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ABSTRACT
Numerical Design of Experiment (DoE) is a powerful tool for product development, used to improve
product quality and robustness. However, the simulation process can be highly extended by theDoE
process. While methods have been developed to shorten the execution of numerical DoE, the time
needed to set up the numerical DoE process is longer and longer. This paper presents a description
of the objectives and first results of the SDM4DOE project (Simulation Data Management for Design
of Experiment). This project aims to define a set of tools and methods to improve the simulation
process involving DoE: data management, data robustness improvement and process shortening.
A knowledge-based approach is proposed to solve this main issue, based on a specific knowledge
representation.
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1. Introduction

Nowadays, numerical simulations are more and more
used in a product development process to reach quality,
cost and time objectives [5]. By means of recent advances
in computing, numerical simulations are required to:
(1) understand the product behavior, (2) optimize the
product, (3) explore several solutions, and (4) validate the
product. Numerical Designs of Experiments (DoE) are
used to fulfil these 4 objectives by planning several runs
of a numerical model for different configurations [16].

These runs may be numerous and may be based on
a costly numerical model. So, the computational cost
of a DoE may be very high. The literature survey and
the recent experimentation achieved in the SDM4DOE
project show that the DoE process is very complex. It
consists of multiple sub-processes whichmust be defined
and tuned to prepare the execution [26][41]. It implies
lot of iterations and interactions between experts from
heterogeneous fields. In addition, designers need to use
several methods and tools to support the generation and
the exploitation of data and knowledge.

The amount of data produced by the simulation pro-
cess, and thus by the DoE process, is huge and difficult to
be managed [12]. This requires an efficient management
of product data along its whole lifecycle. Product Life-
cycle Management (PLM) strategy offers the company
the necessary means to control their product along the
lifecycle and to improve their processes [36][48]. PLM
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strategy results from the integration of different busi-
ness processes and from interoperability between several
tools [20]. In this context, Product Data Management
(PDM) is crucial to reduce times by gathering, classi-
fying and storing data all along the product lifecycle.
Simulation Data Management (SDM) is a specific appli-
cation of PDM for Computer-Aided Engineering appli-
cations [17]. SDM, and more generally Engineering Data
Management, is defined as a process which aims to orga-
nize, structure, store and track produced information, in
order to “create a coherent knowledge”, fromprocess data
and product data [22].

Thus, the DoE process faces up two major issues:

1. The computational cost of the process execution;
2. The lack of a specific data management approach for

DoE, which leads to an important loss of time. Data
needed to set up the process and data generated need
a SDM approach.

SDM4DOE project aims to solve these issues by pro-
ducing an open-source simulation framework to set up
and run numerical DoE. Using this framework, designers
would be able to run a DoE fast on complex and costly
simulations, and to ensure data traceability and capital-
ization. The principle of this strategy is to collect the best
practices, know-how and expertise in a dedicated knowl-
edge base. Consequently, knowledge could be capitalized
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and reused for decision-support in a collaborative prod-
uct development process.

The aim of this paper is first to address a global survey
concerning the main characteristics related to the DoE
domain, to pointed out its complexity and the need of
innovative ICT-based to cope with these needs. Based
on this analysis, an architecture of a decision-support
system is proposed, supported by a specific knowledge
classification and modeling, to assist designer during
the DoE definition. Decision-support systems could be
used to help experts and optimize the DoE process in
terms of results, time and resources costs. Knowledge-
based and data management frameworks might give
interesting advantages to the previous systems perfor-
mance by favouring knowledge capitalization retrieval
and reuse [9].

Section 2 presents DoE process and explains the two
identified issues. Section 3 details the state of the art
of SDM strategy and knowledge management approach.
Section 4 introduces developments and proposals made
for the SDM4DOE project, as a knowledge-based sys-
tem and a specific knowledge base for DoE. This section
details also the framework and planned validation cases.

2. Design of experiments

Multi-physics simulation gives important information
for the selection of the best alternative of technical

solutions and to estimate the product performance
among its whole lifecycle [6]. DoE supports the imple-
mentation of different simulations and their organiza-
tion according to the variety of physics, parameters and
solution alternatives to be analysed.

