (orange circles in Fig. 2(e)). The diame-
ter of each sphere is the same as the thickness parameter
r. Finally, the medial voxel extraction method is applied
again to the new binary image. The resulting medial vox-
els are extended to the isosurface of the original image
(Fig. 2(f)).

4.2. Removing the dent structure at junction points

By definition of the medial axis, the diameters of inscrib-
ing spheres at the junctions are rather large. This causes
the creation of dent structures at the junctions. We often
use smoothing operators for meshes to smooth bumpy
surfaces. However, such operators do not work well for
non-manifold meshes.

The idea of removing a dent structure is to project
junction points to neighboring surfaces. Let xi be a
junction vertex. New vertex position x̂i can be computed

Figure 3. Removing dents at the junctions.

by minimizing Equation (1) based on the quadratic error
metric [7]:

E(x̂i) =
∑

j
〈ni,j, x̂i − pi,j〉2 + ‖xi − x̂i‖2, (1)

where 〈, 〉 denotes the inner product, and ni,j and pi,j
respectively denote the normal vector and a point of tri-
angle fj (Fig. 3). Note that no junction vertices belong to
fj. In Equation (1), the first termminimizes the difference
between x̂i and a plane defined by fj. Since the unique
solution may not be computed in 3D by the first term,
we add the second term so that the unique closest point
is selected. Note that we can easily compute this for each
vertex.

5. Results

5.1. Extension ofmedial voxels

The experimental results for the medial surface exten-
sions are shown in Figs. 4 and 5. Both examples are
metal sheet models scanned by industrial CT scanners.
In Fig. 4, (a) shows the binary voxels, (b) shows a cut-
away view of the shrunk medial voxels (green), (c) shows
the end points (blue), and (d) shows the result (cut-
away view). By comparing (b) with (d), we can confirm
the medial voxels in (d) are slightly extended. Note that
the medial voxels seems to be covered by gray voxel
due to volume rendering, however the medial voxels
are extended. Fig. 5 shows the result for a member (a
car part). The cutaway result by the previous method
[11] and the proposed method are shown in (b) (green)

(a) (b) (c) (d)

Figure 4. The result for T-shape.

(a) (b) (c)

Figure 5. The result for member shape.
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(a) (b)

Figure 6. Dent removal result.

and (c) (red), respectively. Transparent surfaces show an
isosurface of the input data (a). We can confirm that
the medial surface is extended to the isosurface in (c),
whereas the result by a conventional method is shrunk.

5.2. Removing dent structure

The dent removal results for the T-shape and themember
objects are shown in Fig. 6. For each subfigure, the left
figure shows the original mesh and the right figure shows
the smoothing results.We can confirm that the small dent
structure (red arrow) in the right figuremostly disappear,
whereas those in the right figure clearly exist. However,
slight dents still remain in the results and they should be
resolved in the future work.

5.3. Discussions

The computational time is summarized in Table 1. The
experiment is conducted on a Windows PC with Intel
Core i7 3.0 GHz. We can confirm that it takes about
20 minutes for computing the extended medial vox-
els, because we apply medial voxel extraction twice.
In addition, our implementation is not yet fully opti-
mized, and so performance improvement is expected. On
the other hand, the computation time of dent removal
is reasonable, because the computation for each vertex
is independent.

Table 1. Statistics

Data (Fig.) Volume Size #faces Extension [s] Dent removal[s]

T-shape (4, 6(a)) 240x240x140 7,461 1,190 7
member(5, 6(b)) 210x210x298 31,596 1,240 36

The proposed methods involve some limitations. In
extension method, we assume the CT images have
enough margins for adding volumetric spheres. When
the objects are connected by adding spheres, the topol-
ogy of the medial surfaces will changed. In dent removal
method, self-intersections may occur, since the method

does not take care of it. However, this can be seen at
junction vertices and it can be resolved by smoothing
methods in post processing. Finally, these methods do
not have clear evaluation criteria yet, although the results
are visually improved.

6. Summary and future work

We have presented two methods for removing the
artifacts of medial surfaces computed from volumet-
ric images of thin-plate models. We first introduced a
method for extending medial voxels by adding volumet-
ric spheres on the estimated intersection points of the
extended medial voxels and the isosurface. To find the
intersection points, we use region growing on bound-
ary voxels. Initial seeds are extracted from the result of
the shrunk medial surface. As a result, the medial sur-
faces reach the isosurface of the input models. We next
introduced a method for smoothing the dent structure
at the junctions. In this method, we proposed an error
function defined by the distance between the junction
point and the neighboring points. The dent structure can
be removed by minimizing the error function. We also
demonstrated that both proposed methods work well for
several examples.

In addition to the limitations, we have some plans for
future work. The proposed methods are currently inte-
grated with a specific method [11]. However, we would
like to integrate the methods with other medial sur-
face extraction schemes. Other future work involves the
extension of medial surfaces. Since volumetric spheres
are added to binary images, some parts may be con-
nected to each other. The divide-and-conquer approach
may efficiently avoid such unexpected connections in
binary images.
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