COMPUTER-AIDED DESIGN & APPLICATIONS, 2017
VOL. 14,NO. 2, 170-179
http://dx.doi.org/10.1080/16864360.2016.1223428

(onpiter: fidedlerjgn Taylor &Francis
p— —— Taylor & Francis Group

Interactive cartoon-style motion generation of avatar

Xiubo Liang

Zhejiang University, China

ABSTRACT

In 3D character animation, the expressiveness of the motions is very important for the immersion
and the perception in a virtual environment. Traditional animation is often superior to show this

KEYWORDS
Motion Recognition; Cartoon
Effect; Motion Adaptation

expressiveness. However, the resulting animation is typically not interactive. We present in this paper
an interactive and intuitive method to add expressiveness to avatars by the exaggeration of the
characters and their motions. We first use the data from a sensor holding by the user to create a
parameterized order. Then this intuitive order is interpreted by the system to drive the exaggeration
of the involved limbs and the deformation of the mesh of the avatar. We finally provide a post-
exaggeration module adapting the resulting motion to the environment and placing the camera
for an optimal perception. Experimental results show that the method can efficiently convert user’s
interaction intent to expressive cartoon-style character animation.

1. Introduction

A lot of research has been done on creating realistic
motions for character animation. These methods are
excellent in generating realistic motions, but they are
not suitable for directly producing expressive and non-
photorealistic motions. On the other hand, traditional
keyframe animation is widely used to animate such
motions of virtual characters. But this involves difficult
and time consuming work, even when used by a skillful
animator. In comparison of non-living objects, animat-
ing a human character has some specific issues due to its
skeletal structure and physiological system. Nevertheless,
expressive and stylized human motions can be nicely rep-
resented by temporarily stretching, breaking link-length
constraints, creating new sub-joints and more. These
techniques produce great results, but their parameteriza-
tion remains difficult to setup in real-time for interactive
purposes.

In this paper, we present an interactive and intuitive
way to give expressiveness to a human motion by adding
exaggeration. Exaggeration is useful to help the audi-
ence to focus on a more important space-time sequence
of a motion. Animators can so increase the perception
on a specific point of interest. Exaggerated motions are
not realistic but they represent the situation nicely, by
giving more expressiveness and emotion. Our aim is to
provide a novel exaggeration method involving intuitive
user’s gestures from an interactive device. Cartoon-style

animations or video games are good applications for
this kind of motion generation. There are three main
phases in our interactive cartoon-style motion gener-
ation system. Firstly, the user performs an action by
holding an accelerometer embedded in a Wiimote and
our system will recognize the action with a pre-trained
Hidden Markov Model (HMM) and turn it into an inter-
action command. Secondly, the recognized command is
employed to drive the motion exaggeration and mesh
deformation of the avatar to generate cartoon effects.
Finally, the exaggerated character animation is adapted
to fit the constraints of the virtual environment and the
camera is placed in an optimal perception to give the best
display to the user.

The primary contributions of this paper are as follows:

e We present a novel approach to interact with the vir-
tual characters with a low-cost accelerometer while
avoiding the boring work of collecting lots of training
samples.

e The motion and body of the virtual character are both
exaggerated automatically according to user’s perfor-
mance to obtain the interesting cartoon effects.

e The exaggerated motion of the virtual character and
the view point of the virtual camera are further
adapted to give the best visual effect to the user.

The remainder of this paper is organized as follows.
We first review the related work in Section 2, and explain

CONTACT Xiubo Liang @ xiubo@zju.edu.cn

© 2016 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://orcid.org/0000-0002-3605-3521
mailto:xiubo@zju.edu.cn
http://www.cadanda.com

the architecture and pipeline of our cartoon-style motion
generation method in Section 3. Then, we describe how
to acquire and analyze the user-performed actions with a
handheld accelerometer in Section 4. Section 5 presents
the implementation details for motion exaggeration and
mesh deformation. In Section 6, we give the adaptation
methods to meet the constraints in the virtual environ-
ment. The experimental results and a brief discussion of
our approach are given in Section 7. Finally, we give the
conclusion and outlook of this paper in Section 8.