The DoE process is based on the simulation process
which is composed of 3 main steps [14]. A parame-
terized numerical model of the studied system is cre-
ated. Then, the solver computes numerical model results,
which are analysed during the post-process step. The
solving can involve very high computational cost, accord-
ing the needed level of fidelity. Once the numericalmodel
quality is checked, a DoE can be created.

A DoE is a set of experiments, defined to assess the
numerical model for different configurations of the prod-
uct [29]. DoE can be used to fulfil several objectives,
as product optimization, sensitivity analysis, robustness
analysis and exploration of different designs. A DoE is
defined by its factors and associated levels. Each exper-
iment is defined by a specific set of levels reached by
each factor. Then, the cost of a DoE is the cost of a
numericalmodel run,multiplied by the number of exper-
iments. An optimal strategy is to choose themost efficient
DoE, and to use a method for reducing the computa-
tional cost of each run. An efficientDoE shouldminimize
the number of experiments and optimize the design-
space-covering, according to the objective (exploration,
product optimization . . . ).

Figure 1. Flowchart of Adaptive DoE strategy and adaptive metamodeling using the expected improvement infill criterion (E[I(x)])
from [25].
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The DoE process [29] begins by a first analysis of
relevant factors amongst numericalmodel design param-
eters. It is followed by a sensitivity analysis (supported
by a first DoE) to select more accurately influent factors
according to the studied output. This step must be done
to avoid a too high computational cost. During this step
a metamodel (or surrogate model), is created, based on
the results of this DoE. The metamodel is a function (e.g.
a polynomial function) created to reproduce the behav-
ior of the initial model for a specific output. It aims to
be faster to be assessed than the initial numerical model.
Once the sensitivity analysis is finished, a newDoE can be
defined to reach the initial objective (optimization, explo-
ration, etc.). When the metamodel previously created is
sufficiently accurate, it can replace the initial numerical
model if other runs are needed.

In order to shorten the process, adaptive DoE [7] may
be set up. Adaptive DoE, as shown in Fig. 1, are used to
create iteratively a dedicated DoE for a specific problem,
in order to maximize DoE efficiency in accordance with
the objective and constraints of the study. This method
consists in:

1. Defining an initial DoE: the type, the number of
factors and levels are specified. To ensure process
efficiency, the optimal number of initial experiments
must be defined. This methods aims to involve as
few experiments as possible. DoE types are numer-
ous [26], related to different applications and proper-
ties. In a numerical context, space-filling designs are
used, as Latin Hypercube Sampling, low-discrepancy
sequences and optimal DoE [28]. The choice of a par-
ticular kind of DoE is influenced by its space-filling
and uniformity properties, the objectives of the study
(optimization, exploration, etc.), available resources,
constraints, associated numerical model, and by the
studied output.

2. Running the experiments on the initial numerical
model;

3. Metamodeling: the metamodel type and its sub-
methods are set; internal parameters are computed
during a training step based on the initial DoE.
Metamodels types are numerous too [49]. Polyno-
mial regressions, support vector regressions, krig-
ing metamodels [11] and artificial neural networks
are examples of common metamodels. After the
definition, the metamodel is trained on a DoE.
The metamodel is fitted with the numerical model
behavior. Thus, the selection of the metamodel type
depends on the DoE definition [16][49]. Actually, it
is common to use a small partition of theDoE, run on
the costly numerical model, to train the metamodel.
Then, the remaining experiments are used to assess

the metamodel predictivity [49]. To keep metamod-
eling usefulness, the DoE should not be composed
of too numerous experiments. If there are too many
experiments, the time potentially saved by executing
themetamodel instead of the initial numerical model
would be lost by running the DoE. This selection
depends also onmany others parameters: objective of
the study, the properties of the studied output (linear
or not), the computational cost of the initial numeri-
cal model, the computational budget. For instance, a
polynomial regression is firstly defined by its degree,
and the coefficients are determined during the train-
ing step, based on the DoE. The maximal degree and
the correctness of computed coefficients depend on
the number of available experiments. Too few exper-
iments imply an impossible regression, too many
would lead to a very inaccurate metamodel. Further-
more, experiments must be as different as possible
(design-space filling and uniformity properties) to
ensure a good training. According to the regularity of
the function to approximate, an experiment too close
from another one would not increase accuracy;

