
COMPUTER-AIDED DESIGN & APPLICATIONS, 2017
VOL. 14, NO. 2, 234–241
http://dx.doi.org/10.1080/16864360.2016.1223440

GPU accelerated CAD to inspection data deviation colormap generation

Venu Kurella a, Bob Stone b and Allan Spence a

aMcMaster University; bOrigin International Inc.

ABSTRACT
Inspection of stamped sheet metal parts can require CAD to inspection data comparison rates
exceeding 1 million points per second. With current serial CPU algorithms, comparing the nominal
CAD to the digitizer data can take several minutes. The thousands of cores available with Graphical
Processing Units (GPUs) therefore offer an attractive alternative. This paper describes GPU acceler-
ated algorithms andmemorymanagement optimization for both point-facet and facet-facet CAD to
inspection point cloud data deviation colormap generation. Computation time reduction from over
4 minutes to 2 seconds – a speed-up of 124X – was achieved. In collaboration with an industry part-
ner, the result is implemented as a practical Windows compatible DLL that can be deployed to the
factory floor.

KEYWORDS
Graphical processing unit;
parallel computing; point
clouds; deviation map

1. Introduction

Sheetmetal stamping production rates approach one part
every second [4, 5]. With increasing demand that com-
prehensive geometric quality conformance information
be approved by final assembly plant management prior
to shipment, the associated digitizing analysis of millions
of points requires extremely fast algorithms. For exam-
ple, an industrial blue LED snapshot sensor can acquire
1 million points per second. At a 0.1mm nominal point
spacing, for even small part areas,manymillions of points
need to be registered with the 3D coordinate system of
the CAD nominal surfaces. The memory and computing
power needed to perform this analysis at part production
rates far exceeds the capacity of the conventional personal
microcomputer CPUs. This paper investigates the alter-
native of using massively parallel Graphical Processing
Unit (GPU) hardware.

Use of this hardware exploits the parallel GPU
architecture to accelerate data intensive computations.
Designed for high graphics intensity CAD and gaming,
a GPU has a complex memory and processing architec-
ture. Hence effective programming resource allocation
and utilization is much more complex. Therefore, exist-
ing serial algorithms, which were not intended to run
on a GPU, must be extensively rewritten. Compared to
visually appealing but approximate gaming applications,

CONTACT Allan Spence adspence@mcmaster.ca

dimensional metrology applications require that high
accuracy be maintained throughout.

Early GPU computing required researchers to mask
arithmetic operations as graphical tasks to perform com-
putations on CAD parts [13] or tool paths [3]. The
NVIDIACUDA programming language [17] revolution-
ized GPU computing. It led to applications such as ren-
dering [7], filtering [8] and collision detection [14]. Sheet
metal strain measurement was reported by Kinsner et al.
[10]. Other computational applications such as distance
queries between NURBS surfaces [12] and feature-fitting
of geometric primitives [16], showed respectively 300X
and 18X speed-up.While 2.5X - 1000X speed-up achieve-
ments are reported in literature [11], 20-30X is consid-
ered worthwhile. Erdos et al. [6] suggest GPU computing
for fast mapping of CAD with point cloud data. Itera-
tive Closest Point (ICP) like registration methods [1, 2]
have already been implemented on GPUs [15]. The sub-
sequent brute force facet-by-facet deviation estimation of
the registered data is very computationally intensive. In
this work, we investigated speed-up of point-facetmatch-
ing (PFM) and facet-facet matching (FFM) algorithms
that estimate deviations and report themas informational
colormaps. A similar smallest sphere distance finding
algorithm showed 5X speed-up with naïve GPU imple-
mentation [9]. We show that, using a Tesla K40 GPU,

© 2016 CAD Solutions, LLC, http://www.cadanda.com

http://www.cadanda.com/
http://www.tandfonline.com
http://orcid.org/0000-0003-3547-7266
http://orcid.org/0000-0002-6917-969X
http://orcid.org/0000-0002-6835-6498
mailto:adspence@mcmaster.ca
http://www.cadanda.com

COMPUTER-AIDED DESIGN & APPLICATIONS 235

careful algorithm optimization and advanced memory
management delivers an impressive 124X speed-up.