2. Related work

Traditional human computer interfaces are not intuitive
enough for the control of avatars. In recent years, new
input devices (e.g. Wiiremote and Kinect) are used to
implement the virtual human control interface based on
the somatosensory interaction, which makes full use of
the human perception ability to express the control inten-
tion in a natural way [16, 15]. Such interactive systems
only collect part-body motions with a few motion sensors
or cameras, and then reconstruct the full-body motions
based on a pre-captured motion database [19, 7]. A key
problem in such systems is action recognition which
refers to the process that computers cognizing user’s
motion state by certain means over a period of time.
The process of action recognition generally comprises
two aspects: firstly extracting the features of the motion,
and secondly recognizing actions using the extracted
motion features. Sanna et al. solves the problem of user-
independent gesture recognition based on a preprocess-
ing approach of tilt compensation and normalization
[14]. Lv and Nevatia present an algorithm to automat-
ically segment and recognize basic human actions by
decomposing the high dimensional 3D joint space into a
set of low dimensional feature spaces [10]. Cao and Bal-
akrishnan present a hybrid recognition and prediction
engine which can significantly improve gesture recogni-
tion performance and reduce users’ effort of making the
gestures before achieving good results [1].

Fundamental principles of traditional animation
present bones as geometries which can be squashed and
stretched, and joints can be broken if it makes for a more
expressive motion [20]. The limbs of characters are often
enlarged to accentuate a motion or imply an emotion.
Majkowska and Faloutsos proposed motion editing oper-
ations to create complex super-human motions or acro-
batic stunts that would be difficult to record in a motion
capture studio [11]. Kwon and Lee simulate rubber-like
exaggerations in order to convert motion capture data
into cartoon-like movements [9]. Many techniques that
follow traditional animation principles simulate squash
and stretch, which is the most significant shape distortion

COMPUTER-AIDED DESIGN & APPLICATIONS 171

in exaggerated motions [6, 2]. Wang et al. have applied the
Laplacian of a Gaussian filter to general animation signals
to generate anticipation and follow-through effects [17].
Noble and Tang present a tool that takes skeleton-driven
animations and generates expressive deformations to the
character geometry which is warped along automatically
computed limbs’s line of motion [12]. After edited by
some motion editing algorithm, the resulting motion
should be modified to fit the constraints in the virtual
environment. Recently, more and more researchers intro-
duced the physical constraints into their work of motion
retrieval and synthesis [18, 3]. In order to satisfy the
visual reasonableness, such systems should be able
to generate motions which meet some physical laws
[4,5,21].

3. Overview

The main objective of our system is to give more expres-
siveness to the motion in a natural way. If we know on
what part of the body the user wants to interact, the
global expressiveness will be improved by exaggerating
this part. We present a method using an interactive data,
a gesture from the user, as the main parameter defining
the exaggeration. We studied the possibility of making
the deformation dependent on one other motion than
the original which can describe the way to deform it.
The main process is shown in Figure 1. Two inputs are
used: the current motion of the avatar and a gesture
performed by the user. The user observes the character
moving within the virtual environment. At any moment,
he can decide to see this character exaggerated. Depend-
ing on the user’s order, the movement of a body part is
then exaggerated. The modifications are calculated from
the way to order the action. We use an acceleration sen-
sor to capture the properties of the gesture, and interpret
these data to proceed to the exaggeration. The process
can be applied on multiple applications, and especially on
game-like scenarios.

The major algorithmic steps of the interactive cartoon-
like motion generation are explained below:

1. Gesture analysis. The user perform an interactive
action by holding a Wiimote in his hand. The
motion recognition module recognize the action
with an HMM which is trained by the samples pre-
performed by the user and the automatically gener-
ated samples by adding noise. The performed action
is also be employed to calculate the quantitative
measurement of magnitude and duration.

2. Exaggeration. The corresponding part of the vir-
tual character is exaggerated by joint position
modification and mesh deformation. For motion

172 X. LIANG

| Gesture

Gesture analysis

Original motion

| Cartoon-style
motion

Adaptation

« Exaggerated

= Gesture recognition + Group of limbs . Joint. QosiFion maton . Ground_
» Quantitative - Magnitude modification « Exaggerated adaptation
measurement &duration * Mesh deformation character * Camera
] positioning

Figure 1. Overview of the interactive cartoon-style motion generation.

exaggeration, we modify the velocity curve of each
joint in the three-dimensional space. For mesh exag-
geration, we propose to modify the width and the
height of the meshes to enlarge the limbs relatively
to the hierarchy of the joints.