4. Validating themetamodel: themetamodel is assessed
on the other partition of theDoE. Results obtained by
the metamodel are compared with results previously
computed by the initial numerical model. Dif-
ferent statistical methods exists to compute the
error [27];

5. Searching for a new experiment: if the metamodel is
not validated, a measurement of potential accuracy
improvement, the infill criterion [25], is associated
with each possibly added experiment. An optimiza-
tion algorithm will find the experiment which maxi-
mizes the infill criterion. The type of infill criterion,
the optimization algorithm type and its parameters
must be defined. Expertise is needed to set the opti-
mization algorithm. They are classified in two main
types: local methods and global methods (meta-
heuristics). Since the studied model output may be
non-linear (unknown in advance), many adaptive
methods are based on metaheuristics [25]. A lot of
metaheuristics exist [10] and they are hard to be
tuned since they are nature-inspired and based on
stochastic components. The convergence behavior of
these methods cannot be forecast. In addition, local
and global methods can be used together to obtain
the advantages of both of them [10];

6. Adding the new experiment to the initial DoE and
running the initial numerical model on this experi-
ment;

7. Repeating steps 2 to 6 until the metamodel is enough
accurate or the maximum of the initial numerical
model execution number is reached.
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Figure 1 shows the general principle of adaptive DoE.
The four diagrams shows an example of results obtain-
able by this process. On the first iteration, the meta-
model (dotted-curve of the top right-hand side diagram)
is based on 3 evaluations of the numerical model (solid
curve), the infill criterion curve (diagram below) related
to the metamodel performance. The experiment corre-
sponding to the highest value of this criterion will be
added at the next iteration. Second iteration (bottom dia-
grams): the metamodel is supported by 4 evaluations and
fits better the numerical model than the previous meta-
model; the expected improvement criterion is largely
decreased.

Thus, the number of potentially costly runs is mini-
mized. But, this method involves new parameters, added
to those belonging toDoE andmetamodels. The infill cri-
terion and the optimization algorithm must be defined
and tuned. The selection of theDoE andmetamodel type,
and associated parameters and methods, may be a very
time-consuming process and requires a good expertise to
be set up. The designer would have to choose a particular
combination of methods amongst large sets of methods,
without any rules in some cases. The time saved by using
these methods, aiming to shorten the execution of this
process, may be lost because of the time needed to pre-
pare this process. There is a real need to shorten this
decision process, to help designers to share their expertise
and to classify these methods.

In order to help designers to choose these meth-
ods, some classifications are available [26][34][45][47].
However, these classifications are non-exhaustive. They
do not cover all types of DoE, metamodels, infill crite-
ria, optimization algorithms, etc. They do not take into
account objectives and constraints of the study, the effect
of the problem dimensionality or the choice of param-
eters involved by each method. Several methods were
developed to defined automatically some of these param-
eters [10][30] but they may increase the computational
cost and involve new parameters. This confirms the need
for complete classifications and comparison of all of these
methods to decrease the “analyst time” [43] spent to set
up the process. In the next sections, a data and knowledge
management approach is proposed to solve this prob-
lem. This approach would lead to classify and reuse best
practices in a collaborative context. A literature review is
presented in the following section about these topics.

3. Data and knowledgemanagement for DoE
optimization

Combined with knowledge management methods, Sim-
ulation Data Management (SDM) approach may solve
this problem and give relevant assistance for the designer

from the first stages of the DoE definition. This section
presents a literature survey about data and knowledge
management tools and methods for simulation support
issues.

3.1. Simulation datamanagement

Simulation Lifecycle Management (SLM) strategy [18]
is designed to increase the process efficiency. It rec-
ommends re-using models and best practices. It also
includes standardized work processes, integration with
manufacturing operations, and collaborative engineering
across the extended enterprise and over the full product
lifecycle.

A SDM strategy can support this strategy by cap-
turing all data required for each step of the process. It
should also support DoE, optimization and stochastic
computations [13][18]. SDM can also manage workflow
management and administration support [39][42]. SDM
is as a part of SLM [19], which is a specific applica-
tion of PLM for simulations. SLM manage the process
while SDMmanage data. SLM covers collaborative prod-
uct development, data traceability, exchange and reuse,
decision-support and simulation systems integration for
process automation. An SDM system aims to deal with
a growing volume of heterogeneous data in a collabora-
tive context along the product lifecycle [13][39]. Since the
DoE process is based on the simulation process and gen-
erate a huge volume of heterogeneous data, SDM can be
extended to manage it.