2. Algorithm challenges and solutions

PFM and FFM both accept facetted CAD model data as
input. Actual part data from scanners is provided as facets
(for FFM) and points (for PFM). Output is the average
(or first for FFM) deviation between a model facet and
its matching actual points (or facet for FFM) displayed as
a colormap. Details of the computations that take place
on every model facet in the matching algorithms are dis-
cussed in Table 1. The registration algorithm is based
on the well-known ICP [1] method. The transformation
matrix is initiated by manual matching of a few widely
separated points chosen from both the digitizer and facet
data. Because of the expected high number of digitizer
points as compared to the size of theCAD facets, the algo-
rithms begin by transforming the facets into the digitizer
part coordinate system. This is followed by binary search
of digitizer points/facets to find the actual point/facet, j,
nearest to the CAD facet. The final step is a refined search
using matching parameters, in the neighborhood of j, to
find matches whose deviation is within a given thresh-
old. The first /average of the deviations is calculated and
reported as color map. As originally implemented, both
the binary and neighborhood search algorithms are intri-
cate and time consuming due to loops, branches and
manymemory and function calls. The complexity isO (m
* log (n)) wherem and n are the number of model facets
and actual points/facets respectively. Actual facets/points
are sorted based on their distances from origin, thus,
facilitating binary search which takes O (log n) time.
Since the refinedmatches (if any) are found in close vicin-
ity of the binary search result, the overall computational
time of the algorithm per model facet remains O (log n).

2.1. Challenges

The existing serial inspired methods face GPU chal-
lenges in both algorithm and memory implementation.

Conditional tests and branches (Figure 1(a)) exhibit poor
instruction level parallelism (ILP). To address this, filter-
ing flags were used within the GPU algorithm to bundle
tests into a single branch (Figure 1(b)). As an example, a
snippet of the facet-facetmatching algorithm is discussed
below.

Computation 1: Z distance between CAD facet and
inspection facet
Filtering Condition 1: Is distance less than threshold

Computation 2: Dot product of normal vectors of CAD
facet and inspection facet
Filtering Condition 2: Dot product > 0 (normal

directions within 90 degrees)
Critical Condition 1: Does model facet normal

intersect the actual facet (this condition is
critical as further calculations cannot proceed
without the point of intersection)

Computation 3: Euclidean distance between the center of
the actual facet and the point of intersection

Data structures were simplified andmatching parameters
were bundled for continuous memory accesses.

2.2. Experimental set-up

For industrial acceptance the research described herein
was implemented using anHP Z440 desktop engineering
workstation, equipped with Intel Xeon E5 processor and
16 GB RAM. The added NVIDIA Tesla K40 GPU card
has 2880 CUDA cores and 12GB DDR5 RAM. The GPU
algorithms were integrated as a Dynamic Link Library
(DLL) with the Origin International CheckMate software
(www.originintl.com) added to Autodesk Mechanical
Desktop, running under Microsoft Windows 7. Results
from a single core of the Intel CPU were compared with
NVIDIA Tesla 2880 core K40. Programming was done in
Visual Studio 2013 with NVIDIA Nsight 4.1 and CUDA
6.5. Scanned part data is provided as input, and a CAD
model of the part was used to generate the facets. Itera-
tions produce colormap deviation values of every model
facet. The maximum facet edge length parameter was

Table 1. PFMand FFMmatching algorithms. Here actualmeans actual facet and actual point for FFMand PFM respectively.Modelmeans
model facet. Vicinity is a fixed distance parameter.

