
COMPUTER-AIDED DESIGN & APPLICATIONS, 2017
VOL. 14, NO. 2, 140–147
http://dx.doi.org/10.1080/16864360.2016.1223425

An efficient parallel method for photo-realistic fluid animation

Guijuan Zhang a,b, Jinyan Zhao c, Weizhi Xu b, Dianjie Lu b, Yongjian Wang d and Xiangxu Meng a

aSchool of Computer Science and Technology, Shandong University, China; bSchool of Information Science and Engineering, Shandong Normal
University, China; cHunan Institute of Science and Technology, China; dInstitute of Computing Technology, Chinese Academy of Sciences, China

ABSTRACT
Fluid animation often appears in applications such as games, films and cartoons. How to animate
photo-realistic fluid motion efficiently is an important issue. We present an efficient parallel method
for photo-realistic fluid animation in this paper. Our method is designed to generate fluid animation
resultswith high efficiency on a cluster system. To do this, we categorize the computers in our cluster
system into two classes, the server and the client. The server controls the process of the fluid anima-
tion while the clients are responsible for numerical computation. Given 3D virtual environment and
fluid initial condition, we make pre-processing on the server so as to decompose the fluid anima-
tion task into several subtasks. Thus, the computation domain is divided into blocks and each client
executes numerical computation for one block. The blocks of two adjacent clients are overlapped
to keep the continuity of the solution across subdomain interface. We demonstrate the efficiency of
our method by animating the motion of smoke and liquid. Results show that the proposed paral-
lel algorithm can improve the computation speed of physically-based fluid animation significantly
while getting interesting fluid details.

KEYWORDS
Fluid animation;
photo-realistic; parallel
algorithm; preconditioned
conjugate gradient method

1. Introduction

Fluid animation is widely used when generating real-life
phenomena in many applications such as films, cartoons
and real-time computer games. How to animate fluid
motion with high degree of visual realism efficiently is
always a hot topic. To get animation results with sufficient
fluid details, researchers propose the physically-based
animation method [4,14] which can provide interest-
ing animation results. However, it is rather difficult to
compute the physical model efficiently since fluid often
has complex behavior and rich visual details. The main
reason is that the physically based methods consume a
large amount of hardware memory which is too expen-
sive to afford for common users. The long computation
time caused by solving the partial equation and large-
scale linear system is another important reason. Recently,
the algorithms of parallelization has been proposed in
many applications. In thesemethods, the powerfulmany-
core processors can be utilized to speed-up computations
while reducing the hardware cost. Therefore, exploring
the parallel nature of fluid animation algorithms and
implement it on parallel architecture is very important for
improving efficiency.

Some researchers present parallel method especially
GPU-based approaches [1,3,6,7,9,13,15] to improve the

CONTACT Guijuan Zhang guijuanzhang@gmail.com

efficiency. In fluid animation world, physically-based
animation methods are categorized into two kinds:
Lagrangian methods and Eulerian methods. Most of
current parallel methods for fluid animation focus on
Lagrangian methods rather than Eulerian method. The
main reason is that Eulerian method requires solving
large-scale sparse linear system which is rather difficult
to implement on multi-cores system. Recently, high per-
formance computer, multi-core chip and cluster system
grow quickly. To utilize the parallel structure of these sys-
tems is particularly applicable to speed up computation
intensive tasks, and thus, many applications appeared on
these systems such as video processing [13] etc. Making
full use of parallel structure of modern computer systems
for speeding up fluid computation algorithm is essential
for improving the efficiency of animation production.