For the simulation process, multiple data, as input
data (assembly, geometry, parameter, hypothesis, etc.),
model data (mesh, solving methods, etc.) and output
data (results, representations, reports, etc.) must be man-
aged. These data are now mostly covered by existing
data models. Others kinds of data were also taken into
account to support multi-domain, multi-component and
multi-model simulation processes [3][31][50], simula-
tion loops management [14] and relationships between
each product element [35]. The data model specified
by the standard “Multidisciplinary analysis and design”
ISO 10303–209 edition 2 [33] was specified to manage
design data and analysis data in a collaborative con-
text. It covers mechanical parts and assemblies geomet-
ric and shape data, associated materials, data related to
the product lifecycle, composites structures, mechani-
cal and fluid dynamics analysis and data representations.
The links between the initial shape and idealized shapes
used for different analysis are supported. The Core Prod-
uct Model covers functions, forms (geometry and mate-
rial) and behaviors of product or components [23]. It
aims to provide a generic, independent and extensible
product model able to capture engineering data. The
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Design-analysis Integration data architecture [24] is an
extension of CPM which integrates analysis tasks to the
product design.

Existing data models and SDM strategy do not cover
DoE process. As a part of the simulation process, DoE
management can be supported by SDM to structure, cap-
italize and reuse specific data involved, as DoE definition
data, associated simulationmodel data, collaboration and
process data.

3.2. Knowledge-basedmethods

The definition of knowledge may depend on the con-
text [12]. In a product design context, the knowledge is
produced by the “interpretation of information deduced
from analysis of data” [12] and can be defined as sharable
set of experience and ways of working [44] which can
produce additional value [21]. It is important to dis-
tinguish data, information and knowledge [2][21]. Data
can be reduced to a set of symbol or measures, trans-
formed to information by analysing and organizing data,
which produce a real meaning. Knowledge can be classi-
fied into several categories. For instance, formal [12] or
explicit [21] knowledge is mostly written or expressible
while tacit knowledge [1] is entirely owned by each stake-
holder. Thus, the first issue is to gather these two kinds of
knowledge.

A second challenge concerns the knowledgemodeling
and representation to reuse and produce new knowledge.
Knowledge representations can be classified in multiple
categories [13, 49]: pictorial (drawings, etc.), Symbolic
(diagrams, ontologies, etc.), linguistics, virtual (numer-
ical models) and algorithm. Knowledge Management
consists in capturing, storing, reusing, sharing and cre-
ating knowledge to produce added-value [12][44][46].
An interesting approach is the use of ontologies to rep-
resent knowledge. An ontology is a system of fundamen-
tal concepts set up to model, represent and describe a
specific domain in terms of axiomatic definitions and
taxonomic structures [12]. Based on datamodels, ontolo-
gies give sense to data. Concepts are usually defined
to build a common taxonomy and improve collabora-
tive works by easily sharing knowledge. [2] proposed an
ontology covering requirement engineering, mechanical
design and numerical simulation. This ontology supports
data capitalization, data re-use and decision-making by
representing dynamically relationships between differ-
ent engineering entities (e.g. link between a specific
design and its associated simulations). The ontological
approachwould be also efficient to representDoEprocess
knowledge.

In engineering, the variety of viewpoints implies the
development ofmethods and tools promoting knowledge

integration upstream the product design process. Experts
collaborate among the whole product lifecycle and use
different supports to share, exchange and build new
knowledge. This aggregation of knowledge highlights the
issue of data consistency [38] to prevent conflicts between
parameters.

Thus, information and knowledge of a fine granular
level such as parameters or constraints should be cor-
rectly considered to ensure the success of design pro-
cess. Indeed, regarding the technical culture of each
expertise field, and the variety of software supports,
heterogeneous knowledge might be used and repre-
sented with different semantics during the same design
stage.