Step FFM PFM

1 Transform model to actual
2 Binary search Find the closest actual based on its distance from origin

For all actuals in the vicinity of the closest actual
3 Refined tests Is the actual’s location and orientation close to that of themodel?
4 If refined tests passed Does themodel normal pierce the actual? Estimate the projected distance between themodel and the actual
5 Is the distance less than Deviation threshold model radius

6 If false Move to the neighboring actual in the vicinity and go to step 3
7 Exit when First deviation found Average of all the deviations found

236 V. KURELLA ET AL.

Filtering
Condition 1

Computation 1

(a)

(b)

True

False

Filtering
Condition 2

Computation 2

True

False

Critical
Condition 1

True

False

Computation 3

for every facet j

Filtering
Conditions 1,2

Computations 1,2

True

False

Critical
Condition 1

True

False

Computation 3

for every facet j

Figure 1. Instruction Level Parallelism (ILP) for FFM: (a) CPU branches in neighborhood search with filtering and critical conditions, and
(b) Improving ILP on the GPU by bundling conditions.

varied to get three model data sets as described below.
Each of the timing results are averaged over 100 trials
with the speed-up (s-u) calculated as below:

speed-up(s-u) = time taken by the CPU
time taken by the GPU

3. Point-facet matching

3.1. Initial experiments and results

For PFM, scanned part data (Figure 2(a)) input contains
424307 points. Each sample point includes the direction
to the scanner to get an approximate local part orienta-
tion. Since this information is not as strong as the direc-
tion of surface normal at that point, the neighborhood
search in PFM finds all possible close matches within a
given threshold. The result is the average of the deviation

of the model facet with each of the matched actual points
(Figure 2(b)). Three sets of test data were generated using
model facet sizes (with maximum facet edge lengths) of
2mm, 1mm and 0.5mm leading to 0.1 Million, 0.3 M
and 1 M model facets respectively. After improving ILP,
experiments on the K40 GPU achieved speed-ups of 8X,
22X and 46X. Performance analysis was conducted to
understand the bottlenecks and to investigate the scope
of further acceleration.

3.2. Performance analysis

To understand the bottlenecks in the naïve GPU imple-
mentation, performance was analyzed using theNVIDIA
Nsight tool in Visual Studio. GPU multiprocessors exe-
cute the computational instructions as sets of 32 threads
called warps. On every multiprocessor, only a few of the
active warps are eligible for execution. Profiling showed

COMPUTER-AIDED DESIGN & APPLICATIONS 237

Figure 2. Point-Facet Matching: (a) Actual part, and (b) Points fit to its model to produce a colormap of average deviations.

that, at any given instance, active warps were stalled, i.e.
not eligible to move to the next instruction, due to the
following reasons (Figure 3):

• Memory throttle: It occurs when there are large num-
ber of pending memory operations.

• Memory dependency: When load and store cannot
happen because resources are unavailable or are being
completely utilized.

• Pipe busy: It means that the load/store and arithmetic
pipelines are not available for computations.

• Execution dependency: This is because input for an
instruction is not available.

Hence the existing algorithm structure does not
use the GPU cores effectively. The algorithm is made

up of global memory accesses and arithmetic opera-
tions. A global memory access is more time consum-
ing (200–800 clock cycles) than an arithmetic opera-
tion (1–8 clock cycles). The CUDA programming model
relies on efficiently scheduling these two components
to hide the latency and achieve performance. The high
number of cores in the K40 can only speed-up compu-
tations. As first implemented, before a memory access
is completed either the computation is already over
or a conditional branch is encountered. No speed-up
was observed because there is not enough computa-
tion between the (many) memory accesses to hide the
latency. As seen from the causes (Figure 3), memory
throttle and dependencies are the leading causes. The
high utilization of the memory resources is keeping the
pipeline busy. Common approaches to tackle these issues

Figure 3. Results of performance analysis showing the warp stall reasons.

238 V. KURELLA ET AL.

are bundling the memory operations, lowering mem-
ory access times, increasing ILP and allowing contiguous
memory accesses. Hence to improve the performance,
either the algorithm parallelism has to be increased (such
as by complete looping), or the memory accesses times
have to be lowered (such as using texture memory). The
potential of these improvements is explored below.