In this paper, we present a parallel mechanism for
photo-realistic fluid animation on cluster system in this
paper. Our method can animate liquid with rich details
and high efficiency. Given 3D virtual environment and
flu-id initial condition, we make pre-processing on the
server computer so as to decompose the fluid animation
task into subtasks. The computation domain is divided
into blocks. Each client is responsible for one block. The
blocks of two adjacent clients are overlapped to keep

© 2016 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://orcid.org/0000-0002-9545-8668
http://orcid.org/0000-0001-9836-0642
http://orcid.org/0000-0001-7549-4138
http://orcid.org/0000-0001-5435-5307
http://orcid.org/0000-0003-2351-3186
http://orcid.org/0000-0001-7290-5659
mailto:guijuanzhang@gmail.com
http://www.cadanda.com

COMPUTER-AIDED DESIGN & APPLICATIONS 141

the computation correctly. To reduce the cost of mes-
sage transmission, we put fluid source file and voxelize
files of 3D environment into a shared file system. Then,
the shared system can be obtained in read-only mode by
all clients. As for each client, when it receives message
from the server program, it executes the computation
process for the subdomain. Two clients that have adja-
cent computational domain may transmits information
to keep the boundary condition correctly. Results show
that ourmethod can produce visual pleasing results while
improves the animation efficiency significantly.

The remainder of this paper is organized as fol-
lows. Section 2 discusses related work. Section 3 present
the overview of our main work. Sections 4 solves
the physically-based fluid animation model to obtain
interesting animation results which includes computing
the fluid velocity and the motion of fluid substances.
Section 5 gives a parallel implementation that consists
of a server and several clients. Section 6 presents simu-
lation results to evaluate the proposed algorithms, with
conclusions following in Section 7.

2. Related work

Eulerian methods are popular in fluid animation world
since it is good at capturing the motion of liquid surface
[4]. The methods compute fluid velocity as well as liquid
surface motion by creating grids that stores fluid quan-
tities (e.g., density, velocity, temperature, etc.) and solves
the partial differential equation. After that, the method
has been extended to simulate other fluid phenomena
include coupling between solid and fluid [1], multiphase
flow [6], surface tension [2] and so on. Although Eule-
rian methods can capture surface details effectively, it
suffers from strong numerical dissipation and requires
high resolution grids to keep details. Thus, it is expen-
sive to compute fluid equation on PC and it is necessary
to findmore effective way to animate fluids with Eulerian
methods.

To speed up fluid animation, many researchers con-
sider parallel implementation. For example, Kipfer et al.
[7] animate fluid motion on terrains with parallel SPH
method. Kurose et al. [9] simulate the two-way solid-
fluid interaction according to parallel SPH method. The
method adopts a set of particles to represent rigid-body
and fluid, and formulates the interaction as a linear com-
plementary problem which can be solved by Lemke’s
algorithm effectively. Zhang et al. [15] develop an adap-
tive parallel SPH method to speed up computation. One
of the most challenging problems for parallel SPH meth-
ods is how to compute the neighbors of each particle
effectively [3]. Most of the work [9,1] adopt uniform
grid to compute particle neighbors but suffers from the

disadvantage of growing grid size. To improve the effi-
ciency of particle neighborhood queries, Ihmsen et al.
[6] present two efficient mechanisms, spatial hashing and
index sort. Goswami et al. [3] uses a parallel SPH simu-
lation and rendering method on the GPU. The neighbor-
hood search is implemented effectively according to Z-
indexing and parallel sorting.However,most of the above
methods are designed for Lagrangianmethod rather than
Eulerian method. Xu et al. [5,11,12] proposed a frame-
work of processing multimedia resources.

As the most popular scheme in fluid animation, Eule-
rian method is often used in the applications. But it
requires global pressure correction and has poor scala-
bility. Crane et al. [2] implement a method with Eulerian
scheme to generate fluid effects such as smoke, water and
fire. The method uses Jacobi iteration which counteracts
the efficiency gain. We adopt preconditioned conjugate
gradient (PCG) method for linear system solution which
is more efficient than traditional Jacobi iterationmethod.
Ourmethod allows parallel fluid animationwith Eulerian
scheme on cluster system.