DoE is one of representative cases in which knowledge
consistency takes great sense. During the DoE working
session, experts fulfil different interactions and iterations
to identify the best strategy of simulation, taking into
consideration all relevant parameters values and points
of view of the problem to be solved.

The achievement of a DoE process require the use
of a set of tools supporting design, simulation, com-
puting, statistical analysis, computing monitoring, etc.
DoE is a collaboration space between actors from dif-
ferent disciplines [3], participating with different roles
in DoE session. It concerns also some actors of the
engineering activities realized before and after the DoE
stage. Furthermore, several tests, choices and deci-
sions are taken during the DoE process throughout lot
of iterations and, currently, more than one working
session.

Heterogeneous knowledge models are used for this
aim. In order to ensure consistency between these knowl-
edge models, meta-models should be proposed within
generic semantic and rich representation of concepts and
relationships between them [4]. The aim is to support the
structure of a common knowledge base along the whole
DoE process.

Knowledge-based systems are a specific branch of
Artificial Intelligence [37] and are used to solve prob-
lems by exploiting capitalized knowledge. An exam-
ple of knowledge-based system is expert system [37].
Such a system is being developed to manage knowledge
between Computer-Aided Design and Computer-Aided
Engineering activities [38], better than current PDM and
SDM systems can do. A knowledge-based engineering
approach was also studied to enrich SDM systems [15].
But none of this works integrated DoE considerations.
Next section presents a classification of relevant knowl-
edge produced and shared during a design of experi-
ment process. Then it exposes the proposed knowledge-
based system dedicated to DoE optimization and man-
agement.
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Figure 2. Knowledge-based expert system principles for DoE process.

4. Proposition of Decision-aid system for DoE
optimization

As a large volume of heterogeneous data are created dur-
ing a simulation process in a collaborative context, a SDM
approach leads to capitalize and reuse data. But, these
data were created and defined by expert rules and know-
how of different stakeholders. To go further in data reuse,
a simulation knowledge management approach may be
set up.

A knowledge-based expert system consists of a
knowledge base, an inference engine and a user inter-
face [32][37]. According to its architecture, such a system
would be able to deduce a result from input (forward
chaining) or to find inputs corresponding to a given
results (backward chaining), or even both of them. The
inference engine can be based on a set of logical rules, a
semantic approach or an ontology, a stochastic approach
or a fuzzy logic engine. Thus, the system reuses knowl-
edge to explain results or to give advice.

The DoE process analysis detailed in previous section
will be used to build the knowledge base. This base will
consist of theoretic and explicit knowledge. Then, new
knowledge will be captured by the help of the data model
specified in Section 4.

The inference engine would be able to give advice
and to forecast the process results. Since many methods
involved in the DoE process have a random behavior or
are difficult to be tuned up because of their complexity,

the expert systemwould be based on amix of logical rules
and stochastic or fuzzy logic approaches.

Thus, the system would be able to propose several
solutions: impossible, possible and certainly feasible solu-
tions which might be executed and probably more effi-
cient. Proposed solutions would be chosen according to
objectives and constraints of the study, and resources
available.

As shown on Fig. 2, the designer could use this sys-
tem for several tasks: (1) to obtain advice for a specific
problem. The system would propose a successful set of
methods and parameters according to previously spec-
ified objectives, constraints and resources; (2) to diag-
nose the efficiency of a user-specified DoE process; (3)
to obtain knowledge from the knowledge base, or to add
directly knowledge into it. Thus, the definition of param-
eters and methods used for a specific instance for DoE
process would be semi-automatic. However, the possibil-
ity to accept, modify or deny the advice or the diagnostic
is kept. In this case, the user-interface would allow the
designer to define parameters and methods manually.

4.1. Knowledge base definition

To implement the proposed knowledge-based solu-
tion supporting Design of Experiments optimization,
open-source software architecture is under development
in the SDM4DOE project to be proposed as a SaaS
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Figure 3. DoE knowledge classification.

framework. In this framework, all knowledgemodels will
be implemented in the knowledge base as a combination
of data base, documents and specific files headers with
specific parsers to support knowledge retrieval. The
SDM4DoE interface includes different functions to sup-
port knowledge capitalization, visualization and extrac-
tion from the knowledge base.