3.3. Complete looping

A simple way to achieve near-perfect parallelism is to
eliminate branching and loop over all points, instead of
a specific neighborhood (Table 1). This change:

• eliminates the non-contiguous memory accesses of
the binary search

• removes branching in the neighborhood search

Naïve implementation of the complete looping
decreased the performance (10–70%). This is because
looping over all of the points results in more total mem-
ory accesses. In attempts to overcome the drawback,
use of shared and texture memories was attempted to
share information of memory reads between the threads.
But they could not help as the cache/memory sizes
(8 KB/48KB) of texture/shared memories are very small
compared to actual point data size (∼3MB). Due to
these reasons, the complete looping approach failed to
improve speed-up. Therefore, as discussed in the next
section, attempts were made to lower memory access
times using texture memory (Table 2).

3.4. Texturememory

Overall memory access time can be lowered by re-using
information. With binary and neighborhood searches,
the search range is different for each facet/thread, so

Table 2. Performance parameters before and after imple-
mentation of texture memory.

Naïve
With texture
memory

Warp occupancy 5.17% 20.03%
GFLOP/s 26.09 99.64
Instructions per clock executed (in a
GPU streaming multiprocessor)

0.14 0.66

shared memory cannot facilitate efficient re-use of infor-
mation. Texture memory, an unconventional read-only
graphics memory, is located off-chip with up to 8MB
capacity. Although located on global memory, it has an
8KB on-chip cache making it ideal to store small, but
frequently used information. Neighboring facets share
at least part of the search ranges thus exploiting texture
cache. Its implementation takes additional work on the
CPU side as textures support only basic data types. Tex-
ture memory produced excellent results as evident from
the significant improvement in performance parameters
shown in Table 2. The results discussed in the next sub-
section show fraction-of-a-second computation times for
two of the three cases.

3.5. Results

The computation times and speed-ups are summarized
in Table 3. While naïve usage of memory, itself, showed
an impressive 46X speed-up, texture memory further
boosted it to 124X. It can be noticed that the 0.3M
facets case takes time less than the 0.1M case. This is
likely because as the number of model facets gets close to
the actual facets number (∼0.4M), fewer texture cache
misses occur leading to a higher speed. A practical col-
ormap resolution is achieved when the number of CAD
facets is nearly the same as the number of cloud points.

4. Facet-facet matching

4.1. Setup

The part used for performing FFM experiments is shown
in Figure 4. Its actual part data contains 702429 facets
each storing its normal direction.Unlike PFMwhere only
the point and scanning direction is available, here the
facet and normal information can be used to find a tighter
match using various position and orientation tests. Once
a match is found, the neighborhood search exits return-
ing the deviation. This means for everymodel facet, FFM
can find deviation sooner than PFM.While this might be
computationally faster, it should be noted that such actual
part facet data can only be obtained by rigorous and time
consuming pre-processing of raw noisy point clouds data
from scanners.

Table 3. Point-Facet Matching: Computation time (seconds) and speed-up (s-u) of Tesla K40.

NVIDIA Tesla K40
Intel Xeon E5
single core Naïve memory With texture

Number of model
facets

Max. facet edge
length (mm) Time Time s-u Time s-u

103,966 (∼ 0.1 M) 2.000 22.6291 2.827 8 0.964 23
345,592 (∼ 0.3 M) 1.000 75.1014 3.347 22 0.883 85
1,188,408 (∼ 1 M) 0.500 259.126 5.676 46 2.098 124

COMPUTER-AIDED DESIGN & APPLICATIONS 239

(a) (b) (c)

Figure 4. Facet-facet matching: (a) Model, (b) Actual data, and (c) Colormap.

Table 4. Facet-Facet Matching: Computation time (seconds) and speed-up (s-u) of Tesla K40.