3. Overview

Given fluid initial and boundary condition, the goal of
our method is to produce photo-realistic fluid effects
in parallel system. The framework of our method is
shown in Fig. 1. Our parallel fluid animation system
includes three layers. The bottom layer is hardware sys-
tem, which represents that our parallel algorithm can
run on high-performance computer, multi-core chip and
cluster system. The middle layer is our numerical com-
puting platform. We process the given 3D model and
obtain the boundary condition for fluid computation.
It also includes the parallel numerical computation of

Figure 1. The parallel framework of fluid animation model.

142 G. ZHANG ET AL.

the fluid physical model. The top layer is application.
In this layer, users input fluid source and the 3D scene
that fluid flow, and the numerical results are returned
from the middle layer. The numerical data are then pro-
cessed for extracting the essential data (e.g., soot den-
sity, liquid mesh surface) that represents fluid. Finally,
the Photo-realistic animation results are obtained from
these numerical results using global illumination render-
ing method. Details will be described in the following
sections.

4. Physically-based fluid animationmodel

We solve physically-based fluid animation model to
obtain interesting animation results. It includes com-
puting the fluid velocity as well as the motion of fluid
substances.

4.1. Fluid velocity

To compute the fluid velocity u, we solve the following
Navier-stokes equation

∇ · u = 0, (4.1)

ut = −u · (∇u) + ν∇ · ∇u − 1
ρ

∇p + f , (4.2)

where ν denotes the kinetic viscosity of the fluid, ρ is
the density, p is the pressure, and f is the external force
field. Since numerical computation may introduce diffu-
sion effects to the results, we overlook the diffusion term
ν∇ · ∇u in Eqn. (4.2). Thus, the momentum equation in
this paper is

ut = −u · (∇u) − 1
ρ

∇p + f . (4.3)

We solve Eqn. (4.1) and Eqn. (4.3) with Eule-
rian scheme numerically. Therefore, the computational
domain is discretized into a grid composed by computa-
tional cells. The values of each parameter (e.g., pressure
p, velocity u(u, v,w), external force f , and so on) in the
above equations are stored in the cells.

4.2. Smoke density computation

After obtaining the fluid velocity u, smoke will be
advected under the velocity field

∂ρ

∂t
= −u · ∇ρ + kα∇2 + Sα , (4.4)

where ρ is smoke density, kα is smoke diffusion constant
and Sα is the source term that represents the injected

smoke. We solve the advection term u · ∇ρ with semi-
Lagrange method [10] similar to the Eqn. (4.1) and
Eqn. (4.3). Since the numerical computation also con-
tains numerical diffusion intrinsically, we overlook the
diffusion term in Eqn. (4.4).

4.3. Free surface computation

Most of liquid animation work focus on the complex
behavior of its surface since it is themost interesting part.
Weuse level setmethod [13] in this paper. So a signed dis-
tance functionφ is defined and its zero iso-surface is used
to represent water surface implicitly. The water surface
motion can be described by the level set equation

∂φ

∂t
+ u · ∇φ = 0. (4.5)

Obviously, Eqn. (4.5) is an advection equation, and
we also solve it according to semi-Lagrange method. To
make sure that the signed distance function φ is smooth
(e.g., ‖φ‖ = 1), we use Fast Marching algorithm [13] to
re-initialize φ in each time step.

5. Parallel implementation of Eulerianmethod

Wegive a parallel implementation that consists of a server
and several clients as shown in Fig. 2. Specifically, given a
3D virtual environment and the initial condition for fluid
animation, the server first pre-processes the input so as to
decompose the task into a number of subtasks and assign
them to the clients. In each time step, the server collects
the data from the shared file system and then renders the
datawith global rendering algorithm to get the animation
results. As for each client, the fluid equations are solved in
parallel when they receive the assigned subtask. The fluid
computational domain is divided into blocks and each
client is responsible for one block. To keep the continuity
of the solution across subdomain interface, the blocks are
overlapped. Messages about the overlapped domain are
transmitted among adjacent clients. Details will be given
in the following subsections.