The framework is based on several components:

1. A user interface integrated in a web browser and
supported by the library JQuery UI, which commu-
nicates with the web server by https protocol;

2. An Apache web-server to receive tasks from the user;
3. An application-server, Django, receives information

from the web-server and determines actions in order
to satisfy user’s tasks.

4. Softwares used to execute these actions: Alfresco for
data classification and retrieval, URANIE and ROOT
for statistical computations, Gmsh for finite-element
mesh visualization, Code_Aster for finite-element
model solving and Slurm to allocate computational
resources.

4.2. DoE knowledge classification

Based on the analysis of DoE working session and
experts’ interview realized during the SDM4DOEproject,
a first work of clarification of main concepts used by
experts is done. The classification of this knowledge is
then achieved according to the role of each kind of knowl-
edge in the DoE process. By means of UML package

diagram [8], figure 3 gives an overview of knowledge and
data used during DoE. Seven categories are identified.

• “Design of Experiments” concept: this first category
of data describes the global the DoE and its main
properties. It concerns, for example: the goal, the DoE
type (full, fractional, etc.) and the concerned physical
analysis in the DoE (electro-mechanic, fluid dynamic,
etc.)

• “Traceability and administrative data”: links the DoE
folder to the global environment in which this DoE is
created. This environment is defined by: the project
reference, the related product and/or parts, real work-
ing sessions during the DoE, involved actors and their
roles, traceability of choices and decisions, etc.

• “Parameters” package: is the central node of the
global DoE data model. This concept handles the
classification of all DoE involved parameters regard-
ing their business nature (geometry, mechanic con-
straints, etc.), position for each related DoE steps
(Input/output or support), nominal and interval of
admissible variation of value, etc. This concept pro-
poses great advantages for the definition of standard
semantic as a common codification for all business
fields involved in the DoE process.

• “Business Models” package: Based on the concept of
product model, this package of data can improve a
consistent management of all business models (CAD
model, FEM, other simulations, ANOVA, etc.). The
standard parameters are linked to the unified business
models.
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Figure 4. The DoE folder.

• “Simulation and computing” package: includes all
analysis methods and simulation-computing scripts
available for the current DoE. This may be useful
to help actors to find the best method or to use the
robust script according their type of problem and the
nature of physical analysis. For more traceability, this
category of data is linked to all concerned parameters.

• “Resources” package: as a complement of the prece-
dent data package, this category aims to classify the
different computing software and clusters for each
kind of computing. It will include additional proper-
ties such as treatment frequency, resources consump-
tion, cost, etc. the implementation of such model in
decision support for DoE can help actors the rapid
definition of the DoE strategy face to several comput-
ing alternatives.

• “Storage and representation” package: This category of
data supports the classification of representation for-
mat of parameters. The data of the different DoE used
are currently described ondifferent formats and stored
in different files. According to the business tool used
for the creation of this data, its position may be differ-
ent. Then, the implementation of such category of data
help computing clusters to rapidly find data sources
and to use the appropriate parsing method to improve
computing efficiency.

4.3. Example: the DoE Folder

Figure 4 illustrates the main concepts required for the
representation of all administrative data for traceability
issues. The concept of “DoE folder” is the classifier of all
DoE realizations according to one alternative solution of
the product (or component) and one physical analysis.
Each DoE realization consists on the concrete selection
of factors and their levels, but also the execution of all
simulations required by the selected physical analysis.

The DoE folder is associated to a specific project and it
is the space of interaction of several experts. Each expert
takes one or more roles in the DoE process. These roles
can be changed during the real physical meetings. These
meetings are represented by the class “working session”,
in which one or more DoE folders and/or realization
might be occurred.

For traceability and future reuse perspective, the dif-
ferent decisions taken during concrete realization are
stored in the related classes. The total computing costs
of different realizations is described in the DoE folder as
an indicator for future choices of simulationmethods and
scripts in similar situations.

The main stage of DoE folder definition consists on
the selection of factors from the business model (FEM
file). Then, the concrete realization of the DoE will start
by the definition of variables inputs as instances of a sub
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Figure 5. The DoE Realization.