NVIDIA Tesla K40
Intel Xeon E5 CPU

single core Naïve memory With texture
Number of model
facets

Max. facet edge
length (mm) Time Time s-u Time s-u

89,850 (∼ 0.1 M) 0.157 13.596 1.876 7 1.154 12
322,010 (∼ 0.3 M) 0.078 49.929 3.151 16 1.993 25
1,147,568 (∼ 1 M) 0.039 174.558 7.381 24 6.343 28

4.2. Results

As with PFM, the maximum facet edge length param-
eter of the part CAD model (Figure 4(a)) was varied
to generate three testing data sets. Preliminary experi-
ments on FFM showed an impressive 7X, 16X and 24X
accelerations for the three datasets respectively (Table 4).
Learning from PFM, texture memory implementation is
madewithout attempting complete looping. This boosted
the speed-ups further to 12X, 25X and 28X respectively
(Table 4). For example, looking at the 1 million facets
case, FFM that would take about 3 minutes on the CPU
can be completed in about 6 seconds using the K40 GPU.

It can be seen that the final speed-ups are lower than
those observed for point-facet matching. This is because
FFM algorithm has more branches and function calls.
There is also at least twice as much work on the CPU
side during copying data to basic texture data types e.g.
facet vertex location data is needed for FFMbut not PFM.
Hence PFM is more parallelizable than FFM on the GPU.

5. Analysis and conclusions

5.1. Consistency check

Experiments were conducted to check the consistency of
the GPU results with time. PFM and FFM were iterated
100 times on the GPU, resetting after each iteration. The

three facet sizes were studied and iterations output devia-
tion values of everymodel facet.Maximumabsolute error
over the iterations is estimated. Sample maximum abso-
lute error distribution for the 1 M facet case in PFM is
shown in Figure 5. In all the three facet experiments,
it was found to be of the order of 1E-6 for both PFM
and FFM. Since the input variables are declared as single
precision floats (6 significant digits), this is reasonable.

5.2. CPU-GPU result comparison

The deviation results of PFM and FFM algorithms from
the GPU and the CPU were also compared. Maximum
absolute differences for each of the three test datasets
are presented in Table 5. The differences for PFM are
within the limits of single floating point precision. The
gap in facet-facet matching cases is relatively high – likely
because it uses more precision sensitive tests compared
to point-facet matching and does not average deviations.
Results are especially affected when the precision sensi-
tive tests match poorly oriented actual and model facets,
for example those on the corners of the geometry. Figure
6 shows the absolute difference on log scale for 0.3 M
dataset in FFM. Other causes for the differences could
be different rounding methods and order of the steps of
computation executed by the CPU and theGPU. As it can
be seen from the plot, there is a drift in the differences,

240 V. KURELLA ET AL.

0 2 4 6 8 10 12

facet index 105

0

1

2

3

4

5

6

7

8

ab
so

lu
te

 e
rr

or

10-6

Figure 5. Consistency of PFM deviation results over 100 iterations for the 1 Mmodel facet dataset.

Table 5. Maximum absolute differences of deviation results from the CPU and the GPU.

model facets 0.1 M 0.3 M 1 M

Order of maximum absolute error Facet-Facet Matching 1E−3 1E−4 Twomismatches. remainder 1E−3
Point-Facet Matching 1E−6 1E−6 1E−6

-10

-9

-8

-7

-6

-5

-4

-3

ab
so

lu
te

 e
rr

or
 o

n
lo

g
sc

al
e

0 0.5 1 1.5 2 2.5 3 3.5

facet index × 105

Figure 6. Absolute differences between the CPU and GPU deviation results for 0.3 Mmodel facet dataset in FFM.

with values increasing with facet index. This is because
the actual facets are ordered with respect to their dis-
tance from the origin. Points nearer the origin are stored
with more precision than those farther from the origin
resulting in the drift.

5.3. Industry software implementation

The research was motivated by a collaboration initiative
involving Origin International Inc. to improve the speed
of their CheckMate measurement analysis software. The

existing CPUmethod, initially developed for a low num-
ber of touch probe data points, was impractical for the
large point clouds measured with non-contact digitiz-
ers. Accordingly, the implementation was realized using
a Windows DLL that provided a bridge between the pro-
prietary CheckMate source code and the newly devel-
oped parallel GPU code. Origin provided agreed upon
function call interfaces that could switch between exist-
ing serial CPU and the newly developed parallel GPU
algorithms. This approach offers a win-win university-
industry collaboration.