5.1. System architecture

The architecture of the system is shown in Fig. 2.We use a
client-server structure here. The server provides resource
for start fluid computation and partitions theworkload or
tasks with load balance principle. The client executed the
given partitioned task from the server. Clients and servers
often communicate over a computer network on separate
hardware, but both client and server may reside in the
same system. Thus, it is a typical distributed application
structure that can be executed on many parallel systems

COMPUTER-AIDED DESIGN & APPLICATIONS 143

Figure 2. The parallel implementation of fluid animation model.

such as high performance computer, multi-core chip as
well as cluster system.

When user input 3D environment for fluid flow and
the initial condition, the server host runs a server pro-
gram that process this information and send message to
start the client program. Server program first voxelize
the 3D environment into computable boundary condi-
tions using a depth voxelization method [16]. Then, the
fluid computation task will be decomposed into n sub-
tasks. It is implemented by divide the fluid source into n
parts. Details of the domain decomposition will be intro-
duce in the next subsection. To reduce the cost ofmessage
transmission, we put fluid source file, voxelize files of 3D
environment into a database that can be shared in read-
only mode by all clients and server. Thus, processing of
messagemay only requires to send the information about
start and end position of the departed domain.

As for each client, when it receives message from the
server program, it executes the computation process for
its domain. Two clients that have adjacent computational
domain may transmits information to keep the bound-
ary condition correctly. Clients initiate communication
sessions with the adjacent clients after each time step.

5.2. Domain decomposition

To solve the fluid equation in parallel, it is necessary
to decompose the computational domain into subdo-
mains. Specifically, domain decompositionmethods split
the above grids that stored fluid parameters into smaller
subdomains. The problems of solving partial equation
numerically on the subdomains are relatively indepen-
dent which makes domain decomposition methods suit-
able for parallel computing. Each subdomain simulation

is executed on a client and the solution between adja-
cent subdomains is coordinated to keep the numerical
boundary condition correctly. In this paper, the server
host coordinates the solution between the subdomains
globally to get the combined animation results. In each
time step, the numerical data is stored in the shared pub-
lic file system and the server host analyzes these data to
extract useful information (e.g., soot density for smoke
animation, temperature for fire animation and surface
mesh for liquid animation) for photo-realistic rendering.

We subdivide the computational domain into n blocks
where n denotes the number of clients. In general, we
divide the x, y and z coordinates into nx, ny and nz
parts respectively and make sure that n = nx × ny × nz.
Figure 3 shows three subdivision examples. In the left
image of Fig. 3, the computational domain is subdivided
into 8 cubic blocks where n = 2 × 2 × 2. Observe that
there aremanyways to break up 3Ddomain inton blocks.
In the middle and right image of Fig. 3, other two sub-
division results are given where n = 4 × 1 × 2 and n =
1 × 8 × 1. Users can subdivide in a way that they are
used to but should consider the following subdivision
principles.

5.2.1. Subdivision principles
When subdivide the computational domain, load balance
principle should be considered for performance reasons.
Load balancing requires distributing approximately equal
amounts of work among computational tasks. This prin-
ciple makes that all clients are kept busy all of the time
and thus minimize the task idle time. If not, for exam-
ple, some task will become the barrier synchronization
point and the slowest one will dominate the overall com-
puting time. It is intuitive to achieve load balance in our

144 G. ZHANG ET AL.

Figure 3. The parallel implementation of fluid animation model

method. We equally partition the task by subdivide the
computational domain into n sub-regions evenly.

Another principle is to decrease the cost of communi-
cation asmuch as possible. In fluid simulation, the ratio of
computation to communication is large. That is because
the task is computational intensive. Compared to large
cost of computation, the communication overhead is low
and thus we only need to consider how to improve the
efficiency of computation effectively.

