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ABSTRACT
In this research, based on the concept of the smoothing by curve shortening flow and curvature
flow, we will propose log-aesthetic flow to make free-form curves “log-aesthetic.” We will discuss
smoothing methods that deal with continuous curves as well as discrete ones. We have one degree
of freedom α to control smoothing for log-aesthetic flow and can expect the completely smoothed
shape of a given curve, which means the shape obtained by fairing, to be log-aesthetic curve. This
paper shows that log-aesthetic flow is basically governed by the heat conduction equation, which
has been well studied in both physics and mechanical engineering, its effects are easily inferred by
the designers and it will be useful for practical aesthetic design.
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1. Introduction

Geometric flows such as curve shortening and curvature
flows are used for various fields including CAD [10,11],
CG [1,2] and Computer Vision [6,7]. The curve short-
ening flow successively decreases the total length of a
given curve as its name indicates and the curvature flow
produces gradually smoother approximations of a given
curve by reducing a fairing energy. Recently for curva-
ture flow Crane et al. [1] proposed a very stable and
very fast method to smooth discrete curves and surfaces
by changing variables from vertices’ positions to their
curvatures for reducing fairing energies. They achieved
extraordinary stability even on highly degenerate meshes
and integration time steps orders of magnitude larger
than existing methods.

Log-aesthetic curves include the logarithmic (equian-
gular) spiral, clothoid, and involute curves. Although
most of these are expressed only by an integral form of
the tangent vector, it is possible to interactively generate
and deform them, and they are expected to be utilized in
industrial and graphical design. We think that to make
a curve drawn by a designer aesthetically attractive is an
important research issue because sketches or hand draw-
ings are still a very natural interface for the designer to
transfer his/her ideas on shapes to computers. In this
research, based on the concept of the smoothing by curve
shortening flow and curvature flow, we will propose log-
aesthetic flow to make free-form curves “log-aesthetic.”
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We will discuss smoothing methods that deal with con-
tinuous curves as well as discrete ones.

The rest of the paper is organized as follows. Section 2
reviews the basics of curvature shortening and curvature
flows. Section 3 introduces the main topic of this paper;
log-aesthetic (LA) flow. Sections 4 and 5 discusses the
continuous and discrete types of LA flow, respectively.
Section 6 concludes the paper with a discussion on future
work.

2. Related work

In this section, we discuss related researches on the log-
aesthetic curve, curve shortening and curvature flows [5].

2.1. The log-aesthetic curve

“Aesthetic curves” were proposed by Harada [5] as such
curves whose logarithmic distribution diagram of curva-
ture (LDDC) is approximated by a straight line. Miura
[8] derived analytical solutions of the curves whose log-
arithmic curvature graph (LCG): an analytical version of
the LDDC [5] are strictly given by a straight line and pro-
posed these lines as general equations of aesthetic curves.
Furthermore, Yoshida and Saito [12] analyzed the prop-
erties of the curves expressed by the general equations
and developed a new method to interactively generate
a curve by specifying two end points and the tangent
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vectors there with three control points as well as α: the
slope of the straight line of the LCG. In this research,
we call the curves expressed by the general equations of
aesthetic curves the log-aesthetic curves.

2.1.1. General equations of aesthetic curves
For a given curve, we assume the arc length of the curve
and the radius of curvature are denoted by s and ρ,
respectively. The horizontal axis of the logarithmic curva-
ture graph measures log ρ and the vertical axis measures
log |ds/d log ρ| = log |ρds/dρ|. If the LCG is given by
a straight line, there exists a constant α such that the
following equation is satisfied:

log
∣∣∣∣ρ ds

dρ

∣∣∣∣ = α log ρ + C (2.1)

where C is a constant. The above equation is called the
fundamental equation of aesthetic curves [8]. Rewriting
Eqn. (2.1), we obtain:

1
ρα−1

ds
dρ
= eC = C0 (2.2)

Hence, there is some constant c0 such that:

ρα−1 dρ
ds
= c0 (2.3)

From the above equation,whenα �= 0, the first general
equation of aesthetic curves

ρα = c0s+ c1 (2.4)

is obtained. If α = 0, we obtain the second general
equation of aesthetic curves aesthetic curves

ρ = c0ec1s (2.5)

A curve that satisfies Eqn. (2.4) or Eqn. (2.5) is called
a log-aesthetic curve.