3. Adaptation. The exaggerated motion is further mod-
ified to fit the constraints in the virtual environment.
We use the ground constraints to avoid the penetra-
tion of limbs into the ground and compute the opti-
mal position of the camera to display the generated
cartoon effects of the avatar.

4. Gesture analysis

We get the acceleration data of a motion from the
Wiimote held by the user. The sensed data are used for
gesture recognition and quantitative measurement.

4.1. Gesture recognition

Our recognition algorithm includes three major steps:
sampling, preprocessing, training and recognizing. To
achieve good recognition accuracy, there must be enough
training samples. Kay pointed that the detectability can
be improved by adding noise [8]. So we reduce the users’
labor by generating samples automatically. Users only
need to perform a gesture one time, the system will gen-
erate the left samples by adding noise. There are two
random noise distributions used in our system: Uniform
distribution and Gaussian distribution. We achieve the
best noise level by experiments according to the signal to
noise ratio (SNR) which is the ratio of signal variance to
noise variance.

Performing the same gesture, the users will cer-
tainly produce different movements generating different

accelerations. This leads to the multiplicity of the ges-
tures. The length of the samples can be very different,
which increases the difficulty of the recognition. We
solve this problem by a method of interpolation and
resampling: for each acceleration sample, we interpo-
late their values between two sample points and get
a cubic spline. Then, we resample the spline to the
same length. And because of the multiplicity of the ges-
tures, the main feature of a gesture is submerged in
redundant information. We employ a principle com-
ponent analysis (PCA) to extract and rearrange the
features. The feature sequences are then introduced
to a Hidden Markov Model (HMM) for training and
recognizing.

In our system, each HMM has three hidden states
and each state contains a 3-component mixture of Gaus-
sian. Supposing that we have M kinds of gestures and
each of which has a corresponding HMM (represented
by 1;), forming a M-length vector of HMMs. Assum-
ing that after preprocessing, the sample is represented
by a feature sequence O = (0703 ... or). Once A; is
learned, the probability of the feature sequence O is com-
puted using the Forward algorithm [13]. The gesture
with the maximum probability in the vector is selected.
The main steps of training and recognizing are then as
follows:

1. Estimate the parameters of each HMM with the
Baum-Welch algorithm [13].

2. Compute the probability P(O|A;) with the Forward
algorithm.

3. Find the gesture with the maximum P(O|A;) using
the following formula (1):

Gesture(O) = arg max[P(O/A)], i=0...M (1)

Both Forward and Baum-Welch algorithms need to com-
pute P(os]i), the probability of observing o; given the
state i at time t. The continuous HMM uses a Probabil-
ity Density Function (PDF) to estimate P(o;|i) because
there is no point probability in continuous distribution.
In our approach, we use the Gaussian mixture model, and
P(0;]7) is computed as follows:

3
m=1 2m) 2 |Uip|2
(2)

where c;,,, is the coeflicient, (;,, is the mean vector and
Ui is the covariance matrix for the mth mixture compo-
nent in state i.

4.2. Quantitative measurement

We use two quantitative parameters: the magnitude and
the duration. The magnitude is the ‘size of the order’.
The larger movement the user performs, the more exag-
gerated the resulting motion will be. The duration repre-
sents the time of the exaggeration. The longer the input
order takes, the longer the resulting motion exaggeration
will be.

The sensed data is a collection of acceleration at each
frame, a button on the Wiimote is used to control the
beginning and the end of the order which is an intuitive
way to delimit the order. The magnitude of the gesture
is calculated by a double integration of the accelerations.
The mapping between the space displacements of the
gesture and the magnitude of the exaggeration is scaled
into usable values. The duration can be directly set by
multiplying the frame rate and frame count.

5. Exaggeration

The inputs to the exaggeration module are the cur-
rent motion which will be modified, the group of limbs
involved according to the user’s order and the magnitude
and the duration of the exaggeration. Both the motion
and the character are modified to achieve the desired
effect.

5.1. Motion exaggeration

We propose to consider a way to maintain the style and
the features of the motion. To stretch the limbs, our
method does not directly modify the trajectories of the
joints, but the velocities. Direct exaggerations on the tra-
jectories of the joints could sometimes change the origi-
nal style of the motion and does not have a good robust-
ness. So we exaggerate the velocity curve of each joint in

COMPUTER-AIDED DESIGN & APPLICATIONS 173

the three-dimensional space to get more respectful and
smooth result.