COMPUTER-AIDED DESIGN & APPLICATIONS 241

5.4. Conclusion

In conclusion, this work demonstrates the feasibility and
the method of accelerating point-facet and facet-facet
matching of a dense and complex data, including col-
ormap generation. It delivers the product as a practi-
cal and industrially applicable library compatible with
Microsoft Windows.

5.5. Future work

Future work will focus on estimating normal vectors
for the point cloud data obtained from the multi-
sensor inspection system discussed in previous work
[18], and the subsequent estimation of deviations using
the algorithm discussed in this paper. The normal direc-
tions used in point-facet matching denote the direction
of scanning.

Acknowledgements

This work was financially supported by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
through the Canadian Network for Research and Innovation in
Machining Technology (CANRIMT) and a Discovery Grant.
Additional funding support was provided by Origin Interna-
tional Inc. (Markham, ON, Canada) and anNVIDIAHardware
Grant.

ORCID
Venu Kurella http://orcid.org/0000-0003-3547-7266
Bob Stone http://orcid.org/0000-0002-6917-969X
Allan Spence http://orcid.org/0000-0002-6835-6498

References

[1] Besl, P.J.; McKay, Neil D.: A method for registration of
3-D shapes, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14(2), 1992, 239–256. http://dx.
doi.org/10.1109/34.121791

[2] Bosché, F.: Automated recognition of 3D CAD model
objects in laser scans and calculation of as-built dimen-
sions for dimensional compliance control in construction,
AdvancedEngineering Informatics, 24(1), 2010, 107–118.
http://dx.doi.org/10.1016/j.aei.2009.08.006

[3] Carter, J. A.; Tucker, T. M.; Kurfess, T. R.: 3-Axis CNC
path planning using depth buffer and fragment shader,
Computer-Aided Design and Applications, 5, 2008,
612–621. http://dx.doi.org/10.3722/cadaps.2008.612-621

[4] Dolcemascolo, Darren: Improving the Extended Value
Stream: Lean for the Entire Supply Chain, Productivity
Press, New York, NY, 2006, ISBN-13 978-1-56327-333-9.

[5] Dallan, Andrea: Punching and stamping:How to compare
production cost, Technical Report, Dallan Rollformers
and Systems, 2005. http://www.dallan.com/assets/allegati/
pdf/punching-and-stamping.pdf

[6] Erdos, G.; Nakano, T.; Vancza, J.: Adapting CAD
models of complex engineering objects to measured
point cloud data, CIRP Annals, 63(1), 2014, 157–160.
http://dx.doi.org/10.1016/j.cirp.2014.03.090

[7] Gunther, C.; Kanzok, T.; Linsen, L.; Rosenthal, P.: A
GPGPU-based pipeline for accelerated rendering of point
clouds, Journal of WSCG, 21, 2013, 153–161.

[8] Hu, X.; Li, X.; Zhang, Y.: Fast filtering of LiDAR point
cloud in urban areas based on scan line segmentation
and GPU acceleration, IEEE Geoscience and Remote
Sensing Letters, 10(2), 2013, 308–312. http://dx.doi.org/
10.1109/LGRS.2012.2205130

[9] Inui, M.; Umezu, N.; Shimane, R.: Shrinking sphere:
A parallel algorithm for computing the thickness of
3D objects, Computer-Aided Design and Applications,
4360(December), 2015, 1–9. http://dx.doi.org/10.1080/
16864360.2015.108418

[10] Kinsner, M.; Spence, A.; Capson, D.: GPU acceler-
ated sheet forming grid measurement, Computer-Aided
Design and Applications, 7(5), 2010, 675–684. http://dx.
doi.org/10.3722/cadaps.2010.675-684

[11] Kinsner, M.: Close-range machine vision for gridded sur-
face measurement, Ph.D. Thesis, McMaster University,
Hamilton, Canada, 2011. http://hdl.handle.net/11375/
11075

[12] Krishnamurthy, A.; McMains, S.; Haller, K.: GPU-
accelerated minimum distance and clearance queries,
IEEETransactions onVisualization andComputerGraph-
ics, 17(6), 2011, 729–742.