2.1.2. Parametric expressions log-aesthetic curves
In this subsection, we will show parametric expressions
of the log-aesthetic curves.

We assume that a curve C(s) satisfies Eqn. (2.4).
Then

ρ(s) = (c0s+ c1)
1
α (2.6)

As S is the arc length, |dC(s)/ds| = 1 (for example,
refer to [5]) and there exists θ(s) satisfying the following

two equations:

dx
ds
= cos θ ,

dy
ds
= sin θ (2.7)

Since ρ = dθ/ds,

dθ
ds
= (c0s+ c1)−

1
α (2.8)

If α �= 1,

θ = α(c0s+ c1)
α−1
α

(α − 1)c0
+ c2 (2.9)

If the start point of the curve is given by P0 = C(0),

C(s) = P0 + eic2
s∫

0

ei
α(c0u+c1)

α−1
α

(α−1)c0 du (2.10)

For the second general equation of aesthetic curves
expressed by Eqn. (2.9),

dθ
ds
= 1

c0
e−c1s (2.11)

θ = − 1
c0c1

e−c1s + c2 (2.12)

Therefore the curve is given by

C(s) = P0 + eic2
s∫

0

e−
1

c0c1
e−c1udu = πr2 (2.13)

2.2. Curve shortening flow and curvature flow

Wedeal with a curveC(p, t) defined by parameter p (0 ≤
p ≤ 1) which deformswith time t.We assume that that its
total length is a function of t and express it as L(t). Then

L(t) =
1∫

0

∥∥∥∥∂C
∂p

∥∥∥∥ dp (2.14)

where ‖v‖means the norm of vector v. By differentiating
the above equation with respect to t, we obtain

L′(t) =
∫ 1

0

〈
∂C
∂p ,

∂2C
∂p∂t

〉
∥∥∥ ∂C

∂p

∥∥∥ dp (2.15)

where a, bmeans the inner product of two vectors a and
b. By performing partial integration to Eqn. (2.15),

L′(t) =
⎡⎣

〈
∂C
∂p ,

∂C
∂t

〉
∥∥∥ ∂C

∂p

∥∥∥
⎤⎦1

0

−
1∫

0

〈
∂C
∂t

,
∂

∂p

⎡⎣ ∂C
∂p∥∥∥ ∂C
∂p

∥∥∥
⎤⎦〉

dp

(2.16)
We assume that both of the end point positions of the

curve are fixed with respect to time, i.e. ∂C(0, t)/∂t =
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∂C(1, t)/∂t = 0. Then

L
′(t) = −

L(t)∫
0

〈
∂C
∂t

, κN
〉
ds (2.17)

where s is an arc length and it is given by ds =
‖∂C/∂p‖dp. κ and N are the curvature and the nor-
mal vector, respectively and they are defined by κN =
∂2C/∂s2. Hence when

∂C
∂t
= κN, (2.18)

then L(t) will decrease the most quickly. This flow is
called curve shortening flow.

Here we define the curve’s energy as E(t) =
L(t)∫
0

κ2ds.

Then

E′(t) = 2

L(t)∫
0

κ
∂κ

∂t
ds, (2.19)

Therefore E(t) will decrease the most rapidly when
∂κ/∂t = −2κ . This flow also deforms the shape of the
curve using curvature and it is called curvature flow.

3. Log-aesthetic flow

In this sectionwe propose two types of log-aesthetic flow:
length-based and energy-based.