To get the velocity curve, we use a cubic spline curve
to fit the trajectory of a joint. Then, we get the differ-
ential coefficients of the curve, which are the velocities
of the joint. We exaggerate these velocity data, and the
final resulting motion is obtained from the integral of the
exaggerated velocity curve.

There are several methods to exaggerate the velocity
trajectory. We propose one that can carry out the effect
of fade in and fade out. This mechanism allows a smooth
animation between the original and the exaggerated
motions both at the beginning and at the end of the mod-
ification. Our algorithm also shows the follow-through
effect, commonly observed in cartoon style animations.

Let vio(t) denote the original velocity curve of the
kth joint Ji, with the time parameter (¢ € [0, T]). An
exaggerated version vi,(t) of vy, (t) can be computed as
follows:

Vke(£) = F(t)vko () 3)

F(t) is the function used to exaggerate the original veloc-
ity, described by the following equation:

}F(t)vko(t)dt =A (4)
0

where A is the displacement between the start posi-
tion and the end position. Many kinds of functions
could fit this equation, we choose the quadratic function
F(t) = at* + bt +c that gives good results regarding to our
experiments. The coefficients g, b and ¢ are computed as
follows:

T
[(at?® + bt + v, (t)dt
0
T T T
= a [o (H)dt + b [toge(H)dt + ¢ [vio(£)dt
0 0 0
T
= a[fspo(D)]g — 2./ tsgo(t)dt]
0

T L T
+ bltsko (D)o — {Sko(t)dt] +esko®lg =A (5)

dac — b? B

T
Sko(t) = [vgo(D)dt, ¢ = Fo,
0 4a

B (6)
Fy is the constant value of F(t) at t = 0. If we set Fy =
1, the velocity curve will so be exaggerated from its orig-
inal value v(0). B is also a constant value we need to set.
It corresponds to the maximum of the quadratic func-
tion F(t). In our application, this value is the magnitude
determined by the quantitative measurement module of
the user’s gesture analysis. si,(?) is the trajectory of the

174 X. LIANG

kth joint jx which we want to compute. And we can pose.

T T
C = [spodt and D = [tsi,(¢)dt. Let’s denote. tempB =
0 0

—4(Ty;,, (T)—Fo)(B—Fp) __ 4(1—Fy)A(B—Fp)
Tagm_n nd tempC= “5r (m=op) » then
we obtain the searched coefficients by:
- (1 — Fp)A — (tsio(T) — ©)b
t2(sko(T) — 2D) '
—tempB + /tempB? — 4tempC
, _ —temp \/2p C R)

Finally, we can multiply the original velocity curve with
F(t) to get the exaggerated motion. One result is shown in
Figure 2. The limbs first stretch slowly from their original
sizes. Then, they are modified according to the maxi-
mum magnitude and the original motion. And finally,
they return to their original sizes at the end of the exag-
geration.

5.2. Mesh deformation

A consequence of the exaggeration of the position of the
joints is the distortion of the sizes of the limbs (as seen
in Figure 2). To keep the geometry consistency of the
character, we so need to modify the shape of the limbs.
Moreover, we also use this modification to increase the
perception of the exaggeration.

As the adaptation of the shape depends on the model-
ing techniques of the representation of the virtual char-
acter, we present in this section a method applied on one
kind of representation: one mesh for one limb. The virtual
character is composed of 16 segments representing: the
head, the arms and forearms, the hands, the thighs, the

lower legs, the feet, and the trunk (made of three parts).
These meshes are described and rendered using the posi-
tions and the normals of each vertex. By modifying the
positions of theses vertices, we can modify the shape of
the character.

Let’s suppose the local coordinate system (x, y, z) of
each mesh M: x the width of the limb, y the length and z
the height. First, for each frame of the exaggeration, the
y component of each vertex v of M is modified to fit the
new length of the limb. We use here a property of our
meshes: the y component of the normals of the vertices
N, are positive in the proximal half of the mesh and neg-
ative in the distal half. We so translate the distal half by
MpewLength—MoriginalLength» Where these lengths are com-
puted from the positions of the proximal and distal joints
of the corresponding limb.