5.2.2. Map of neighbors
Each block needs data from its neighbor blocks to keep
the computation correctly. Thus, the parallel algorithm
requires keeping a map of neighborhood blocks for each
block. To do this, we index all blocks with the following
order

bidi,j,k = i × ny × nz + j × nz + ks, (5.1)

where nx, ny and nz is the number of blocks on each
dimension. We assign each block to a client whose num-
ber c is the index of the assigned block bi,j,k, c = bidi,j,k.
Thus, the six neighbors of client c are c.left = bidi−1,j,k,
c.right = bidi+1,j,k, c.top = bidi,j−1,k, c.bottom = bidi,j+1,k,
c.front = bidi,j,k−1 and c.back = bidi,j,k+1.

5.2.3. Numerical computation on each node
In each block, the fluid equations are solved with follow-
ing steps. First, we construct the spatial grid for storing
the scalar and vector parameters of fluid motion. Sec-
ondly, we solve Eqn. (4.1) and Eqn. (4.3). After obtain-
ing fluid velocity, we drive the motion of fluid media,
such as the soot density, temperature as well as fluid
surface according to the obtained fluid velocity. Finally,
the numerical data will be put to the public file sharing
system. They will be used to extract visualization data
so as to provide input for global illumination algorithm
executed on server host. Solving the equations can be

categorized into three operations: adding external force,
advection and projection. According to the given initial
condition, we set u0 = un = (un, vn,wn) in a block.

Add force. The first step is to add external force f. Thus
we get u1(x) = u0(x) + �tf(x, t).

Advection. In this step,we use Semi-Lagrangemethod
to solve the advection term ut = −u · (∇u). We regard
each grid node x as a particle and then trace the par-
ticle back to get its position at the last time step y by
the velocity of the fluid itself, y = x − ut+�t(x)�t. The
scalar value at position y is calculated by linear inter-
polation and is finally assigned to the scalar value at
grid node x. Therefore, we can get each component of
fluid velocity at a grid point x at the new time t + �t as
dt+�t(x) = dt(x − ut+�t(x)�t). Similarly, the soot den-
sity ρ and signed distance function φ after advection can
also be get according to the above formula.

Projection. After adding external force and advec-
tion step, there is only one term on the right side of the
Eqn. (4.3), that is −1/ρ∇p. The final velocity is denoted
as

un+1 = u∗ − �t
ρ

∇p, (5.2)

where u∗ is the intermediate velocity obtained after the
above two steps. So calculating un+1 requires computing
the pressure p firstly. So we apply divergence operator to
both sides of equation and get

∇2p = �t
ρ

∇ · u∗. (5.3)

We use finite differences to approximate derivatives
∇2p and u∗. Finally, Eqn. (5.3) becomes a sparse linear
system Ap = b where the pressure p is unknown.

Solving large sparse linear system. As described
before, we are required to solve the linear systemAp = b.
It should be solved globally because the coefficientmatrix
A is a global matrix. To constructA, we first get the index

COMPUTER-AIDED DESIGN & APPLICATIONS 145

of each fluid cell in every client and send the number
of fluid cells to the next client in order. The number is
regarded as the offset of cell index. The cell index deter-
mines which column of matrix A is non-zero. Finally, we
solve the sparse linear system Ap = b with PCGmethod.
Consider a sparse linear system

Ap = b, (5.4)

where p is an unknown vector, b is a known vector, A is
a known SPDmatrix. According to PCG algorithm, Eqn.
(5.4) can be written as

M−1Ap = M−1b, (5.5)

where matrix M is a preconditioner [8]. We use a block
diagonal preconditioner. The block diagonal precondi-
tioner is formed from the incomplete Cholesky blocks
on each client. After getting the preconditioner M, we
set the start vector as p = 0. Given a maximum num-
ber of iterations kmax and an error tolerance ε, the PCG
algorithm can enable us to compute the pressure p. In
this algorithm, a set of α – orthogonal search direc-
tions α1, · · · ,αn are constructed by the conjugation of
the residues r1, · · · , rn respectively. Then in the kth itera-
tion step, pk takes exactly one step of the length hk along
the direction αk. If the convergence conditions are met
err < ε or k > kmax, the iterative process is terminated
and we get the final pressure p. After solving the linear
system and obtaining the unknown p, we compute fluid
velocity according to Eqn. (5.2).