3.1. Arc-length functional of the log-aesthetic curve
in aesthetic space

The functional of the log-aesthetic curve which satisfies
σ = ρα = cs+ d is given by the following expression [9]:

J(t) =
L∫

0

√
1+ σ 2

s ds. (3.1)

Hence

J′(t) =
L∫

0

(1+ σ 2
s )−

1
2 σsσstds =

[
(1+ σ 2

s )
− 1

2 σsσt

]L
0

−
L∫

0

σss

(1+ σ 2
s )

3
2
σtds (3.2)

We assume that both of the curvatures at the end
points are fixed with respect to time, i.e. ∂σ(0, t)/∂t =

∂σ(L, t)/∂t = 0. Then

J′(t) = −
L∫

0

σss

(1+ σ 2
s )

3
2
σtds (3.3)

Then J(t) will decrease the most rapidly when

σt = σss

(1+ σ 2
s )

3
2

(3.4)

In this paper we call this type of the flow length-based
log-aesthetic flow.

3.2. Energy functional of the log-aesthetic curve in
aesthetic space

It is known that the problem to minimize the length of a
curve is equivalent to that tominimize its energy [3]. The
energy of the log-aesthetic curve corresponding to Eqn.
(3.1) [9] is given by

JE(t) = 1
2

L∫
0

(1+ σ 2
s )ds. (3.5)

From the above equation and the assumption that
∂σ(0, t)/∂t = ∂σ(L, t)/∂t = 0, we obtain

J′E(t) = −
L∫

0

σssσtds. (3.6)

Therefore JE(t) will decrease the most rapidly when

σt = σss. (3.7)

The above equation approximates Eqn. (3.4) and we
call this type of the flow energy-based log-aesthetic flow.

4. Continuous log-aesthetic flow

The heat conduction equation in one dimension is gen-
erally given by the following equations [4]:

∂u
∂t
= a

∂2u
∂s2

, 0 < s < L, 0 < t (4.1)

where u is an unknown function representing tempera-
ture and s is a parameter representing position. a > 0 and
a is called thermal conductivity. L is the total length of
the object to be analyzed. Hence Eqn. (4.1) can be inter-
preted as a heat conduction equation with a = 1 on σ =
ρα = κ−α of a curve and we can describe the change of
curvature, i.e. the deformation of the curve as the temper-
ature change by heat conduction. This factmeans that the
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energy-based log-aesthetic flow basically behaves as heat
conduction and by solving the heat conduction equations
we can obtain the shape of the curve deformed continu-
ously by log-aesthetic flow. We will discuss how to solve
Eqn. (4.1) under various conditions below.

4.1. In case where κ=0 at both of the end points

Here we assume that α = −1 and Eqn. (4.1) becomes

κt = κss. (4.2)

Furthermore we assume that the curvatures at both of
the end points of the curve are equal to 0 and the total
length of the curve is L. The initial and boundary condi-
tions are given by κ(s, 0) = f (s) and κ(0, t) = κ(L, t) =
0, respectively. We assume that a solution κ(s, t) is the
product of S(s) of only parameter s and T(t) of only
parameter t as

κ(s, t) = S(s)T(t). (4.3)

From the above discussion and the principle of super-
position, the general solution κ(s, 0) is given by

κ(s, t) =
∞∑

m=1
am sin

(mπ

L
s
)
exp

(
−m

2π2

L2
t
)

(4.4)

Therefore am is given by

am = 2
L∫

0

sin
(mπ

L
s
)
f (s)ds, m = 1, 2, · · · (4.5)

For example, when L = 1 and f (s) = sin(πs), from
Eqn. (4.5)

am =
{
1, m = 0
0, m > 1

(4.6)

and

κ(s, t) = sin(πs)exp(−π2t) (4.7)

Hence as t approaches infinity, κ(s)→ 0 and the curve
converges to a straight line.