This deformation only depends on the joints exaggera-
tion, but we also want to add expressiveness to the motion
thanks to the shape of the character. We propose to mod-
ify the width and the height of the meshes. Our idea is to
enlarge the limbs relatively to the hierarchy of the joints.
The deeper in the hierarchy the proximal joint stands, the
larger the associated mesh will be. To describe this evolu-
tion, we define a value, Mesh Scale (MS), which depends
on the magnitude of the user’s order and the index i of
the current mesh in the selected group hierarchy:

MS; = magnitude 4+ i x F (8)

where F is a constant coefficient, called the Expansion
Factor. The value of this factor and its effect on the exag-
geration are discussed in the experiments section. i takes

Figure 2. A result of a left arm exaggeration (without modification of the character).

its value from 0, for the root limb of the selected group,
to the number of limbs—1 for the last of the group.

In order to conserve the ratio between x and z, MS
represents the scale on the width and the scale on the
height of each M. We use the normal of the vertices
on these axis as the direction of the deformation (see
Figure 3). The positions of the vertices are then updated
to:

MnewLength

V(xz) = U(xz) T+ NU(x,z) X MSpy x (9)

MoriginulLength

The deformation is scaled by the ratio between the new
size and the original size of the limb in order to respect
the original aspect. Moreover, MS, is also interpolated
using the fade in and fade out mechanism already used
in the joints positions exaggeration. Some results of the
shape modification are showed in Figure 4.

Figure 3. The mesh is deformed along the normal of each vertex
N v. The scales MSM are described by a function which depends
on the magnitude and the hierarchy of the limbs.

COMPUTER-AIDED DESIGN & APPLICATIONS 175

6. Adaptation to the environment

Virtual character animation implicitly exhibits con-
straints such as the fact that the feet do not (generally)
slide when in contact with the floor. We present now
how we deal with two kinds of these constraints: the
penetration of limbs into the ground and the automatic
positioning of the camera.

6.1. Ground constraint

After exaggeration, the sizes of the exaggerated limbs
are longer than the original ones, and some joints may
penetrate the ground. We need to guarantee that all the
joints are not under the ground. We separate the ground
constraint correction into two cases.

e The lower body is involved in the exaggeration: The
positions of the feet can be under the floor and the
support phase can have changed. To solve this prob-
lem, we used precomputed support phases and sup-
port joints. Before the beginning of the simulation, we
compute the support phases thanks to an algorithm
using the positions and the velocities of two poten-
tial contact joints: the toes and the ankles. In this
algorithm, a foot is supposed in support if the position
and the velocity of at least one of the joints are respec-
tively under a predefined threshold. The support joint
is then the lower joint of the support foot. After the
exaggeration of the lower body, we determine if the
new lower joint is the same as the original support
joint at the specified frame. If it is, we get the verti-
cal distance between the support joint and the ground,
and rise up the character using this height. On the
other hand, if the new lower joint is not the original

Figure 4. Four examples of the mesh deformation on: the left arm, the legs, the upper body and the full body. Results obtained with a

magnitude of 3 and an expansion factor of 2.

176 (&) X.LIANG

support joint, we reduce the sizes of the limbs to obtain
the same height as the support joint. And finally, rise
up the character as described before (see Figure 5).

o The lower body is not involved in the exaggeration: In
this case, our algorithm is simpler. We do not need to
change the global position of the character, but only to
correct the potential penetration of the upper joints.
At each frame, we first detect the collisions of the
exaggerated joints with the ground.

For these joints, we get the associated limbs, and we
reduce their sizes to avoid the penetration. Let [, der
denote a joint which is under the ground, and Jspove
denote the first joint which is above the ground in the
same hierarchy. The scales applied on each limbs of the
involved group are computed as

Jabove
scale =

above — Junder

6.2. Camera positioning

Controlling the camera is an important issue for the per-
ception of the 3D motions. Viewers can have completely
different sensations of a same motion only because of the
position of the viewpoint. Here, as we want to improve
the perception of the displacements of the exaggerated
limbs, we propose a method to compute the optimal posi-
tion of the camera displaying these displacements. Let J,, ;
denote the position of the joint n in the hierarchy of the

selected group of limbs at frame t. We can define the suc-
cessive positions of an exaggerated joint by a set], 0,77,
and the positions of each joints in the group at t can be
represented by a set Jj1 7. To determine the orientation
of the camera, we use the cross products defined by the
following vectors (see Figure 6):

x —> (10)
TntInt+1

Upy= — X —>
JntInt1,t

Vn,t = —

b
JntInt1,641 JntInt1,641

Figure 6. The kinematical data from the right arm: J;, the shoul-
der, to Js, the hand, are used to compute the average normal and
position from time t; to t3.