5.2.4. Communication
To keep the computation correctly, the block on adja-
cent client should be overlapped. As shown in Fig. 3,
yellow block and green block is computational domain
on each client while the orange block receives informa-
tion from the adjacent client. As we can see that the green
block and orange block are the overlap blocks between
the adjacent clients. In Fig. 3, the green block of client 1 is
overlapped with the orange block of the client 2 and vice
versa. They send and receive information from the adja-
cent regions to keep the continuity of the solution across
subdomain interface. In addition, the indices of fluid cells
are also required to communicate globally. To do this, the
clients send the numbers of fluid cells to their neighbors
sequentially.

6. Results

We have implemented our parallel algorithm in a clus-
ter system which includes 17 computers. Each PC in the
cluster has 2.6 GHz Intel Core 2DuoCPUand 2GBmem-
ory. In this cluster system, we set one of the 17 computers

as the server and 16 of them as clients. The performance
of our parallel fluid animation algorithm can be evalu-
ated by the high resolution smoke and liquid simulation
examples which will be illustrated in the following parts.

6.1. Performance analysis

During fluid equation computation, one of the most time
consuming parts is to solve the large sparse linear sys-
tem for pressure p. We compare the convergence of our
method with Jacobi iterative method in terms of rate
per iteration. Tab. 1 shows the matrix A of Ap = b used
in this experiments. Since our block diagonal precondi-
tioner is formed from the incomplete Cholesky blocks
on each client, no communication is needed in this pro-
cess. Furthermore, the number of iteration steps is also
reduced by using the pre-conditioner. The final costs
are given in Tab. 2. Observe that the performance of
our method is more efficient than the traditional Jacobi
iterative method.

Tab. 2 shows that there is significant performance
increase for our PCG algorithm when solving the sparse
linear system compared with Jacobi method. For exam-
ple, given a matrix whose row number is N = 304207
and the non-zero elements is 1962311, our parallel PCG
algorithm takes 35 iteration steps and consumes about 49
seconds for obtaining the unknowns. When solving the
same linear system, parallel Jacobi methods takes about
80 seconds. We increase to 38% performance improve-
ment in this example.

As shown in Fig. 4 (a), the fluid animation cost may
fluctuatewith different frames. That is because that differ-
ent boundary conditions and initial conditions can result

Table 1. Matrix used for experiments

Matrix N Nonzero

M1 8087 49915
M2 22028 131118
M3 65043 394877
M4 140120 876518
M5 209908 1325066
M6 274949 1755263
M7 304207 1962311

Table 2. Matrix used for experiments.

Matrix
Jacobi
steps

Timings for
Jacobi method

PCG
steps

Timings for
PCG method

M1 84 4.46 17 3.54
M2 90 5.35 21 8.17
M3 123 9.92 22 18.56
M4 146 16.86 25 31.74
M5 192 55.26 30 33.13
M6 221 77.45 34 44.64
M7 234 79.63 35 48.94

146 G. ZHANG ET AL.

(a) (b) (c)

Figure 4. Efficiency of our parallel algorithm. (a): computational cost (seconds) of each frame. Note that the efficiency of fluid animation
fluctuates due tomany factors. (b): average cost (seconds) of each frame. Horizontal axis represents the number of PCs. The cost decreases
significantly when the number of clients increases. (c): The speed up of our parallel algorithm. It is close to the ideal value because it is a
computation intensive task in which the communication cost is quite small.

in quite different computational cost. Firstly, the com-
putational times are varying with the number of fluid
cells. Secondly, the condition number of the matrix for
the sparse linear system can also lead to different cost.
If the linear system in ill-conditioned, it will take more
iteration steps to get a convergence value.