[13] Kurfess, T. R.; Tucker, T. M.; Aravalli, K.; Meghashyam, P.
M.: GPU for CAD, Computer-Aided Design and Appli-
cations, 4(1–6), 2007, 853–862. http://dx.doi.org/10.1080/
16864360.2007.10738517

[14] Lee, R. S.; Ren, M. K.: Development of virtual machine
tool for simulation and evaluation, Computer-Aided
Design and Applications, 8(6), 2011, 849–858. http://dx.
doi.org/10.3722/cadaps.2011.849-85

[15] Park, S.-Y.; Choi, S.-I.; Kim, J.; Chae, J. S.: Real-time
3D registration using GPU, Machine Vision and Appli-
cations, 22(5), 2011, 837–850. http://dx.doi.org/10.1007/
s00138-010-0282-z

[16] Ram, M. P. M.; Kurfess, T. R.; Tucker, T. M.: Least-
squares fitting of analytic primitives on a GPU, Journal of
Manufacturing Systems, 27(3), 2008, 130–135. http://dx.
doi.org/10.1016/j.jmsy.2008.07.004

[17] Sanders, J.; Kandrot, E.: CUDA by example: an introduc-
tion to general-purpose GPU programming, Addison-
Wesley Professional, Boston, MA, 2010, ISBN-13 978-0-
13-138768-3.

[18] Xue, K.; Kurella, V.; Spence, A.: Multi-Sensor Blue LED
and Touch Probe Inspection System, Computer-Aided
Design andApplications, 2016. http://dx.doi.org/10.1080/
16864360.2016.1168226

http://orcid.org/0000-0003-3547-7266
http://orcid.org/0000-0002-6917-969X
http://orcid.org/0000-0002-6835-6498
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1016/j.aei.2009.08.006
http://dx.doi.org/10.3722/cadaps.2008.612-621
http://www.dallan.com/assets/allegati/pdf/punching-and-stamping.pdf
http://www.dallan.com/assets/allegati/pdf/punching-and-stamping.pdf
http://dx.doi.org/10.1016/j.cirp.2014.03.090
http://dx.doi.org/10.1109/LGRS.2012.2205130
http://dx.doi.org/10.1109/LGRS.2012.2205130
http://dx.doi.org/10.1080/16864360.2015.108418
http://dx.doi.org/10.1080/16864360.2015.108418
http://dx.doi.org/10.3722/cadaps.2010.675-684
http://dx.doi.org/10.3722/cadaps.2010.675-684
http://hdl.handle.net/11375/11075
http://hdl.handle.net/11375/11075
http://dx.doi.org/10.1080/16864360.2007.10738517
http://dx.doi.org/10.1080/16864360.2007.10738517
http://dx.doi.org/10.3722/cadaps.2011.849-85
http://dx.doi.org/10.3722/cadaps.2011.849-85
http://dx.doi.org/10.1007/s00138-010-0282-z
http://dx.doi.org/10.1007/s00138-010-0282-z
http://dx.doi.org/10.1016/j.jmsy.2008.07.004
http://dx.doi.org/10.1016/j.jmsy.2008.07.004
http://dx.doi.org/10.1080/16864360.2016.1168226
http://dx.doi.org/10.1080/16864360.2016.1168226

	1. Introduction
	2. Algorithm challenges and solutions
	2.1. Challenges
	2.2. Experimental set-up

	3. Point-facet matching
	3.1. Initial experiments and results
	3.2. Performance analysis
	3.3. Complete looping
	3.4. Texture memory
	3.5. Results

	4. Facet-facet matching
	4.1. Setup
	4.2. Results

	5. Analysis and conclusions
	5.1. Consistency check
	5.2. CPU-GPU result comparison
	5.3. Industry software implementation
	5.4. Conclusion
	5.5. Future work

	Acknowledgements
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