Figure 5. An example ground constraint correction on the lower body. (Left) An exaggerated motion without ground constraint
correction. (Right) The same exaggerated motion with ground constraint correction.

Then, for all the frames t € [1, T] and all the joints
n € [1, N] of the exaggeration, we compute the sum of
the normalized U and V:

T N Un,t Vn,t
§= thl Zn:l [Un,el " Vil (ll)

By normalizing U and V, they are now independents of
the sizes of the limbs, enabling a homogeneous weight. By
the way, we can notice that a size-based weight method
can be defined just by removing the U and V normaliza-
tions. The direction of the point of view D is then given
by: D = —g.

We now have to define the center of view, ie. the
3D position where the camera looks at. In this purpose,
we use the average position of one exaggerated joint.
We define, before the simulation, which joint will be
the center of view ng of each possible group of limbs.
For example, the elbow joint is used as the center of
the arm group. The global center of view CV is then
defined by:

T
1
V= t:ZlfnG,t (12)

1O

upper body legs

'y
v

leftarm right arm whole body

Figure 7. The input gestures used to select the exaggerated
limbs.

COMPUTER-AIDED DESIGN & APPLICATIONS 177

The last parameter to set is the distance between the
center of view and the position of the camera along the
direction D. This parameter is a constant and can be
defined by the user.

7. Experimental results

In this paper, a group of limbs is selected among the pre-
set groups thanks to the gesture order (see Figure 7). We
did a series of experiments on the recognition accuracy
under various SNR. It shows that results are better (over
96%) when SNR is about 4. We also did some experiments
on the flexibility of the method. The average recognition
accuracy is over 95% for various magnitudes of the same
gesture.

The Expansion Factor F of Equation (8) have been
presented as a constant parameter. As our goal is to
provide an automatic system, we study the influence of
this parameter and exhibit a good value. Figure 8 shows
examples of meshes deformations regarding to the mag-
nitude and the factor F. We can observe that the mag-
nitude A modifies the global sizes of the limbs while F
modifies their relative sizes. After more experiments, we
can assume that the best looking motions are obtained
when F € [1.2,3.3]. The initial value is then set to 2.0.

We tested the effectiveness of the camera position-
ing on many sequences of our scenario. Figure 9 shows
some snapshots captured by the camera positioned by
our algorithm. We can observe that our algorithm
always well displays the motion of the exaggerated limbs
whereas classical directions (up, front or side) may be
inappropriate.

o A=1 A=2 A=4

Figure 8. Evolution of the mesh deformation, regarding to the magnitude (A) and the expansion factor (F), without modifications of the

joints positions.

178 (&) X.LIANG

Figure 9. Three examples of camera positioning where the exaggerated group are: (left) the right arm, (middle) the upper body and
(right) the full body.

8. Conclusion

This paper has presented an intuitive way to add expres-
sive deformations to an animated character. The part
of the body and the magnitude of the exaggeration are
derived from the user’s gesture. The new positions of the
joints depend also on the original motion data. The mesh
deformation and the positioning of the camera use these
positions to improve the impression of exaggeration. As
such, we add a layer of expressiveness to the resulting
motion and help accentuate the underlying animation.
Many fields of applications can take advantage of our
approach. As the process can also be used offline, applica-
tions such as motion editing for cartoon-like animations
are particularly suitable. Moreover, the input parame-
ters may be defined by other intuitive devices such as
dance pads or full body sensors. And of course, multi-
ple characters can interact through exaggerations. We can

imagine fighting scenarios where an enlarged hit leads to
an exaggerated falling motion of the opposite player.

Acknowledgements

The authors would like to thank the Ningbo Natural Science
Foundation (Grant no: 2013A610064) and intelligence industry
talent base of Ningbo for financial support.

ORCID
Xiubo Liang © http://orcid.org/0000-0002-3605-3521

References

[1] Cao, X.; Balakrishnan, R.: Evaluation of an on-line adap-
tive gesture interface with command prediction. In Pro-
ceedings of Graphics Interface, pages 187-194, 2005.

http://orcid.org/0000-0002-3605-3521

2]

(10]

(11]

Chenney, S.; Pingel, M.; Iverson, R.; Szymanski, M.: Simu-
lating cartoon style animation. In Proceedings of the 2nd
International Symposium on Non-photorealistic Anima-
tion and Rendering, page 133138, 2002.