4.2. In case where κ �=0 at the end points:
inhomogeneous boundary conditions

Again we assume that α = −1 and the curvatures of the
end points of the curves are fixed κ0 and κ1, respectively.
We define a function γ (s, t)whose curvatures of the end

points are equal to be 0 as follows:

γ (s, t) = κ(s, t)− 1
L
(κ0(L− s)+ κ1s) (4.8)

Using Eqn. (4.4), the following general equation is
obtained:

γ (s, t) =
∞∑

m=1
am sin

(mπ

L
s
)
exp

(
−m

2π2

L2
t
)

(4.9)

Therefore

κ(s, t) = γ (s, t)+ 1
L
(κ0(L− s)+ κ1s)

=
∞∑

m=1
am sin

(mπ

L
s
)
exp

(
−m

2π2

L2
t
)

+ 1
L
(κ0(L− s)+ κ1s) (4.10)

As t approaches infinity, κ(s)→ (κ0(L− s)+ κ1s)/L,
the curvature of the curve is given by a linear function of s
and the curve converges to a clothoid curve. For example,
when L = 1, f (s) = sin(πs), κ0 = 1, and κ1 = 0, from
Eqn. (4.4),

am =
{
1, m = 0
0, m > 1

(4.11)

and

κ(s, t) = sin(πs)exp(−π2t)+ 1− s (4.12)

Fig. 1. shows curvature distributions and the shapes
of the curves deformed by log-aesthetic flow. Hence as
t approaches infinity, κ(s)→ 0 and the curve converges
to a straight line. The right figure shows curves that are
modified to pass through the given end points of the ini-
tial curve by iterative processes by shortening the curve
gradually to satisfy the given curvatures. During the iter-
ative processes, the curve must be rotated about the start
point to satisfy the end point condition. If the distance
between the start and end points of the curve is shorter
than the specified distance, the length of the curve is
increased. Otherwise it is decreased. Our method can
generate a curve between given two points and two end
curvatures.

4.3. Closed curve case

Here we also assume that α = −1. We define a function
γ (s, t) whose curvatures of the start and end points are
always equal as follows:

κ(0, t) = κ(L, t) (4.13)

since the curve is closed. In the above equation L is the
total length of the curve. The initial condition is given by
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Figure 1. Curvature distributions and their curve shapes deformed by log-aesthetic flow.

κ(s, 0) = f (s) assuming that f (0) = f (L). The following
general equation is obtained:

κ(s, t) =
∞∑

m=1

(
am sin

(mπ

L
s
)
+ bm cos

(mπ

L
s
))

× exp
(
−m

2π2

L2
t
)

(4.14)

where

am = 2
L∫

0

sin
(mπ

L
s
)
f (s)ds,

bm = 2
L∫

0

cos
(mπ

L
s
)
f (s)ds, m = 0, 1, 2, · · ·

(4.15)

As t approaches infinity, the curvature of the curve
becomes constant everywhere and the curve converges to
a circle whose radius is the average value of f (s).

4.4. General α case

We deal with the following problem: Assume that the
total length of the curve is L and the initial condition

is κ(s, 0) = f (s). Furthermore the curvatures of the end
points of the curves are fixed κ0 and κ1, respectively. Then

∂σ

∂t
= ∂2σ

∂s2
, 0 < s < L, 0 < t, σ(s, 0) = f (s)−α ,

σ(0, t) = κ−α
0 , σ(L, t) = κ−α

1 . (4.16)

By solving the above partial differential equation,
σ(s, t) is obtained and κ(s, t)= σ(s, t)−

1
α is deter-

mined. For example, when α = −1/2, L = 1, f (s) =
sin2(πs), κ0 = 1, and κ1 = 0, from Eqn. (4.12),

σ(s, t) = sin(πs)exp(−π2t)+ 1− s (4.17)

So the curvature κ(s, t) is given by

κ(s, t) = {sin(πs)exp(−π2t)+ 1− s}2 (4.18)

Fig. 2 shows the curvature distributions of the
deformed curves the shapes of the curves deformed by
log-aesthetic flow.

5. Discrete log-aesthetic flow

In this section we discuss smoothing of discretely defined
free-form curves, or polylines. Based on the log-aesthetic

Figure 2. Curvature distributions and their curve shapes deformed by log-aesthetic flow.