Figure 6. T-shape beam finite element model.

set of the selected parameter (Fig. 5). The value variation
of these instances could be obtained through fixed num-
ber, a mathematical formula or other random sampling
generated by the Sampler module of Uranie software.
The result of a realization is obtained as a set of out-
put instances after a set of simulations and mathematical
treatments (optimization, ANOVA . . . ).

4.4. Application

As an example, a first test was done with a very simple
numerical model (Fig. 6). This model is a T-shape beam
of an elastic isotropic material. It models the linear elastic
behavior of the structure, submitted to a tri-axial con-
stant load (B) and with two clamped tips (A). Strain and
stresses are computed by finite-element method, with a
validated mesh. Three factors, the Young’s Modulus and
2 components of the load vector, were selected after a first
sensitivity analysis, in order to run a DoE and compute a
metamodel on the strain.

The designer has to define the DoE type and levels for
selected factors, the metamodel type, associated parame-
ters and sub-methods. He has to choose the validation

strategy to evaluate the predictivity of the metamodel.
For example, the designer may choose a DoE based
on low-discrepancy sequence (Halton design) with 100
experiments, a kriging metamodel with an exponential
variogram type, trained on 30 experiments and validated
on remaining experiments (70). This definition may be
efficient regarding to the objective. Each experiment has
a low computational cost, the metamodel is fast to be
trained and compute an uncertainty associated to the
result. But other strategies would be more efficient, and
several manual attempts would be done before finding
an optimal strategy. The knowledge-based system will
capitalize these attempts to be used for decision-aid.

To achieve this process, the user fulfils a set of interac-
tions with the knowledge-based framework to design the
best DoE process regarding his problem. Fig. 7: illustrates
the global scenario of the expected DoE process. At the
beginning, by creating newDoEproject in the framework
interface, the user introduces all relevant data describing
his problem to be studied. It concerns all administra-
tive aspects, parameters, and objectives of the project. A
research mechanism is then launched in the knowledge
base to find similar case studies regarding the inputs of
the user. The similar cases studies are analysed by the
inference engine and a set of acceptable methods, prop-
erties and parameters are displayed to the user as a deci-
sion support. The user can select the best combination
of methods and properties but also defines the factors
and levels. He can also decide to consider other alter-
native methods types or properties and in this case, the
inference engine will evaluates this new combination.

After the validation of all methods properties, the
user executes the DoE by selecting the available comput-
ing clusters. The interface run the related programs and
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Figure 7. Scenario of knowledge reuse for DoE.

(b)(a)

Figure 8. Final metamodel obtained: (a) corresponding response surface, (b) computational cost saved by adaptive strategy.

manages its execution in different clusters. At the end, the
results are displayed and stored in the knowledge base
with the user report including his evaluation of the results
and the decisions regarding it.

The main result of the DoE process is a metamodel
that can be reused by designers for future studies (Fig. 8).
This metamodel was produced rapidly by an adaptive
strategy. Beginning from 10 experiments, it was sufficient
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to add 10 experiments iteratively to reach better accu-
racy than ametamodel trained from 30 experiments. The
preparation time of this process was also minimized by
using the knowledge -based system. The knowledge base
was enriched by this application and further application
will be defined faster.

5. Conclusion

Although the product quality can be considerably
increased thanks to the application of a DoE process, the
cost and time involved may slow the product develop-
ment process. The state of the art and the experience
shared by experts in the project shows a complexity and
diversity of issues, on computation methods, statistical
processing and also data management. Despite the cen-
tral role of DoE in the overall design process, method-
ological developments and softwares are limited com-
pared to the complexity of DoE process. The potential
gains of metamodeling and adaptive DoE methods are
reduced by preparation time. It becomes necessary to
support the use of such methods by a data model, lead-
ing to a decision support system. The knowledge-based
system proposed in this paper would alleviate this main
drawback by giving advice or forecasts to the designers.
The capitalization of knowledge is ensured by a spe-
cific knowledge representation. By the mean of such a
system, knowledge management would be guaranteed
all along the product life-cycle, the DoE process would
be shorten and new methodologies might be explored.
This framework will be validated with two industrial
cases: a nuclear power plant subjected to an earthquake,
and a dynamic analysis of an engine support. These two
cases will involve complex analysis with high dimen-
sional problems, in order to validate the efficiency of this
strategy to shorten the DoE process.
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