Geijtenbeek, T.; Van de panne, M.; Van der stappen,
A.: Flexible muscle-based locomotion for bipedal crea-
tures. ACM Transactions on Graphics, 2013, 32(6):
1-11

Hiamaldinen, P; Eriksson, S.; Tanskanen, E.; Kyrki, V;
Lehtinen, J.: Online Motion Synthesis Using Sequen-
tial Monte Carlo. ACM Transactions on Graphics, 33(4),
2014.

Hahn, F; Martin, S.; Thomaszewski, Gross, M.: Rig-
space physics. ACM Transactions on Graphics, 31(4): 1-8,
2012.

Haller, M.; Hanl, C.; Diephuis, J.: Non-photorealistic ren-
dering techniques for motion in computer games. Com-
puter Entertainment, 2(4):11-17, 2004.

Helten, T.; Muller, M.; Seidel, H. P; Theobalt, C.: Real-
time body tracking with one depth camera and inertial
sensors. In Proc. IEEE Int. Conf. Comput. Vis., pages
1105-1112. IEEE, Dec. 2013.

Kay, S.: Can detectability be improved by adding noise.
IEEE Signal Processing Letters, 7:8-10, 2000.

Kwon, J.-Y,; Lee, L.-K.: Rubber-like exaggeration for char-
acter animation. In Proceedings of the 15th Pacific Con-
ference on Computer Graphics and Applications, page
1826, 2007.

Lv, E; Nevatia, R.: Recognition and segmentation of 3-
d human action using hmm and multi-class adaboost.
ECCYV, 3954:359-372, 2006.

Majkowska, A.; Faloutsos, P.: Flipping with physics:
motion editing for acrobatics. In Proceedings of the 2007

[15]

[16]

[17]

(18]

(19]

(20]

[21]

COMPUTER-AIDED DESIGN & APPLICATIONS 179

ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, page 3544, 2007.

Noble, P; Tang, W.: Automatic expressive deformations
for implying and stylizing motion. The Visual Computer,
23(7):523-533, 2007.

Rabiner, L.: A tutorial on hidden markov models and
selected applications in speech recognition. Proceedings
of the IEEE, 77(2): 257-286, 1989.

Sanna, K.; Juha, K.; Panu, K.; Jani, M.: User independent
gesture interaction for small handheld devices. IJPRAI,
20(4):505-524, 2006.

Shum, H.; Ho, E.; Jiang, Y.; Takagi, S.: Real-time posture
reconstruction for Microsoft Kinect. IEEE Transactions
on Cybernetics, 43(5): 1357-1369, 2013.

Tautges, J.; Zinke, A.; Kruger, B;; Baumann J.; Weber,
A.; Helten, T.;; Muller, M.; Seidel, H.-P.; Eberhardt, B.:
Motion reconstruction using sparse accelerometer data,
May 2011.

Wang, J.; Drucker, S.; Agrawala, M.; Cohen, M.: The
cartoon animation filter. In Proceedings of ACM SIG-
GRAPH’06, pages 1169-1173, 2006.

Wang, J; Hamner, S.; Delp, S.. Optimizing Loco-
motion Controllers Using Biologically-Based Actuators
and Objectives. ACM Transactions on Graphics, 31(4):
25:1-25:11, 2012.

Wei, X.; Zhang, P,; Chai, J.: Accurate realtime full-body
motion capture using a single depth camera. ACM Trans.
Graph., 31(6):188:1-188:12, Nov. 2012.

Williams, R.: The Animator’s Survival Kit. Faber and
Faber, 2001.

Zhao, W.; Zhang, J; Min, J.; Chai, J.: Robust realtime
physics-based motion control for human grasping. ACM
Transactions on Graphics, 32(6): 1-12, 2013.

	1. Introduction
	2. Related work
	3. Overview
	4. Gesture analysis
	4.1. Gesture recognition
	4.2. Quantitative measurement

	5. Exaggeration
	5.1. Motion exaggeration
	5.2. Mesh deformation

	6. Adaptation to the environment
	6.1. Ground constraint
	6.2. Camera positioning

	7. Experimental results
	8. Conclusion
	Acknowledgements
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