We also demonstrate the average computational cost
of each frame and the speedup of our parallel algorithm
(shown in Fig. 4 (b) and (c)). In this example, the liquid
source is added to a 3D valley and we divide the com-
putational task into different number of subtasks. Results
show that the computational cost of each frame decreases
significantly with the number of processors in the clus-
ter system. We also show the speed up (see Fig. 4 (c)) of
our parallel algorithm in this paper. It is very close to the
ideal speed up value because our task is a computation
intensive one in which the communication cost is quite
small.

6.2. Animation results

Fig. 5 shows the animation results of the liquid valley
example in this paper. We decompose the computational
domain into 16 blocks and uses 16 clients to compute it.
The efficiency of this example is illustrated in Fig. 4. The
animation results are output from the server. It gathers
numerical data from the clients in every time step and
abstracts the water surface from the data. The global ren-
dering method are used to get the final animation images
on the server.

Ourmethod also supports smoke animation. In Fig. 6,
we demonstrate the smoke propagation in a building.
The source of the smoke is set at a room in the cen-
ter of the building. To compute the animation effectively,
we decompose the domain into 8 × 1 × 2 blocks. The
blocks are assigned to 16 clients for numerical computa-
tion. In addition, the speed up is also close to 16 since the

Figure 5. A sequence of liquid animation results in a valley.

Figure 6. A sequence of smoke animation results in a building.

COMPUTER-AIDED DESIGN & APPLICATIONS 147

communication cost is small compared to the computa-
tion cost. The server collects density data and renders the
data directly rather than abstracts surface mesh in liquid
animation.

7. Conclusions

We have implemented a parallel method for fluid ani-
mation on cluster system. Our method can solve the
fluid equation in parallel with high efficiency. To get
interesting fluid details, we solve physically-based liq-
uid animation model with the popular Eulerian scheme.
During simulation, we control fluid animation on
server while compute the numerical solution on clients.
Results show that the proposed parallel fluid accelera-
tionmethod can improve the efficiency of fluid animation
significantly.

However, this paper only implements the most time-
consuming step of fluid animation on GPU. In fact,
physically-based fluid animation method is a very com-
plex model that includes many equations and algorithms
such as the Level Set equation, SPH model, Fast March-
ing algorithm andMarching Cubes et al. As for the future
work, we would like to extend the above algorithms on
GPU to further improve the efficiency. In addition, opti-
mizing the method presented in this paper according to
the hardware properties of GPU card is another mean-
ingful work.

Acknowledgement

This work is supported the National Nature Science Founda-
tion of China (Nos. 61202225, 61303157, 61303007, 61402270,
61572299), Shandong Provincial Natural Science Founda-
tion, China (ZR2014FQ009, ZR2015FQ009), Research Fund
for Excellent Young and Middle-aged Scientists of Shandong
Province (BS2013DX044), Shandong Province Higher Educa-
tional Science and Technology Program (J13LN13).

ORCID
Guijuan Zhang http://orcid.org/0000-0002-9545-8668
Jinyan Zhao http://orcid.org/0000-0001-9836-0642
Weizhi Xu http://orcid.org/0000-0001-7549-4138
Dianjie Lu http://orcid.org/0000-0001-5435-5307
Yongjian Wang http://orcid.org/0000-0003-2351-3186
Xiangxu Meng http://orcid.org/0000-0001-7290-5659

References

[1] Bayraktar, S.; Gdkbay, U.; Ozgc B.: GPU-based neighbor-
search algorithm for particle simulations, Journal Graph-
ics GPU Game Tool, 14(1), 2009, 31–42.