232 KENJIRO T. MIURA ET AL.

flow based on the energy, we update the positions of the
vertices of a polyline by the discretized partial differential
equation derived from Eqn. (4.1). In this section we deal
with the closed curve case as Crane et al. [1]. For a given
closed sequence of points, the processes are summarized
as follows:

Step 1. Evaluate curvature discretely using three con-
secutive points. The discrete curvature can be evaluated
by

κi = 2θi
li−1,i + li,i+1

. (5.1)

where κi is a pointwise curvature at point fi, θi is an
angle between two consecutive edges, and li,i+1 is a length
between fi and fi+1 as shown in 3(a).

Step 2. Calculate a time derivative by κ̇i = −2κi.
Step 3. Build a constraint basis {̂ci} via the Gram-

Schmidt orthonormalization.
Step 4. Project flow onto constraints κ̇i← κ̇i −

∑
i
	

κ̇i, ĉi 
 ĉi where double brackets	 ·, · 
 denotes the
inner product.

Step 5. Take an explicit Euler step as κi← κi + τκi.
Step 6. Recover tangents by integrating κi.
Step 7. Recover positions by solving a Laplacian

equation �f = ∇ · T

Fig. 3(b). and (c). show the curvature and second
derivative of curvature with respect to the arc length of
an ellipse (x/2)2 + y2 = 1, respectively. The curvature of
the ellipse expressed by (a cos θ , b sin θ) is given by

κ = ab

(a2 sin2 θ + b2 cos2 θ)
3
2

(5.2)

They indicate that log-aesthetic flow will reduce max-
imum curvature strongly and also try to increase cur-
vature of the parts next to those of the maximum cur-
vature. Fig. 4(a). shows the deformation processes of an
ellipse by curvature and log-aesthetic flows. The curva-
ture flow rapidly deforms the ellipse to a circle, but the
log-aesthetic flow tries to keep its shape by increasing
curvature of the parts next to those of the maximum
curvature although it reduces the maximum curvature.
Although the curve converges more quickly by curvature
flow than by log-aesthetic flow, their final shapes are the
same: a circle.

Fig. 4(b). shows a comparison between curvature flow
and log-aesthetic flow applied to a more complicated
shape. The final shapes are also circles in this case. If
we interpret that the curve deformation is induced by
log-aesthetic flow by heat conduction, the result is very
natural because if we have a circular metal rod and keep

Figure 3. Point sequence and curvature: (a) point sequence, (b) curvature of an ellipse, (c) second derivative of curvature shown in (a).

curvature flow

log-aesthetic flow log-aesthetic flow

curvature flow

(a) Ellipse deformation (b) A dog example

Figure 4. Smoothing shapes by curvature flow and log-aesthetic flow.



COMPUTER-AIDED DESIGN & APPLICATIONS 233

one point of the rod at some temperature, the heat is con-
ducted all over the rod and the temperature will be the
same everywhere.

6. Conclusions and future work

In this research, we have proposed the concept of log-
aesthetic flow to make free-form curves “log-aesthetic”
based on curve shortening flow and curvature flow.
We have proposed new smoothing methods that can
handle analytically defined continuous curves as well
as discrete polylines. Smoothing by curvature flow is
very popular among CG and CAD communities and
log-aesthetic flow will be another choice for smoothing
based on a physical law different from that of curva-
ture flow. We have one degree of freedom α to con-
trol smoothing for log-aesthetic flow and can expect
the completely smoothed shape of a given curve, which
means the shape obtained by fairing, to be log-aesthetic
curve. Since log-aesthetic flow is basically governed by
the heat conduction equation, which has been well stud-
ied in both physics and mechanical engineering, its
effects are easily inferred by the designers and we hope
that it will be useful for practical aesthetic design. For
future work, we would like to extend our method based
on log-aesthetic flow for space curves and free-form
surfaces.
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