[2] Crane, K.; Llamas, I.; Tariq S.: Real-time simulation and
rendering of 3D fluids, GPU Gem 3, Chaper 30, 2007.

[3] Goswami, P.; Schlegel, P.; Solenthaler, B.; Pajarola R.:
Interactive SPH simulation and rendering on the GPU. In
Proceedings of the ACMSIGGRAPH/Eurographics Sym-
posium on Computer Animation 2010, 55–64.

[4] He, X.; Wang, H.; Zhang, F. et al: Robust simulation of
sparsely sampled thin features in SPH-based free surface
flows, ACM Transactions on Graphics, 34(1), 2014, 1–9.

[5] Hu, C.; Xu, Z.; et al. Semantic Link Network based Model
for Organizing Multimedia Big Data, IEEE Transactions
on Emerging Topics in Computing, 2(3), 2014, 376–387.

[6] Ihmsen, M.; Akinci, N.; Becker, M.; Teschner M.: A par-
allel SPH implementation onmulti-core CPUs, Computer
Graphics Forum, 30(1), 2011, 99–112.

[7] Kipfer, P.;Westermann, R.: Realistic and interactive simu-
lation of rivers, In Proceedings ofGraphics Interface 2006,
41–48.

[8] Knyazev, A. V.; Lashuk, I.: Steepest descent and con-
jugate gradient methods with variable preconditioning,
SIAM J. Matrix Analysis and Applications, 29(4), 2007,
1267–1280.

[9] Kurose, S.; Takahashi, S.: Constraint-based simulation of
interactions between fluids and unconstrained rigid bod-
ies, In Proceedings of Spring Conference on Computer
Graphics 2009, 197–204.

[10] Stam, J.: Stable Fluids, In proceedings of SIGGRAPH 99,
1999, 121–128.

[11] Xu, Z.; et al. Semantic based representing and organizing
surveillance big data using video structural description
technology, The Journal of Systems and Software, 102,
2015, 17–225.

[12] Xu, Z.; et al. Semantic Enhanced Cloud Environment for
Surveillance Data Management using Video Structural
Description, Computing, 98(1–2), 2016, 35–54.

[13] Xu,W.; Yu, H.; Lu, D.; et al: Fast and scalable lockmethods
for video coding on many-core architecture, Journal of
Visual Communication and Image Representation, 25(7),
2014, 1758–1762.

[14] Zhang, G.; Lu, D.; Zhu, D. et al: Rigid-motion-inspired
liquid character animation, Computer Animation and
Virtual Worlds, 24(3–4), 2013, 205–213.

[15] Zhang, Y.; Solenthaler, B.; Pajarola R.: Adaptive sampling
and rendering of fluids on the GPU, In Proceedings of the
Fifth Eurographics / IEEE VGTC conference on Point-
Based Graphics 2008, 137–146.

[16] Zhang, G.; Zhu, D.; Qiu, X. et al: A Scene Processing
Method for Fluid Simulation, Journal of Computer-Aided
Design & Computer Graphics, 22(8), 2010, 1360–1365.

http://orcid.org/0000-0002-9545-8668
http://orcid.org/0000-0001-9836-0642
http://orcid.org/0000-0001-7549-4138
http://orcid.org/0000-0001-5435-5307
http://orcid.org/0000-0003-2351-3186
http://orcid.org/0000-0001-7290-5659

	1. Introduction
	2. Related work
	3. Overview
	4. Physically-based fluid animation model
	4.1. Fluid velocity
	4.2. Smoke density computation
	4.3. Free surface computation

	5. Parallel implementation of Eulerian method
	5.1. System architecture
	5.2. Domain decomposition
	5.2.1. Subdivision principles
	5.2.2. Map of neighbors
	5.2.3. Numerical computation on each node
	5.2.4. Communication

	6. Results
	6.1. Performance analysis
	6.2. Animation results

	7. Conclusions
	Acknowledgement
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

